## A. MNIST-like Experiments

The plots presented in this appendix support the conclusions made in the main text and provide an overview of the experiments conducted on MNIST-like datasets.

Each figure shows the compression-accuracy trade-off of a particular method and input features for *SimpleConvModel* and *TwoLayerDenseModel* models for all four of the studied datasets (described in the main text): EMNIST-Letters on the *top-left*, KMNIST – *top-right*, Fashion MNIST – *bottom-left*, and MNIST on the *bottom-right*. Figures 7, 8, 9, and 10 present  $\mathbb{R}$  and  $\mathbb{C}$  models with *the same intermediate feature sizes*.

We compare  $\mathbb{R}$  networks against  $\frac{1}{2}\mathbb{C}$  with half the number of parameters for raw input features on figures 13, and 14, and  $2\mathbb{R}$  with double the number of parameters against  $\mathbb{C}$  for Fourier input features on figures 11 and 12.

## **B.** Complex-valued Local Reparameterization

In this section we show (11).

By  $e_i \in \mathbb{R} \to \mathbb{C}$  we denote the *i*-th unit vector of dimensionality *conforming* to the matrix-vector expression it is used in, [M] denotes *row-major* flattening of a matrix M into a vector, i.e. in lexicographic order of its indices. Furthermore diag(·) embeds vectors into matrices with zeros everywhere except the diagonal, and  $\otimes$  is the Kronecker product, for which we note the following identities  $[PQR] = (P \otimes R^{\top})[Q], (P \otimes Q)^{\top} = (P^{\top} \otimes Q^{\top}), \text{ and } (P \otimes R)(C \otimes S) = PQ \otimes RS$  (Petersen and Pedersen, 2012).

If we assume a factorized  $\mathbb{C}$ -Gaussian approximation (10) for  $W \in \mathbb{C}^{n \times m}$ , then [W] is  $\mathbb{C}$ -Gaussian vector with

$$[W] \sim \mathcal{CN}_{nm}([\mu], \operatorname{diag}[\Sigma], \operatorname{diag}[C]), \qquad (17)$$

where with  $C_{ij} = \sum_{ij} \xi_{ij}$ ,  $\sum_{ij} \ge 0$ , and  $|C_{ij}|^2 \le \sum_{ij}$ . Then for any  $x \in \mathbb{C}^m$  and  $b \in \mathbb{C}^n$  we have  $y = Wx + b = (I_n \otimes x^{\top})[W] + b$ , whence the covariance and relation matrices of y are

$$(I_n \otimes x^{\top}) \operatorname{diag}[\Sigma] \overline{(I_n \otimes x^{\top})^{\top}} = \sum_{ij} (I_n \otimes x^{\top}) \left( (e_i \otimes e_j) \Sigma_{ij} (e_i \otimes e_j)^{\top} \right) \overline{(I_n \otimes x^{\top})^{\top}}$$

$$= \sum_{ij} (e_i \otimes x^{\top} e_j) \Sigma_{ij} \overline{(e_i \otimes x^{\top} e_j)^{\top}}$$

$$= \sum_{i=1}^n (e_i e_i^{\top}) \left\{ \sum_{j=1}^m \Sigma_{ij} |x_j|^2 \right\},$$

$$(18)$$

$$(I_n \otimes x^{\top}) \operatorname{diag}[C] (I_n \otimes x^{\top})^{\top} = \sum_{ij} (I_n \otimes x^{\top}) \left( (e_i \otimes e_j) C_{ij} (e_i \otimes e_j)^{\top} \right) (I_n \otimes x^{\top})^{\top}$$

$$= \sum_{i=1}^n (e_i e_i^{\top}) \left\{ \sum_{j=1}^m C_{ij} x_j^2 \right\}.$$

$$(19)$$

Since (18) and (19) are diagonal, the vector y has independent univariate  $\mathbb{C}$ -Gaussian components, whence (11) follows.

