
Goal-Aware Prediction: Learning to Model What Matters

Suraj Nair 1 Silvio Savarese 1 Chelsea Finn 1

Abstract
Learned dynamics models combined with both
planning and policy learning algorithms have
shown promise in enabling artificial agents to
learn to perform many diverse tasks with limited
supervision. However, one of the fundamental
challenges in using a learned forward dynamics
model is the mismatch between the objective of
the learned model (future state reconstruction),
and that of the downstream planner or policy
(completing a specified task). This issue is ex-
acerbated by vision-based control tasks in diverse
real-world environments, where the complexity
of the real world dwarfs model capacity. In this
paper, we propose to direct prediction towards
task relevant information, enabling the model to
be aware of the current task and encouraging it to
only model relevant quantities of the state space,
resulting in a learning objective that more closely
matches the downstream task. Further, we do so
in an entirely self-supervised manner, without the
need for a reward function or image labels. We
find that our method more effectively models the
relevant parts of the scene conditioned on the goal,
and as a result outperforms standard task-agnostic
dynamics models and model-free reinforcement
learning.

1 Introduction
Enabling artificial agents to learn from their prior experience
and generalize their knowledge to new tasks and environ-
ments remains an open and challenging problem. Unlike
humans, who have the remarkable ability to quickly gen-
eralize skills to new objects and task variations, current
methods in multi-task reinforcement learning require heavy
supervision across many tasks before they can even begin
to generalize well. One way to reduce the dependence on

1Stanford University. Correspondence to: Suraj Nair
<surajn@stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

heavy supervision is to leverage data that the agent can
collect autonomously without rewards or labels, termed
self-supervision. One of the more promising directions in
learning transferable knowledge from this unlabeled data
lies in learning the dynamics of the environment, as the
physics underlying the world are often consistent across
scenes and tasks. However learned dynamics models do not
always translate to good downstream task performance, an
issue which we study and attempt to mitigate in this work.

While learning dynamics in low-dimensional state spaces
has shown promising results (McAllister and Rasmussen,
2016; Deisenroth and Rasmussen, 2011; Chua et al., 2018;
Amos et al., 2018a), scaling to high dimensional states, such
as image observations, poses numerous challenges. One key
challenge is that, in high dimensional spaces, learning a per-
fect model is often impossible due to limited model capacity,
and as a result downstream task-specific planners/policies
struggle from inaccurate model predictions. Specifically, a
learned planner/policy will often exploit errors in the model
that make it drastically overestimate its performance. Fur-
thermore, depending on the nature of the downstream task,
prediction accuracy on certain states may be more impor-
tant, which is not captured by the next state reconstruction
objective used to train forward dynamics models.

Our primary hypothesis is that this “objective mismatch”
between the training objective of the learned model (fu-
ture state reconstruction), and the downstream planner or
policy (completing a specified task) is one of the primary
limitations in learning models of high dimensional states.
In other words, the learned model is encouraged to predict
large portions of the state which may be irrelevant to the
task at hand. Consider for example the task of picking up a
pen from a cluttered desk. The standard training objective
of the learned model would encourage it to equally weigh
modeling the pen and all objects on the table, when given
the downstream task, modeling the pen and adjacent objects
precisely is clearly the most critical.

To that end, we propose goal-aware prediction (GAP), a
framework for learning forward dynamics models that direct
their capacity differently conditioned on the task, resulting
in a model that is more accurate on trajectories most relevant

Videos/code can be found at https://sites.google.
com/stanford.edu/gap

https://sites.google.com/stanford.edu/gap
https://sites.google.com/stanford.edu/gap

Goal-Aware Prediction: Learning to Model What Matters

to the downstream task. Specifically, we propose to learn a
latent representation of not just the state, but both the state
and goal, and to learn dynamics in this latent space. Further-
more, we can learn this latent space in a way that focuses
primarily on parts of the state relative to achieving the goal,
namely by reconstructing the goal-state residual instead of
the full state. We find that this modification combined with
training via goal-relabeling (Andrychowicz et al., 2017) al-
lows us to learn expressive, task-conditioned dynamics mod-
els in an entirely self-supervised manner. We observe that
GAP learns dynamics that achieve significantly lower error
on task relevant states, and as a result outperforms standard
latent dynamics model learning and self-supervised model-
free reinforcement learning (Nair et al., 2018) across a range
of vision based control tasks.

2 Related Work
Recent years have seen impressive results from reinforce-
ment learning (Sutton and Barto, 2018) applied to challeng-
ing problems such as video games (Mnih et al., 2015; Ope-
nAI, 2018), Go (Silver et al., 2016), and robotics (Levine
et al., 2016; OpenAI et al., 2018; Kalashnikov et al., 2018).
However, the dependence on large quantities of labeled data
can limit the applicability of these methods in the real world.
One approach is to leverage self-supervision, where an agent
only uses data that it can collect autonomously.

Self-Supervised Reinforcement Learning: Self-
supervised reinforcement learning explores how RL
can leverage data which the agent can collect autonomously
to learn meaningful behaviors, without dependence on
task specific reward labels, with promising results on tasks
such as robotic grasping and object re-positioning (Pinto
and Gupta, 2016; Ebert et al., 2018; Zeng et al., 2018).
One approach to self-supervised RL has been combining
goal-conditioned policy learning (Kaelbling, 1993; Schaul
et al., 2015; Codevilla et al., 2017) with goal re-labeling
(Andrychowicz et al., 2017) or sampling goals (Nair et al.,
2018; 2019). While there are numerous ways to leverage
self-supervised data, ranging from learning distance metrics
(Yu et al., 2019b; Hartikainen et al., 2020), generative
models over the state space (Kurutach et al., 2018; Fang
et al., 2019; Eysenbach et al., 2019; Liu et al., 2020;
Nair and Finn, 2020), and representations (Veerapaneni
et al., 2019), one of the most heavily utilized techniques
is learning the dynamics of the environment (Watter et al.,
2015; Finn and Levine, 2017; Agrawal et al., 2016).

