
Bayesian Sparsification of Deep C-valued Networks

A. MNIST-like Experiments

The plots presented in this appendix support the conclusions made in the main text and provide an overview of the
experiments conducted on MNIST-like datasets.

Each figure shows the compression-accuracy trade-off of a particular method and input features for SimpleConvModel

and TwoLayerDenseModel models for all four of the studied datasets (described in the main text): EMNIST-Letters on
the top-left, KMNIST – top-right, Fashion MNIST – bottom-left, and MNIST on the bottom-right. Figures 7, 8, 9, and 10
present R and C models with the same intermediate feature sizes.

We compare R networks against 1 C with half the number of parameters for raw input features on figures 13, and 14, and 2R2
with double the number of parameters against C for Fourier input features on figures 11 and 12.

B. Complex-valued Local Reparameterization

In this section we show (11).

expression it is used in, to the matrix-vector conformingvector of dimensionality -th unit idenote the weC→֒ R∈ieBy
[M] denotes row-major flattening of a matrix M into a vector, i.e. in lexicographic order of its indices. Furthermore diag(·)
embeds vectors into matrices with zeros everywhere except the diagonal, and ⊗ is the Kronecker product, for which we note
the following identities [P QR] = (P ⊗ R⊤)[Q], (P ⊗ Q)⊤ = (P ⊤ ⊗ Q⊤), and (P ⊗ R)(C ⊗ S) = PQ ⊗ RS (Petersen
and Pedersen, 2012).

If we assume a factorized C-Gaussian approximation (10) for W ∈ Cn×m , then [W] is C-Gaussian vector with

� �
[W] ∼ CNnm [µ], diag[�], diag[C] , (17)

where with Cij = �ij ξij , �ij ≥ 0, and |Cij |2 ≤ �ij . Then for any x ∈ Cm and b ∈ Cn we have y = Wx + b =
(In ⊗ x⊤)[W] + b, whence the covariance and relation matrices of y are

� �� � � �⊤ X� � � �⊤⊤ ⊤⊤ ⊤In ⊗ x diag[�] In ⊗ x = In ⊗ x (ei ⊗ ej)�ij (ei ⊗ ej)
⊤ In ⊗ x

ij
X ⊤

�⊤� � � ⊤= ei ⊗ x ej �ij ei ⊗ x ej

ij

n ˆ m ˙X X ⊤ = (eiei) �ij |xj |2 , (18)
i=1 j=1

� � � �⊤ X� �� �� �⊤⊤ ⊤ ⊤ ⊤In ⊗ x diag[C] In ⊗ x = In ⊗ x (ei ⊗ ej)Cij (ei ⊗ ej)
⊤ In ⊗ x

ij

n ˆ m ˙X X ⊤ 2 = (eiei) Cij xj . (19)
i=1 j=1

Since (18) and (19) are diagonal, the vector y has independent univariate C-Gaussian components, whence (11) follows.

C. Backpropagation through C-networks

Wirtinger (CR) calculus relies on the natural identification of C with R2 , and regards f : C → C as an algebraically
equivalent function F : R2 → C defined f(z) = f(u + v) = F (u, v). It enables general treatment of functions of
vector C-argument that possess partial derivatives with respect to real and imaginary parts, yet are not required to satisfy
Cauchy-Riemann conditions. In CR calculus the complex argument z and its conjugate z act as independent variables and
f(z) is treated as f(z, z) by way of geometric transformations z = u + v and z = u − v.

� � � �
∂ 1 ∂ ∂ 1 ∂Wirtinger partial derivative operators are formally defined as = − ∂ and = + ∂ and differentials
∂z 2 ∂u ∂v ∂z 2 ∂u ∂v

are dz = du + dv and dz = du − dv. In this paradigm The usual rules of calculus, like chain and product rules, follow

Bayesian Sparsification of Deep C-valued Networks

directly from the definition of the operators, e.g.

∂(f ◦ g) ∂f(g(z)) ∂g(z) ∂f(g(z)) ∂g(z)
= + .