## **C.** Backpropagation through C-networks

Wirtinger ( $\mathbb{CR}$ ) calculus relies on the natural identification of  $\mathbb{C}$  with  $\mathbb{R}^2$ , and regards  $f: \mathbb{C} \to \mathbb{C}$  as an algebraically equivalent function  $F: \mathbb{R}^2 \to \mathbb{C}$  defined f(z) = f(u + jv) = F(u, v). It enables general treatment of functions of vector  $\mathbb{C}$ -argument that possess partial derivatives with respect to real and imaginary parts, yet are not required to satisfy Cauchy-Riemann conditions. In  $\mathbb{CR}$  calculus the complex argument z and its conjugate  $\overline{z}$  act as independent variables and f(z) is treated as  $f(z, \overline{z})$  by way of geometric transformations z = u + jv and  $\overline{z} = u - jv$ .

Wirtinger partial derivative operators are formally defined as  $\frac{\partial}{\partial z} = \frac{1}{2} \left( \frac{\partial}{\partial u} - j \frac{\partial}{\partial v} \right)$  and  $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial}{\partial u} + j \frac{\partial}{\partial v} \right)$  and differentials are dz = du + jdv and  $d\overline{z} = du - jdv$ . In this paradigm The usual rules of calculus, like chain and product rules, follow

directly from the definition of the operators, e.g.

$$\frac{\partial (f\circ g)}{\partial z} = \frac{\partial f(g(z))}{\partial g} \frac{\partial g(z)}{\partial z} + \frac{\partial f(g(z))}{\partial \overline{g}} \frac{\partial g(z)}{\partial z}$$

The total differential of f at  $z = u + \jmath v \in \mathbb{C}$  is

$$\begin{aligned} df(z) &= \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z} \\ &= \frac{1}{2} \left( \frac{\partial F}{\partial u} du - j \frac{\partial F}{\partial v} du + j \frac{\partial F}{\partial u} dv + \frac{\partial F}{\partial v} dv \right) + \frac{1}{2} \left( \frac{\partial F}{\partial u} du + j \frac{\partial F}{\partial v} du - j \frac{\partial F}{\partial u} dv + \frac{\partial F}{\partial v} dv \right) \\ &= dF(u, v) \,, \end{aligned}$$

At the same time the Cauchy-Riemann conditions  $-j\frac{\partial F}{\partial v} = \frac{\partial F}{\partial u}$  can be expressed as  $\frac{\partial f}{\partial \overline{z}} = 0$ . Thus  $\mathbb{CR}$  calculus subsumes the usual  $\mathbb{C}$ -calculus of holomorphic functions, since  $f(z) = f(z, \overline{z})$  is constant with respect to  $\overline{z}$  in the latter.

In optimization-related tasks the objective is  $f: \mathbb{C} \to \mathbb{R}$ , meaning that if it were to satisfy the Cauchy-Riemann conditions, then it necessarily should have been constant. Nevertheless, the expression of the  $\mathbb{CR}$  gradient is compatible with what is expected, when f is treated like a  $\mathbb{R}^2$  function. For such f we have  $\overline{f} = f$ , which implies  $\frac{\partial f}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial \overline{z}} = \overline{\frac{\partial f}{\partial z}}$ , whence

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}}d\overline{z} = \frac{\partial f}{\partial z}dz + \overline{\frac{\partial f}{\partial z}}dz = 2\Re\left(\frac{\partial f}{\partial z}dz\right).$$

Therefore the gradient of f at z is given by  $\nabla_{\overline{z}} f(z) = \overline{\frac{\partial f}{\partial z}} = \frac{\partial F}{\partial u} + j \frac{\partial F}{\partial v}$ . The identification  $\mathbb{C} \simeq \mathbb{R}^2$ , backed by Wirtinger calculus, and emulation of  $\mathbb{C}$ -arithmetic in computational graphs with  $\mathbb{R}$ -valued operations makes it possible to reuse  $\mathbb{R}$  back-propagation and existing auto-differentiation frameworks.