Model-Based Reinforcement Learning: Learning a
model of the dynamics of the environment and using it to
complete tasks has been a well studied approach to solving
reinforcement learning problems, either through planning
with the model (Deisenroth and Rasmussen, 2011; Watter
et al., 2015; McAllister and Rasmussen, 2016; Banijamali
et al., 2017; Chua et al., 2018; Amos et al., 2018a; Hafner

et al., 2019b; Nagabandi et al., 2019) or optimizing a policy
in the model (Racanière et al., 2017; Ha and Schmidhuber,
2018; Łukasz Kaiser et al., 2020; Lee et al., 2019; Janner
et al., 2019; Wang and Ba, 2019; Hafner et al., 2019a; Gre-
gor et al., 2019; Byravan et al., 2019). Numerous works
have explored how these methods might leverage deep neu-
ral networks to extend to high dimensional problem settings,
such as images. One technique has been to learn large video
prediction models (Finn and Levine, 2017; Babaeizadeh
et al., 2018; Ebert et al., 2017; 2018; Paxton et al., 2018;
Lee et al., 2018; Villegas et al., 2019; Xie et al., 2019),
however model under-fitting remains an issue for these ap-
proaches (Dasari et al., 2019). Similarly, many works have
explored learning low dimensional latent representations of
high dimensional states (Watter et al., 2015; Dosovitskiy
and Koltun, 2016; Zhang et al., 2018; Hafner et al., 2019b;
Kurutach et al., 2018; Ichter and Pavone, 2019; Wang et al.,
2019; Lee et al., 2019; Gelada et al., 2019) and learning the
dynamics in the latent space. Unlike these works, we aim
to make the problem easier by encouraging the network to
predict only task-relevant quantities, while also changing
the objective, and hence the distribution of prediction errors,
in a task-driven way. This allows the prediction problem to
be more directly connected to the downstream use-case of
task-driven planning.

Addressing Model Errors: Other works have also studied
the problem of model error and exploitation. Approaches
such as ensembles (Chua et al., 2018; Thananjeyan et al.,
2019) have been leveraged to measure uncertainty in model
predictions. Similarly, Janner et al. (2019) explore only
leveraging the learned model over finite horizons where it
has accurate predictions and Levine et al. (2016) use local
models. Exploration techniques can also be used to collect
more data where the model is uncertain (Pathak et al., 2017).

Most similar to our proposed approach are techniques which
explicitly change the models objective to optimize for per-
formance on downstream tasks. (Schrittwieser et al., 2019;
Havens et al., 2020) explore only predicting future reward to
learn a latent space in which they learn dynamics, Freeman
et al. (2019) learn a model with the objective of having a
policy achieve high reward from training in it, and Amos
et al. (2018b); Srinivas et al. (2018) embed a model/planner
inside a neural network. Similarly, Farahmand et al. (2017);
D’Oro et al. (2020); Lambert et al. (2020) explore how
model training can be re-weighted using value functions,
policy gradients, or expert trajectories to emphasize task
performance. Unlike these works, which depend heavily on
task-specific supervision, our approach can be learned on
purely self-supervised data, and generalize to unseen tasks.

3 Goal-Aware Prediction
We consider a goal-conditioned RL problem setting (de-
scribed next), for which we utilize a model-based reinforce-

Goal-Aware Prediction: Learning to Model What Matters

ment learning approach. The key insight of this work stems
from the idea that the distribution of model errors greatly
affects task performance and that, when faced with limited
model capacity, we can control the distribution of errors
to achieve better task performance. We theoretically and
empirically investigate this effect in Sections 3.2 and 3.3
before describing our approach for skewing the distribution
of model errors in Section 3.4.

3.1 Preliminaries

We formalize our problem setting as a goal-conditioned
Markov decision process (MDP) defined by the tuple
(S,A, p,G, λ) where s ∈ S is the state space, a ∈ A is
the action space, p(st+1|st, at) governs the environment
dynamics, p(s0) corresponds to the initial state distribution,
G ⊂ S represents the unknown set of goal states which
is a subset of possible states, and λ is the discount factor.
Note that this is simply a special case of a Markov decision
process, where we do not have access to extrinsic reward
(i.e. it is self-supervised), and where we separate the state
and goal for notational clarity.

We will assume that the agent has collected an unlabeled
dataset D that consists of N trajectories [τ1, ..., τN], and
each trajectory τ consists of a sequence of state action pairs
[(s0, a0), (s1, a1), ..., (sT)]. We will denote the estimated
distance between two states as C(st, sg) = ||st − sg||22,
which may not accurately reflect the true distance, e.g. when
states correspond to images. At test time, the agent is initial-
ized at a start state s0 ∼ p(s0) with a goal state sg sampled
at random from G, and must minimize cost C(st, sg). We
assume that for any states st, sg we can measure C(st, sg)
as the distance between the states, for example in image
space C would be pixel distance. Success is measured as
reaching within some true distance of sg .

In the model-based RL setting we consider here, the agent
aims to solve the RL problem by learning a model of the
dynamics pθ(st+1|st, at) from experience, and using that
model to plan a sequence of actions or optimize a policy.

3.2 Understanding the Effect of Model Error on Task
Performance

A key challenge in model-based RL is that dynamics predic-
tion error does not directly correspond to task performance.
Specifically, for good task performance, certain model er-
rors may be more costly than others, and if errors are simply
distributed uniformly over dynamics predictions, errors in
these critical areas may be exploited when selecting ac-
tions downstream. Intuitively, when optimizing actions for
a given task, we would like our model to to give accurate
predictions for actions that are important for completing the
task, while the model likely does not need to be as accurate
on trajectories that are completely unrelated to the task. In
this section, we formalize this intuition.

Suppose the model is used by a policy to select from
N action sequences ai1:T , each with expected final cost
c∗i = Ep(st+1|st,at),ai1:T [C(sT , sg)]. Without loss of gen-
erality, let c∗1 ≤ c∗2... ≤ c∗N , i.e. the order of action se-
quences is sorted by their cost under the true model, which
is unknown to the agent. Denote ĉi as the predicted final
cost of action sequence ai1:T under the learned model, i.e.
ĉi = Epθ(st+1|st,at),ai1:T [C(ŝT , sg)]. Moreover, we consider
a policy that simply selects the action sequence with lowest
cost under the model: â = arg minai1:T ĉi. Let the policies
behavior be ε-optimal if the cost of the selected action se-
quence ai1:T has cost c∗i ≤ c∗1 + ε. Under this set-up, we
now analyze how model error affects policy performance.
Theorem 3.1. The policy will remain ε-optimal, that is,

c∗i′ ≤ c∗1 + ε i′ = arg min
i
ĉi (1)

if the following two conditions are met: first, that the model
prediction error on the best action sequence a11:T is bounded
such that |c∗1 − ĉ1| < ε (2)

and second, that the errors of sub-optimal actions sequences
ai1:T are bounded by

|c∗i − ĉi| < (c∗i − c∗1)− ε ∀i | c∗i > c∗1 + ε (3)