∂z ∂g ∂z ∂g ∂z

The total differential of f at z = u + v C is ∈

✚ ✚

∂f ∂f
df(z) = dz + dz

∂z ∂z � � � �
1 ∂F ∂F ✚✚ ∂F ✚ ∂F 1 ∂F ∂F ✚✚ ∂F ✚ ∂F

= du − ✚du + ✚dv + dv + du + ✚du − ✚dv + dv
2 ∂u ∂v ∂u ∂v 2 ∂u ∂v ∂u ∂v✚ ✚ ✚ ✚

= dF (u, v) ,

At the same time the Cauchy-Riemann conditions − F ∂ = ∂F can be expressed as ∂f = 0. Thus CR calculus subsumes
∂v ∂u ∂z

the usual C-calculus of holomorphic functions, since f(z) = f(z, z) is constant with respect to z in the latter.

In optimization-related tasks the objective is f : C → R, meaning that if it were to satisfy the Cauchy-Riemann conditions,
then it necessarily should have been constant. Nevertheless, the expression of the CR gradient is compatible with what is

expected, when f is treated like a 2 function. For such f we have f = f , which implies ∂f = ∂f ∂f
R , whence

∂z ∂z =
∂z

� �
∂f ∂f ∂f ∂f ∂fdf = dz + dz = dz + dz = 2ℜ dz .
∂z ∂z ∂z ∂z ∂z

Therefore the gradient of f at z is given by ∇ f(z) = ∂f = ∂F ∂F
z + . The identification C ≃ 2

R , backed by Wirtinger
∂z ∂u ∂v

calculus, and emulation of C-arithmetic in computational graphs with R-valued operations makes it possible to reuse R
back-propagation and existing auto-differentiation frameworks.

D. Gradient of the KL-divergence in R case

In this appendix we study the approximation proposed by Molchanov et al. (2017) for the KL divergence term (4) for R
Sparse Variational Dropout. Following the logic of Lapidoth and Moser (2003) we derive the expression for d K

d (α).log α
Acknowledging that the same result was obtained by Hron et al. (2018, eq. (5)), we provide this appendix for the sake of
completeness.

P
For (zi)

m
i=1 ∼ N (0, 1) iid and (µ)m 2

Ri i=1 ∈ , the random variable W = (µi i + zi) has non-central χ2 distribution withP
shape m and non-centrality parameter λ = µ2, i.e. W ∼ χ2

i i m (λ). Therefore, the divergence (4) has the form

1
K(α) E � � ∝ 1 log W . (4’)

2 W ∼χ2
1 α

W can alternatively be represented as a Poisson mixture of ordinary χ2 distributions: if Z ∼ χ2 λ
|J m J ois+2J for ∼ P ()2

then W ∼ Z. Therefore, expanding the conditional expectation gives
� � � � �

E E E E EW χ2 (λ) log W = log W | J) = ∼ λ ∼ 2 W χ log W .
m

 (20)
J∼Pois() m+2J

2

� �
Since χ2 is Gamma distribution �(ν 1

ν ,), it can be shown that the logarithmic moment E 2 log W is ψ ν log 1 ,2 2 W ∼χ� 2 − 2

where ψ is the digamma function (ψ(x) = d log �(x)). By expanding expectation of a Poisson random variable we get� � dx
λ

EW (λ) log W = log 2 + gm , where∼χ2
m 2

X xj � �−x m+2J gm(x) = e ψ . (21)
j! 2

j 0 ≥

Making use of the property ψ(z + 1) = ψ(z) + 1 of the digamma funciton for z > 0, we conclude that the power series in
z

(21) converges for any x ≥ 0. Therefore the derivative of (21) is give
� �

n by

jd X x � � 2−x m+2g j
m(x) = −gm(x) + e ψ + . (22)

dx j! 2 m + 2j
j≥0

Bayesian Sparsification of Deep C-valued Networks

By manipulating the partial sums within (22) we get

Z xX j m X md x 1 1−x −x − j+ −1 gm(x) = e = e x 2 t 2 dt . (23)
dx j! j + m j! 02j≥0 j≥0

m mP Furthermore, the functions 7→ J 1 jt tj=0 + −1 2 are non-decreasing on (0, x) with growing and converge to −1 J t e t2 ,
j!