## **D.** Gradient of the KL-divergence in $\mathbb{R}$ case

In this appendix we study the approximation proposed by Molchanov et al. (2017) for the KL divergence term (4) for  $\mathbb{R}$ Sparse Variational Dropout. Following the logic of Lapidoth and Moser (2003) we derive the expression for  $\frac{d}{d \log \alpha} K(\alpha)$ . Acknowledging that the same result was obtained by Hron et al. (2018, eq. (5)), we provide this appendix for the sake of completeness.

For  $(z_i)_{i=1}^m \sim \mathcal{N}(0,1)$  iid and  $(\mu_i)_{i=1}^m \in \mathbb{R}$ , the random variable  $W = \sum_i (\mu_i + z_i)^2$  has non-central  $\chi^2$  distribution with shape m and non-centrality parameter  $\lambda = \sum_i \mu_i^2$ , i.e.  $W \sim \chi_m^2(\lambda)$ . Therefore, the divergence (4) has the form

$$K(\alpha) \propto \frac{1}{2} \mathbb{E}_{W \sim \chi_1^2\left(\frac{1}{\alpha}\right)} \log W.$$
(4')

W can alternatively be represented as a Poisson mixture of ordinary  $\chi^2$  distributions: if  $Z_{|J} \sim \chi^2_{m+2J}$  for  $J \sim Pois(\frac{\lambda}{2})$  then  $W \sim Z$ . Therefore, expanding the conditional expectation gives

$$\mathbb{E}_{W \sim \chi^2_m(\lambda)} \log W = \mathbb{E}\Big(\mathbb{E}\big(\log W \mid J\big)\Big) = \mathbb{E}_{J \sim \mathcal{P}ois(\frac{\lambda}{2})}\Big(\mathbb{E}_{W \sim \chi^2_{m+2J}} \log W\Big).$$
(20)

Since  $\chi^2_{\nu}$  is Gamma distribution  $\Gamma(\frac{\nu}{2}, \frac{1}{2})$ , it can be shown that the logarithmic moment  $\mathbb{E}_{W \sim \chi^2_{\nu}} \log W$  is  $\psi(\frac{\nu}{2}) - \log \frac{1}{2}$ , where  $\psi$  is the digamma function ( $\psi(x) = \frac{d}{dx} \log \Gamma(x)$ ). By expanding expectation of a Poisson random variable we get  $\mathbb{E}_{W \sim \chi^2_m(\lambda)} \log W = \log 2 + g_m(\frac{\lambda}{2})$ , where

$$g_m(x) = e^{-x} \sum_{j \ge 0} \frac{x^j}{j!} \psi\left(\frac{m+2J}{2}\right).$$
(21)

Making use of the property  $\psi(z+1) = \psi(z) + \frac{1}{z}$  of the digamma function for z > 0, we conclude that the power series in (21) converges for any  $x \ge 0$ . Therefore the derivative of (21) is given by

$$\frac{d}{dx}g_m(x) = -g_m(x) + e^{-x} \sum_{j\ge 0} \frac{x^j}{j!} \left(\psi\left(\frac{m+2j}{2}\right) + \frac{2}{m+2j}\right).$$
(22)

By manipulating the partial sums within (22) we get

$$\frac{d}{dx}g_m(x) = e^{-x}\sum_{j\ge 0}\frac{x^j}{j!}\frac{1}{j+\frac{m}{2}} = e^{-x}x^{-\frac{m}{2}}\sum_{j\ge 0}\frac{1}{j!}\int_0^x t^{j+\frac{m}{2}-1}dt.$$
(23)