Proof. For the specified policy, violating ε-optimality will
only occur if the cost of the best action sequence a11:T is
overestimated or if the cost of a sub-optimal action sequence
(i | c∗i > c∗1 + ε) is underestimated. Thus, let us define the
"worst case" cost predictions as the ones for which c∗1 is
most overestimated and c∗i ∀i | c∗i > c∗1 + ε are most
underestimated (while still satisfying Equations 2 and 3).
Concretely we write the worst case cost estimates as

c̃i := min ĉi ∀i | c∗i > c∗1 + ε

c̃1 := max ĉ1

s.t. Eq. 2 and 3 hold. We will now show that c̃1 < c̃i ∀i |
c∗i > c∗1 + ε. First, since c̃i satisfies Eq. 3, we have that

c̃i > c∗i − (c∗i − c∗1) + ε

Similarly, since c̃1 satisfies Eq. 2, we have that

c̃1 < c∗1 + ε

Substituting, we see that

c̃i > c∗i −(c∗i −c∗1)+ε = c∗1+ε > c̃1 ∀i | c∗i > c∗1+ε (4)

Hence even in the worst case, Equations 2 and 3 ensure that
ĉi > ĉ1 ∀i | c∗i > c∗1 + ε, and thus no action sequence i
for which c∗i > c∗1 + ε will be selected and the policy will
remain ε-optimal. Note that action sequences besides i = 1
for which c∗i ≤ c∗1 + ε costs are unbounded, as it is ok for
them to be significantly underestimated since selecting them
still allows the policy to be ε-optimal.

Goal-Aware Prediction: Learning to Model What Matters

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100
7rDMectRry 5Dnking Ey 7rue CRst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6u
cc

es
s

5D
te

 (5
00

 7
riD

ls
)

DistriEutiRn Rf 0Rdel 3redictiRn (rrRr vs 3erfRrPDnce

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100
7rDjectRry 5Dnking Ey 7rue CRst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
6u

cc
es

s
5D

te
 (5

00
 7

riD
ls

)

DistriEutiRn Rf CRst 3redictiRn (rrRr vs 3erfRrPDnce

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-9090-100
7rDjectRry 5Dnking Ey 7rue CRst

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6u
cc
es
s
5D
te
 (5
00
 7
riD
ls
)

DistriEutiRn Rf CRst 3redictiRn (rrRr vs 3erfRrPDnce

ε 0.01 ε 0.05 ε 0.1 ε 0.2
Figure 1: Distribution of model errors vs. performance: We validate how the distribution of model errors affects performance on a
simple 2D navigation domain, by adding noise to cost predictions (left) or model predictions (right). We add varying amounts of noise
with magnitude up to ε to the predictions of the 10 lowest true cost trajectories (0-10) to the 10 highest true cost trajectories (90-100).
We observe that adding noise to low true cost trajectories dramatically reduces performance, while adding noise to the high true cost
trajectories has no nearly no impact on performance.

Theorem 3.1 suggests that, for good task performance,
model error must be low for good trajectories, and we can
afford higher model error for trajectories with higher cost.
That is, the greater the trajectory cost, the more model
error we can afford. Specifically, we see that the allowable
error bound on cost of an action sequence from a learned
model scales linearly with how far from optimal that action
sequence is, in order to maintain the optimal policy for the
downstream task. Note, that while Theorem 3.1 relates cost
prediction error (not explicitly dynamics prediction error) to
planning performance, we can expect dynamics prediction
error to relate to the resulting cost prediction error. We also
verify this empirically in the next section.

3.3 Verifying Theorem 3.1 Experimentally
We now verify the above analysis through a controlled study
of how prediction error affects task performance. To do so,
we will use the true model of an environment and true cost
of an action sequence for planning, but will artificially add
noise to the cost/model predictions to generate model error.

Consider a 2 dimensional navigation task, where the agent
is initialized at s0 = [0.5, 0.5] and is randomly assigned
a goal sg ∈ [0, 1]2. Assume we have access to the un-
derlying model of the environment, and cost defined as
C(st, sg) = ||st − sg||2. We can run the policy described
in Section 3.2, specifically sampling N = 100 action se-
quences, and selecting the one with lowest predicted cost,
where we consider 2 cases: (1) predicted cost is using
the true model, but with noise α added to the true cost
ĉi = c∗i +α of some subset of action sequences, and (2) pre-
dicted cost is true cost, but with noise α added to the model
predictions st+1 = s̄t+1 + α where s̄t+1 ∼ p(st+1|st, at)
of some subset of action sequences. The first case relates di-
rectly to Theorem 3.1, while the second case relates to what
we can control when training a self-supervised dynamics
model. When selectively adding noise, we will use uniform

noise α ∼ U(−ε, ε). We specifically study the difference in
task performance when adding noise α to model predictions
for the first 10% of trajectories with lowest true cost, the sec-
ond 10% lowest true cost trajectories, etc., up to the 10% of
trajectories with highest true cost. Here “true cost” refers to
the cost of the action sequence under the true model and cost
function without noise. For each noise augmented model we
measure the task performance, specifically the success rate
(reaching within 0.1 of the goal), over 500 random trials.

We see in Figure 1 that for multiple values of noise ε, when
adding noise to the better (lower true cost) trajectories we
see a significant drop in task performance, while when
adding noise to the worse (higher true cost) trajectories task
performance remains relatively unchanged (except for the
case with very large ε). In particular, we notice that when
adding noise to cost predictions, performance scales almost
linearly as we add noise to worse trajectories. Note there is
one exception to this trend: if we add noise only to the top
10% of trajectories, performance is not optimal, but reason-
able because the best few trajectories will occasionally be
assigned a lower cost under the noise model.

In the case of model error, we see a much steeper increase
in performance, where adding model error to the best 10
trajectories significantly hurts performance, while adding
to the others does not. This is because, in this environment,
noise added to model predictions generally makes the cost
of those predictions worse; so if no noise is added to the
best trajectories, the best action sequence is still likely to be
selected. The exact relationship between model prediction
error and cost prediction error depends on the domain and
task. But, we can see that in both cases in Figure 1, the
conclusion from Theorem 3.1 holds true: accuracy on good
action sequences matters much more than accuracy on bad
action sequences.

Goal-Aware Prediction: Learning to Model What Matters

Standard	Latent	Dynamics	Model Goal-Aware	Prediction

Figure 2: Goal-Aware Prediction: Compared to a standard latent dynamics model (left), our proposed method, goal-aware prediction
(GAP), (right) encodes both the current state st and goal sg into a single latent space zt. Samples from the distribution of zt are then
used to reconstruct the residual between the current state and goal sg − st. Simultaneously, we learn the forward dynamics in the latent
space z, specifically, learning to predict zt+1 from zt and at. Using this approach, we obtain 2 favorable properties: (1) the latent space
only needs to capture components of the scene relevant to the goal, and (2) the prediction task becomes easier (the residual approaches 0)
for states closer to the goal.

3.4 Redistributing Model Errors with Goal Aware
Prediction

Our analysis above suggests that distributing errors uni-
formly across action sequences will not lead to good task
performance. Yet, standard model learning objectives will
encourage just that. In this section, we aim to change our
model learning approach in an aim to redistribute errors
more appropriately.

Ideally, we would like to encourage the model to have more
accurate predictions on the trajectories which are relevant
to the task. However, actually identifying how relevant a
trajectory is to a specific goal sg can be challenging.

One potential approach to doing this would be to re-weight
the training loss of the model on transitions pθ(st+1|st, at)
inversely by the cost C(st, sg), such that low cost trajectories
are weighted more heavily. While this simple approach
may work when the cost function C(st, sg) is accurate, the
distance metric C(st, sg) for high-dimensional states is often
sparse and not particularly meaningful; when states are
images, C amounts to `2 distance in pixel space.

An alternative way of approaching this problem is, rather
than focusing on how to re-weight the model’s predictions,
instead ask, “what exactly should the model be predicting?”
If the downstream task involves using the model to plan to
reach a goal state, then intuitively the model should only
need to focus on predicting goal relevant parts of the scene.
Moreover, if the model is trained to focus on parts of the
scene relevant to the goal, it will naturally be biased towards
higher accuracy in states relevant to the task, re-distributing
model error favourably for downstream performance.

To that end, we propose goal-aware prediction (GAP) as a
technique to re-distribute model error by learning a model
that, in addition to the current state and action, st and
at, is conditioned on the goal state sg, and instead of re-
constructing the future state st+1, reconstructs the differ-
ence between the future state and the goal state, that is:
pθ((sg − st+1)|st, sg, at). Critically, to train GAP effec-
tively, we need action sequences that are relevant to the
corresponding goal. To accomplish this, we can choose
to set the goal state for a given action sequence as the fi-
nal state of that trajectory, i.e. using hindsight relabeling
(Andrychowicz et al., 2017). Specifically, given a trajec-
tory [(s1, a1), (s2, a2), ..., (sT)], the goal is assigned to be
the last state in the trajectory sg = sT , and for all states
{st|1 ≤ t ≤ T − 1}, pθ(st, sg, at) is trained to reconstruct
the delta to the goal sg − st+1.

Our proposed GAP method has two clear benefits over stan-
dard dynamics models. First, assuming that the agent is
not in a highly dynamic scene with significant background
distractor motion, by modeling the delta between sg and
st, pθ only needs to model components of the state which
are relevant to the current goal. This is particularly impor-
tant in high dimensional settings where there may be large
components of the state which are irrelevant to the task, and
need not be modeled. Second, states st that are temporally
close to the goal state sg will have a smaller delta sg − st,
approaching zero along the trajectory until st = sg. As
a result, states closer to the goal will be easier to predict,
biasing the model towards low error near states relevant to
the goal. In light of our analysis of model error in the pre-
vious sections, we hypothesize that this model will lead to

Goal-Aware Prediction: Learning to Model What Matters

better downstream task performance compared to a standard
model that distributes errors uniformly across trajectories.

When do we expect GAP to improve performance on down-
stream tasks? We expect GAP to be most effective when
the goals involve changing a subset d < D state dimensions
from the initial states st ∈ RD. Under these conditions,
GAP only needs to predict the dynamics of the d dimen-
sions, while standard latent dynamics need to predicts all D
making GAP an easier problem.

4 Implementing Goal-Aware Prediction
We implement GAP with a latent dynamics model, as shown
in Figure 2. Given a dataset of trajectories [τ1, ..., τN], we
sample sequences of states [(s1, a1), ..., (sT)] where we re-
label goal for the trajectory as sg = sT .

The GAP model consists of three components, (1) an en-
coder fenc(zt|st, sg; θenc) that encodes the state st and goal
sg into a latent space zt, (2) a decoder fdec(sg− st|zt; θdec)
that decodes samples from the latent distribution into sg−st,
and (3) a forward dynamics model in the latent space
fdyn(zt+1|zt, at; θdyn) which learns to predict the future
latent distribution over zt+1 from zt and action at. In our
experiments we work in the setting where states are images,
so fenc(zt|st, sg) and fdec(sg − st|zt) are convolutional
neural networks, and fdyn(zt+1|zt, at) is a fully-connected
network. The full set of parameters θ = {θenc, θdec, θdyn}
are jointly optimized. Exact architecture and training details
for all modules can be found in the supplement. Following
prior works (Finn et al., 2016; Finn and Levine, 2017; Amos
et al., 2018a), we train for multi-step prediction. More
specifically, given st, at:t+H , sg, the model is trained to
reconstruct (sg − st), ..., (sg − st+H), shown in Figure 2.

Data Collection and Model Training: In our self-
supervised setting, data collection simply corresponds to
rolling out a random exploration policy in the environment.
Specifically, we sample uniformly from the agent’s action
space, and collect 2000 episodes, each of length 50, for a
total of 100,000 frames of data.

During training, sub-trajectories of length 30 time steps are
sampled from the data set, with the last timestep labeled as
the goal sg = s30. Depending on the current value of H ,
loss is computed overH step predictions starting from states
st:(t+H). We use a curriculum when training all models,
where H starts at 0, and is incremented by 1 every 50,000
training iterations. All models are trained to convergence,
for about 300, 000 iterations on the same dataset.

Planning with GAP: For all trained models, when given
a new goal at test time sg, we plan using model predictive
control (MPC) in the latent space of the model. Specifi-
cally, both the current state st and sg are encoded into their
respective latent spaces zt and zg (Algorithm 1, Line 3).

Algorithm 1 Latent MPC(fenc, fdyn, st, sg)

1: Let D = 1000, D∗ = 10, H = 15
2: Receive current state st and goal state sg
3: Encode zt ∼ fenc(st, sg), zg ∼ fenc(sg, sg)
4: Initialize N(µ, σ2) = N (0, 1)
5: Let cost function C(zi, zj) = ||zi − zj ||22
6: while iterations ≤ 3 do
7: a1t:H , ..., a

D
t:H ∼ N(µ, σ2)

8: z1t+1:t+H , ..., z
D
t+1:t+H ∼ fdyn(zt, a1t:H , ..., aDt:H)

9: ĉ1, ..., ĉD = [
∑H

h=1 C(z
1
t+h, zg), ...,

∑H
h=1 C(z

D
t+h, zg)]

10: asorted = Sort([a1t:H , ..., a
D
t:H]) by ĉ

11: Refit µ, σ2 to asorted[1 : D∗]
12: end while
13: Return ĉsorted[1], asorted[1]

Then using the model fdyn(zt+1|zt, at), the agent plans
a sequence of H actions to minimize cost

∑H
h=0 ||zg −

zt+h||22 (Algorithm 1, Lines 4-11). Following prior works
(Finn and Levine, 2017; Hafner et al., 2019b), we use the
cross-entropy method (Rubinstein and Kroese, 2004) as the
planning optimizer. Finally, the best sequence of actions
is returned and executed in the environment (Algorithm 1,
Line 13).