Furthermore, the functions  $t \mapsto \sum_{j=0}^{J} \frac{1}{j!} t^{j+\frac{m}{2}-1}$  are non-decreasing on (0, x) with growing J and converge to  $t^{\frac{m}{2}-1}e^t$ , which implies by the Monotone Convergence Theorem that

$$\frac{d}{dx}g_m(x) = e^{-x}x^{-\frac{m}{2}} \int_0^x \sum_{j\ge 0} \frac{1}{j!} t^{j+\frac{m}{2}-1} dt = e^{-x}x^{-\frac{m}{2}} \int_0^x t^{\left(\frac{m}{2}-1\right)} e^t dt.$$
(24)

Substituting  $u^2 = t$  on  $[0, \infty]$  with 2udu = dt and letting  $I_m \colon x \mapsto e^{-x^2} \int_0^x u^{m-1} e^{u^2} du$  yields

$$\frac{d(20)}{d\lambda} = \frac{1}{2} \frac{d}{dx} g_m(x) \Big|_{x=\frac{\lambda}{2}} = e^{-x} x^{-\frac{m}{2}} \int_0^{\sqrt{x}} u^{m-1} e^{u^2} du \Big|_{x=\frac{\lambda}{2}} = \left(\sqrt{\frac{2}{\lambda}}\right)^m I_m\left(\sqrt{\frac{\lambda}{2}}\right). \tag{25}$$

Since  $\alpha$  is non-negative, it is typically parameterized via its logarithm, whence the derivative of (4') with respect to  $\log \alpha$  follows from (25) for m = 1 and  $\lambda = \frac{1}{\alpha}$ :

$$\frac{dK(\alpha)}{d\log\alpha} = -\frac{1}{\sqrt{2\alpha}} I_1\left(\frac{1}{\sqrt{2\alpha}}\right).$$
(26)

We compute the Monte-Carlo estimate of (4) on a sample of  $10^7$  draws over an equally spaced grid of  $\log \alpha$  in [-12, +12] of size 4096. The approximation proposed by Molchanov et al. (2017) is given in (27), with coefficients  $k_1 = 0.63576$ ,  $k_2 = 1.8732$ , and  $k_3 = 1.48695$ . The derivative of the approximation with respect to  $\log \alpha$  follows (26) within 4% of relative tolerance, see fig. 15.

(4) 
$$\approx \frac{1}{2} \log \left( 1 + e^{-\log \alpha} \right) + k_1 \sigma \left( -(k_2 + k_3 \log \alpha) \right),$$
 (27)

Similarly, the forward difference estimate of the derivative (26) very closely (up to sampling error). For sake of completeness, we compute a similar Monte-Carlo estimate for the KL divergence term in (13') for  $\mathbb{C}$ -valued Variational Dropout with  $\beta = 2$ , fit the best approximation (27), and compare it against the exact  $\log \alpha$  derivative  $\frac{d(13')}{d \log \alpha} = e^{-\frac{1}{\alpha}} - 1$ .



*Figure 7.* The trade-off of ARD method for  $\mathbb{R}$  and  $\mathbb{C}$  models using Fourier features.



*Figure 8.* The trade-off of VD method for  $\mathbb{R}$  and  $\mathbb{C}$  models using Fourier features.



*Figure 9.* The trade-off of ARD method for  $\mathbb{R}$  and  $\mathbb{C}$  models using raw features.



*Figure 10.* The trade-off of VD method for  $\mathbb{R}$  and  $\mathbb{C}$  models using raw features.



*Figure 11.* The trade-off of ARD method for  $2\mathbb{R}$  and  $\mathbb{C}$  models using Fourier features.



*Figure 12.* The trade-off of VD method for  $2\mathbb{R}$  and  $\mathbb{C}$  models using Fourier features.



*Figure 13.* The trade-off of ARD method for  $\mathbb{R}$  and  $\frac{1}{2}\mathbb{C}$  models using raw features.



*Figure 14.* The trade-off of VD method for  $\mathbb{R}$  and  $\frac{1}{2}\mathbb{C}$  models using raw features.



Figure 15.  $\frac{dK(...)}{d \log}$  of the approximation (27), MC estimate of (4), and the exact derivative using (26).