While executing the plan, our model re-plans every H
timesteps. That is, it starts at state st, uses Latent MPC
(Algorithm 1) to first plan a sequence of H actions, exe-
cutes them in the environment resulting in a state st+H ,
then re-plans an additional H actions, and executes them
resulting in a final state sT . Success is computed based the
difference between sT and sg .

5 Experiments
In our experiments, we investigate three primary questions

(1) Does using our proposed technique for goal-aware pre-
diction (GAP) re-distribute model error such that predictions
are more accurate on good trajectories?

(2) Does re-distributing model errors using GAP result in
better performance in downstream tasks?

(3) Can GAP be combined with large video prediction mod-
els to scale to the complexity of real world images?

We design our experimental set-up with these questions in
mind in Section 5.1, then examine each of the questions in
Sections 5.2, 5.3, and 5.4 respectively.

5.1 Experimental Domains and Comparisons
Experimental Domains: Our primary experimental do-
main is a simulated tabletop manipulation task built off
of the Meta-World suite of environments (Yu et al., 2019a).
Specifically, it consists of a simulated Sawyer robot, and
3 blocks on a tabletop. In the self-supervised data collec-
tion phase, the agent executes a random policy for 2,000
episodes, collecting 100,000 frames worth of data. Then,
after learning a model, the agent is tested on 4 previously
unseen tasks, where the task is specified by a goal image.

Goal-Aware Prediction: Learning to Model What Matters

Figure 3: Distribution of Model Errors: We examine the distribution of model prediction errors of GAP compared to prior methods
over 1000 random action sequences, evaluated on the “Task 1” domain. The y-axis are corresponds to model mean-squared error (with
standard error bars), and the x-axis corresponds to number of time steps predicted forward. Naturally, we observe that model error
increases as the prediction horizon increases, for all approaches. However, although all approaches have a similar error over all 1000
action sequences (left), GAP achieves significantly lower error on the best 10 trajectories (right). This suggests that changing the model
objective through predicting the goal-state residual leads to more accurate predictions in areas that matter in downstream tasks.

Task 1 consists of pushing the green, pink, or blue block to
a goal position, while the more challenging Task 2 requires
the robot to push 2 blocks to each of their respective goal
positions (see Figure 4). Task success is defined as being
within 0.1 of the goal positions. Task 3 and 4 involve
closing and opening the door respectively with distractor
objects on the table, where success is defined as being within
π/6 radians of the goal position. The agent receives 64×64
RGB camera observations of the tabletop. We also study
model error on real robot data from the BAIR Robot Dataset
(Ebert et al., 2017) and RoboNet dataset (Dasari et al., 2019)
in Section 5.4.

Comparisons: We compare to several model variants in our
experiments. GAP is our approach of learning dynamics
in a latent space conditioned on the current state and goal,
and reconstructing the residual between the current state
and goal state, as described in Section 3.4. GAP (-Goal
Cond) is an ablation of GAP that does not use goal condi-
tioning. Instead of conditioning on the goal and predicting
the residual to the goal, it is conditioned on the initial state,
and predicts the residual to the initial state. This is repre-
sentative of prior works (e.g. Nagabandi et al. (2019)) that
predict residuals for model-based RL. GAP (-Residual) is

Task 1 Task 2 Task 3 Task 4

Figure 4: Evaluation Tasks: Sample initial & goal states for each
of the simulated manipulation tasks. Tasks involve manipulating
blocks or a door, with the task specified by a goal image.

another ablation of GAP that is conditioned on the goal but
maintains the standard reconstruction objective instead of
the residual. This is similar to prior work on goal condi-
tioned video prediction (Rybkin et al., 2020). Standard
refers to a standard latent dynamics model, representative of
approaches such as PlaNet (Hafner et al., 2019b), but with-
out reward prediction since we are in the self-supervised
setting.

When studying task performance, we also compare to two al-
ternative self-supervised reinforcement learning approaches.
First, we compare to an Inverse Model, which is a latent
dynamics model where the latent space is learned via an
action prediction loss (instead of image reconstruction), as
done in Pathak et al. (2017). Second, we compare to a
model-free approach: reinforcement learning with imagined
goals (RIG) (Nair et al., 2018), where we train a VAE on the
same pre-collected dataset as the other models, then train a
policy in the latent space of the VAE to reach goals sampled
from the VAE. Further implementation details can be found
in the supplement.

5.2 Experiment 1: Does GAP Favorably Redistribute
Model Error?

In our first set of experiments, we study how GAP affects
the distribution of model errors, and if it leads to lower
model error on task relevant trajectories. We sample 1000
random action sequences of length 15 in the Task 1 domain.
We compute the true next states s11:H , ..., s

1000
1:H and costs

c1, ..., c1000 for each action sequence by feeding it through
the true simulation environment. We then get the predicted
next states from our learned models, including GAP as well
the comparisons outlined above. We then examine the model
error of each approach, and how it changes when looking at
all trajectories, versus the lowest cost trajectories.

We present our analysis in Figure 3. We specifically look at
the model error on all 1000 action sequences, the top 100

Goal-Aware Prediction: Learning to Model What Matters

Ground
TruthStandardGAP

Initial
State

Goal
State

Good
Trajectory

Bad
Trajectory

GAP doesn’t model
irrelevant parts of the

scene

GAP more effectively
models the goal

relevant components

Figure 5: GAP Predictions on Good/Bad Trajectories. Here
we show qualitatively how GAP focuses on the task relevant parts
of the scene. Note, for GAP predictions we add back the goal
image to the predicted goal-state residual. Given the task specified
by pushing the green block (top), consider a good action sequence
(middle) and bad action sequence (bottom). On the good action
sequence GAP more effectively models the goal relevant parts of
the scene (the green block) than the standard model. Additionally,
on the bad trajectory, GAP ignores the irrelevant objects and does
not model their dynamics at all, while the standard model does.

action sequences, and the top 10 action sequences. First,
we observe that model error increases with the prediction
horizon, which is expected due to compounding model er-
ror. More interestingly, however, we observe that while
our proposed GAP approach has the highest error averaged
across all 1000 action sequences, it has by far the lowest
error on the top 10. This suggests that the goal conditioned
prediction of the goal-state residual indeed encourages low
model error in the relevant parts of the state space. Further-
more, we see that the conditioning on and reconstructing
the difference to the actual goal is in fact critical, as the
ablation GAP (-Goal Cond) which instead is conditioned
on and predicts the residual to the first frame actually gets
worse error on the lowest cost trajectories.

Figure 6: Success rate on tabletop manipulation. On the tasks
proposed in Section 5.1, we find that GAP outperforms the com-
parisons. Specifically on the harder 2 block manipulation task,
GAP has a significantly higher success rate.

TaVk 1 TaVk 2 TaVk 3 TaVk 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

6u
cc

eV
 5

at
e

3erfRrPance Rn ViVual TabletRS 0aniSulatiRn

TaVk 1 TaVk 2 TaVk 3 TaVk 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6
6u

cc
eV

 5
at

e

3erfRrPance Rn ViVuaO TabOetRS 0aniSuOatiRn
GA3 (2urV) GA3 (-GRaO CRnG) GA3 (-5eViGuaO)

Figure 7: Success rate on tabletop manipulation (ablation).
We compare the success rate of GAP to ablations on the task
described in Section 5.1. We find that in all tasks except Task 3 both
goal conditioning and residual are important for good performance.

This indicates that GAP successfully re-distributes error
such that it has the most accurate predictions on low-cost
trajectories. We also observe this qualitatively in Figure 5.
For a given initial state and goal state from Task 1, GAP
effectively models the target object (the green block) on
a good action sequence that reaches the goal, while the
standard model struggles. On a poor action sequence that
hits the non-target blocks, the Standard approach models
them, while GAP does not model interaction with these
blocks at all, suggesting that GAP does not model irrelevant
parts of the scene. In the next section, we examine if this
error redistribution translates to better task performance.

5.3 Experiment 2: Does GAP Lead to Better
Downstream Task Performance?

To study downstream task performance, we test on the table-
top manipulation tasks described in Section 5.1. We perform
planning over 30 timesteps with the learned models as de-
scribed in Section 3, and report the final success rate of each
task over 200 trials in Figure 6. We see that in all tasks GAP
outperforms the comparisons, especially in the most chal-
lenging 2 block manipulation task in Task 2 (where precise
modeling of the relevant objects is especially important).

We make a similar comparison, but to the ablations of GAP,
in Figure 7. Again we see that GAP is performant, and in
all tasks except Task 3 both goal conditioning and residual
are important for good performance. Interestingly, we ob-
serve that GAP (-Goal Cond) is competitive on the door
manipulation tasks.

Hence, we can conclude that GAP not only enables lower
model error in task relevant states, but by doing so, also
achieves a 10-20% absolute performance improvement over
baselines on 3 out of 4 tasks.

5.4 Experiment 3: Does GAP scale to real, cluttered
visual scenes?

Lastly, we study whether our proposed GAP method extends
to real, cluttered visual scenes. To do so we combine it with

Goal-Aware Prediction: Learning to Model What Matters

Ground
Truth

SVG

SVG +
GAP

Time à

Figure 8: GAP+SVG Video Prediction (BAIR Robot Dataset): Here we present qualitative examples of action-conditioned SVG with
and without GAP on the BAIR robot dataset, predicting on goal-reaching trajectories. Note, in the GAP predictions the goal is added back
to the predicted goal-state residual. In this case the goal is the rightmost frame. We see that GAP is able to more accurately predict the
objects relevant to the goal, for example the small spoon highlighted in the red box.

an action-conditioned version of the video generation model,
SVG (Denton and Fergus, 2018). Specifically, we condition
the SVG encoder on the goal, and the current goal-state
residual, and predict the next goal-state residual.

We compare the prediction error of SVG to SVG+GAP on
goal reaching trajectories (Figure 9) from real robot datasets,
namely the BAIR Robot Dataset (Ebert et al., 2017) and
the RoboNet Dataset (Dasari et al., 2019). We see that
action-conditioned SVG combined with GAP as well as
the ablation without residual prediction both have lower
prediction error on goal reaching trajectories than standard
action-conditioned SVG.

Qualitatively, we also observe that SVG+GAP is able
to more effectively capture goal relevant components, as
shown in Figure 8. We see that GAP is able to capture the
motion of the small spoon, while correctly modeling the
dynamics of the arm, while SVG ignores the spoon.

As a result, we conclude that GAP can effectively be com-
bined with large video prediction models, and scaled to
challenging real visual scenes.

6 Discussion and Limitations
In this paper, we studied the role of model error in task
performance. Motivated by our analysis, we proposed goal-
aware prediction, a self-supervised framework for learning
dynamics that are conditioned on a goal and structured in
a way that favorably re-distributes model error to be low in
goal-relevant states. In visual control domains, we verified
that GAP (1) enables lower model error on task relevant
states, (2) improves downstream task performance, and (3)
scales to real, cluttered visual scenes.

While GAP demonstrated significant gains, multiple limita-
tions and open questions remain. Our theoretical analysis
suggests that we should re-distribute model errors according
to their planning cost. While GAP provides one way to do
that in a self-supervised manner, there are likely many other
approaches that can be informed by our analysis, including

BAIR Robot Dataset RoboNet
0

50

100

150

200

250

300

350

400

Te
st

 M
ea

n
Sq

ua
re

d
Er

ro
r

Action Conditioned Video Prediction Test Error
SVG+GAP (Ours)
SVG+GAP (-Residual)
SVG

Figure 9: Model Errors (Real Robot Data): We examine
the model error of SVG combined with GAP on unseen, goal-
reaching trajectories from two real robot datasets (the BAIR
Dataset (Ebert et al., 2017) and the RoboNet Dataset (Dasari et al.,
2019)). We see that action-conditioned SVG combined with GAP
has lower prediction error on the goal reaching trajectories than
standard action-conditioned SVG. We observe that the GAP abla-
tion which also conditions on the goals, but predicts residuals is
equally effective in this setting.

approaches that leverage human supervision. For example,
we anticipate that GAP-based models may be less suitable
for environments with dynamic distractors such as chang-
ing lighting conditions and moving distractor objects, since
GAP would be still encouraged to model these events. To
effectively solve this case, an agent would likely require
human supervision to indicate the axes of variation that are
relevant to the goal. Incorporating such supervision is out-
side the scope of this work, but an exciting avenue for future
investigation.

Additionally, while in this work we found GAP to work
well with goals selected at the end of sampled trajectories,
there may be more effective ways to sample goals. Studying
the relationship between how exactly goals are sampled and
learning performance, as well as how best to sample and
re-label goals is an exciting direction for future work.

Goal-Aware Prediction: Learning to Model What Matters

Acknowledgments
We would like to thank Ashwin Balakrishna, Oleh Rybkin,
and members of the IRIS lab for many valuable discussions.
This work was supported in part by Schmidt Futures and an
NSF graduate fellowship. Chelsea Finn is a CIFAR Fellow
in the Learning in Machines & Brains program.

References
P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of
intuitive physics. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 5074–
5082. Curran Associates, Inc., 2016.

B. Amos, L. Dinh, S. Cabi, T. Rothörl, A. Muldal, T. Erez,
Y. Tassa, N. de Freitas, and M. Denil. Learning awareness
models. In International Conference on Learning Rep-
resentations, 2018a. URL https://openreview.
net/forum?id=r1HhRfWRZ.

B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter.
Differentiable mpc for end-to-end planning and control.
In Advances in Neural Information Processing Systems,
pages 8289–8300, 2018b.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and
W. Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017.

M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and
S. Levine. Stochastic variational video prediction. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rk49Mg-CW.

E. Banijamali, R. Shu, M. Ghavamzadeh, H. H. Bui, and
A. Ghodsi. Robust locally-linear controllable embedding.
ArXiv, abs/1710.05373, 2017.

A. Byravan, J. T. Springenberg, A. Abdolmaleki, R. Hafner,
M. Neunert, T. Lampe, N. Siegel, N. M. O. Heess, and
M. A. Riedmiller. Imagined value gradients: Model-
based policy optimization with transferable latent dynam-
ics models. ArXiv, abs/1910.04142, 2019.

K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems, pages 4754–4765, 2018.

F. Codevilla, M. Müller, A. Dosovitskiy, A. López, and
V. Koltun. End-to-end driving via conditional imita-
tion learning. 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–9, 2017.

S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeck-
peper, S. Singh, S. Levine, and C. Finn. Robonet: Large-
scale multi-robot learning. ArXiv, abs/1910.11215, 2019.

M. Deisenroth and C. E. Rasmussen. Pilco: A model-based
and data-efficient approach to policy search. In Proceed-
ings of the 28th International Conference on machine
learning (ICML-11), pages 465–472, 2011.

E. L. Denton and R. Fergus. Stochastic video generation
with a learned prior. In International Conference on
Machine Learning, 2018.

P. D’Oro, A. M. Metelli, A. Tirinzoni, M. Papini, and
M. Restelli. Gradient-aware model-based policy search.
In Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, 2020.

A. Dosovitskiy and V. Koltun. Learning to act by predicting
the future. ArXiv, abs/1611.01779, 2016.

F. Ebert, C. Finn, A. X. Lee, and S. Levine. Self-supervised
visual planning with temporal skip connections. CoRR,
abs/1710.05268, 2017.

F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and
S. Levine. Visual foresight: Model-based deep reinforce-
ment learning for vision-based robotic control. CoRR,
abs/1812.00568, 2018.

B. Eysenbach, R. R. Salakhutdinov, and S. Levine. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, pages 15246–15257, 2019.

K. Fang, Y. Zhu, A. Garg, S. Savarese, and L. Fei-Fei. Dy-
namics learning with cascaded variational inference for
multi-step manipulation. ArXiv, abs/1910.13395, 2019.

A.-M. Farahmand, A. Barreto, and D. Nikovski. Value-
Aware Loss Function for Model-based Reinforcement
Learning. In A. Singh and J. Zhu, editors, Pro-
ceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages
1486–1494, Fort Lauderdale, FL, USA, 20–22 Apr
2017. PMLR. URL http://proceedings.mlr.
press/v54/farahmand17a.html.

C. Finn and S. Levine. Deep visual foresight for planning
robot motion. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 2786–2793.
IEEE, 2017.

C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised
learning for physical interaction through video prediction.
In NIPS, 2016.

https://openreview.net/forum?id=r1HhRfWRZ
https://openreview.net/forum?id=r1HhRfWRZ
https://openreview.net/forum?id=rk49Mg-CW
https://openreview.net/forum?id=rk49Mg-CW
http://proceedings.mlr.press/v54/farahmand17a.html
http://proceedings.mlr.press/v54/farahmand17a.html

Goal-Aware Prediction: Learning to Model What Matters

D. Freeman, D. Ha, and L. Metz. Learning to predict without
looking ahead: World models without forward prediction.
In Advances in Neural Information Processing Systems,
pages 5379–5390, 2019.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and
M. G. Bellemare. Deepmdp: Learning continuous la-
tent space models for representation learning. CoRR,
abs/1906.02736, 2019. URL http://arxiv.org/
abs/1906.02736.

K. Gregor, D. J. Rezende, F. Besse, Y. Wu, H. Merzic, and
A. van den Oord. Shaping belief states with generative
environment models for rl. In NeurIPS, 2019.

D. Ha and J. Schmidhuber. World models. ArXiv,
abs/1803.10122, 2018.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019a.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee,
and J. Davidson. Learning latent dynamics for planning
from pixels. In International Conference on Machine
Learning, pages 2555–2565, 2019b.

K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine.
Dynamical distance learning for semi-supervised and
unsupervised skill discovery. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1lmhaVtvr.

A. Havens, Y. Ouyang, P. Nagarajan, and Y. Fujita. Learning
latent state spaces for planning through reward prediction,
2020. URL https://openreview.net/forum?
id=ByxJjlHKwr.

B. Ichter and M. Pavone. Robot motion planning in learned
latent spaces. IEEE Robotics and Automation Letters, 4
(3):2407–2414, 2019.

M. Janner, J. Fu, M. Zhang, and S. Levine. When to
trust your model: Model-based policy optimization. In
NeurIPS, 2019.

L. P. Kaelbling. Learning to achieve goals. In IJCAI, pages
1094–1098, 1993.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog,
E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Van-
houcke, and S. Levine. Qt-opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation.
arxiv:Preprint, 2018.

T. Kurutach, A. Tamar, G. Yang, S. J. Russell, and P. Abbeel.
Learning plannable representations with causal infogan.
In Advances in Neural Information Processing Systems,
pages 8733–8744, 2018.

N. G. Lambert, B. Amos, O. Yadan, and R. Calandra. Ob-
jective mismatch in model-based reinforcement learning.
ArXiv, abs/2002.04523, 2020.

A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and
S. Levine. Stochastic adversarial video prediction. CoRR,
abs/1804.01523, 2018.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochas-
tic latent actor-critic: Deep reinforcement learning with a
latent variable model. ArXiv, abs/1907.00953, 2019.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

K. Liu, T. Kurutach, P. Abbeel, and A. Tamar. Hallucina-
tive topological memory for zero-shot visual planning,
2020. URL https://openreview.net/forum?
id=BkgF4kSFPB.

R. McAllister and C. E. Rasmussen. Improving pilco with
bayesian neural network dynamics models. 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. A. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, and D. Hassabis. Human-level control
through deep reinforcement learning. Nature, 518:529–
533, 2015.

A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar. Deep
dynamics models for learning dexterous manipulation.
ArXiv, abs/1909.11652, 2019.

A. Nair, S. Bahl, A. Khazatsky, V. Pong, G. Berseth, and
S. Levine. Contextual imagined goals for self-supervised
robotic learning. ArXiv, abs/1910.11670, 2019.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine.
Visual reinforcement learning with imagined goals. In Ad-
vances in Neural Information Processing Systems, pages
9191–9200, 2018.

S. Nair and C. Finn. Hierarchical foresight: Self-supervised
learning of long-horizon tasks via visual subgoal genera-
tion. In International Conference on Learning Represen-
tations, 2020. URL https://openreview.net/
forum?id=H1gzR2VKDH.

OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józe-
fowicz, B. McGrew, J. W. Pachocki, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schnei-
der, S. Sidor, J. Tobin, P. Welinder, L. Weng, and

http://arxiv.org/abs/1906.02736
http://arxiv.org/abs/1906.02736
https://openreview.net/forum?id=H1lmhaVtvr
https://openreview.net/forum?id=H1lmhaVtvr
https://openreview.net/forum?id=ByxJjlHKwr
https://openreview.net/forum?id=ByxJjlHKwr
https://openreview.net/forum?id=BkgF4kSFPB
https://openreview.net/forum?id=BkgF4kSFPB
https://openreview.net/forum?id=H1gzR2VKDH
https://openreview.net/forum?id=H1gzR2VKDH
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Goal-Aware Prediction: Learning to Model What Matters

W. Zaremba. Learning dexterous in-hand manipulation.
CoRR, abs/1808.00177, 2018. URL http://arxiv.
org/abs/1808.00177.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-
driven exploration by self-supervised prediction. 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pages 488–489, 2017.

C. Paxton, Y. Barnoy, K. D. Katyal, R. Arora, and
G. D. Hager. Visual robot task planning. CoRR,
abs/1804.00062, 2018.

L. Pinto and A. Gupta. Supersizing self-supervision: Learn-
ing to grasp from 50k tries and 700 robot hours. In 2016
IEEE international conference on robotics and automa-
tion (ICRA), pages 3406–3413. IEEE, 2016.

S. Racanière, T. Weber, D. P. Reichert, L. Buesing, A. Guez,
D. J. Rezende, A. P. Badia, O. Vinyals, N. M. O. Heess,
Y. Li, R. Pascanu, P. W. Battaglia, D. Hassabis, D. Silver,
and D. Wierstra. Imagination-augmented agents for deep
reinforcement learning. ArXiv, abs/1707.06203, 2017.

R. Rubinstein and D. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-
Carlo Simulation and Machine Learning. 01 2004.

O. Rybkin, K. Pertsch, F. Ebert, D. Jayaraman, C. Finn,
and S. Levine. Goal-conditioned video prediction,
2020. URL https://openreview.net/forum?
id=B1g79grKPr.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal
value function approximators. In International Confer-
ence on Machine Learning, 2015.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan,
L. Sifre, S. Schmitt, A. Guez, E. Lockhart, D. Hassabis,
T. Graepel, T. P. Lillicrap, and D. Silver. Mastering atari,
go, chess and shogi by planning with a learned model.
ArXiv, abs/1911.08265, 2019.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/
v529/n7587/full/nature16961.html.

A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn.
Universal planning networks. ArXiv, abs/1804.00645,
2018.

R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAl-
lister, J. E. Gonzalez, S. Levine, F. Borrelli, and K. Gold-
berg. Safety augmented value estimation from demonstra-
tions (saved): Safe deep model-based rl for sparse cost
robotic tasks. 2019.

R. Veerapaneni, J. D. Co-Reyes, M. Chang, M. Janner,
C. Finn, J. Wu, J. B. Tenenbaum, and S. Levine. Entity
abstraction in visual model-based reinforcement learning.
ArXiv, abs/1910.12827, 2019.

R. Villegas, A. Pathak, H. Kannan, D. Erhan, Q. Le, and
H. Lee. High fidelity video prediction with large stochas-
tic recurrent neural networks. 11 2019.

A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar.
Learning robotic manipulation through visual planning
and acting. CoRR, abs/1905.04411, 2019.

T. Wang and J. Ba. Exploring model-based planning with
policy networks. ArXiv, abs/1906.08649, 2019.

M. Watter, J. T. Springenberg, J. Boedecker, and M. A.
Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. CoRR,
abs/1506.07365, 2015.

A. Xie, F. Ebert, S. Levine, and C. Finn. Improvisation
through physical understanding: Using novel objects as
tools with visual foresight. CoRR, abs/1904.05538, 2019.

T. Yu, D. Quillen, Z. He, R. R. Julian, K. Hausman, C. Finn,
and S. Levine. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. ArXiv,
abs/1910.10897, 2019a.

T. Yu, G. Shevchuk, D. Sadigh, and C. Finn. Unsuper-
vised visuomotor control through distributional planning
networks. CoRR, abs/1902.05542, 2019b.

A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and
T. A. Funkhouser. Learning synergies between pushing
and grasping with self-supervised deep reinforcement
learning. CoRR, abs/1803.09956, 2018.

M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson,
and S. Levine. Solar: Deep structured latent represen-
tations for model-based reinforcement learning. ArXiv,
abs/1808.09105, 2018.

Łukasz Kaiser, M. Babaeizadeh, P. Miłos, B. Osiński,
R. H. Campbell, K. Czechowski, D. Erhan, C. Finn,
P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi,

http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177
https://openreview.net/forum?id=B1g79grKPr
https://openreview.net/forum?id=B1g79grKPr
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Goal-Aware Prediction: Learning to Model What Matters

G. Tucker, and H. Michalewski. Model based rein-
forcement learning for atari. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xCPJHtDB.

https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB

	Introduction
	Related Work
	Goal-Aware Prediction
	Preliminaries
	Understanding the Effect of Model Error on Task Performance
	Verifying Theorem 3.1 Experimentally
	Redistributing Model Errors with Goal Aware Prediction

	Implementing Goal-Aware Prediction
	Experiments
	Experimental Domains and Comparisons
	Experiment 1: Does GAP Favorably Redistribute Model Error?
	Experiment 2: Does GAP Lead to Better Downstream Task Performance?
	Experiment 3: Does GAP scale to real, cluttered visual scenes?

	Discussion and Limitations