which implies by the Monotone Convergence Theorem that
Z Zx x m X m m md 1−x − j+ −1 −x − −1 t gm(x) = e x 2 t 2 dt = e x 2 t 2 e dt . (24)

dx 0 j! 0j≥0

� �

R
2 −x x m−1 uSubstituting u = t on [0, ∞] with 2udu = dt and letting Im : x 7→ e

2
u e

2
du yields

0

����
����

Z √
x �q � �q �d(20) 1 d −

m
u

m
λ−x m−1 2 = gm(x) = e x 2 u e

2

du = Im . (25)
λ 2dλ 2 dx λ λ

x= 0 x= 2 2

Since α is non-negative, it is typically parameterized via its logarithm, whence the derivative of (4’) with respect to log α
1follows from (25) for m = 1 and λ = :
α � � dK(α) 1

√1 = −√ I1 . (26)
2αd log α 2α

We compute the Monte-Carlo estimate of (4) on a sample of 107 draws over an equally spaced grid of log α in [−12, +12]
of size 4096. The approximation proposed by Molchanov et al. (2017) is given in (27), with coefficients k1 = 0.63576,
k2 = 1.8732, and k3 = 1.48695. The derivative of the approximation with respect to log α follows (26) within 4% of
relative tolerance, see fig. 15.

1 � � � �− log α(4) ≈ log 1 + e + k1σ −(k2 + k3 log α) , (27)
2

Similarly, the forward difference estimate of the derivative (26) very closely (up to sampling error). For sake of completeness,
we compute a similar Monte-Carlo estimate for the KL divergence term in (13’) for C-valued Variational Dropout with

1
d(13’) −

αβ = 2, fit the best approximation (27), and compare it against the exact log α derivative = e − 1.
d log α

Bayesian Sparsification of Deep C-valued Networks

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 7. The trade-off of ARD method for R and C models using Fourier features.

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 8. The trade-off of VD method for R and C models using Fourier features.

Bayesian Sparsification of Deep C-valued Networks

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (raw) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (raw) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (raw) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (raw) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 9. The trade-off of ARD method for R and C models using raw features.

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (raw) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (raw) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (raw) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (raw) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 10. The trade-off of VD method for R and C models using raw features.

Bayesian Sparsification of Deep C-valued Networks

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (fft) by ARD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

Figure 11. The trade-off of ARD method for 2R and C models using Fourier features.

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (fft) by VD (τ=− 0.5)

C SimpleConvModel
C TwoLayerDenseModel
R*2 SimpleConvModel
R*2 TwoLayerDenseModel

Figure 12. The trade-off of VD method for 2R and C models using Fourier features.

Bayesian Sparsification of Deep C-valued Networks

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (raw) by ARD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (raw) by ARD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (raw) by ARD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (raw) by ARD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 13. The trade-off of ARD method for R and 1
C models using raw features.

2

×1 ×10 ×100 ×1000
compression

0.750

0.775

0.800

0.825

0.850

0.875

0.900

ac
cu

ra
cy

Trade-off on EMNIST-Letters (raw) by VD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

Trade-off on KMNIST (raw) by VD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.80

0.82

0.84

0.86

0.88

0.90

ac
cu

ra
cy

Trade-off on Fashion-MNIST (raw) by VD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

×1 ×10 ×100 ×1000
compression

0.93

0.94

0.95

0.96

0.97

0.98

0.99

ac
cu

ra
cy

Trade-off on MNIST (raw) by VD (τ=− 0.5)

C/2 SimpleConvModel
C/2 TwoLayerDenseModel
R SimpleConvModel
R TwoLayerDenseModel

Figure 14. The trade-off of VD method for R and 1
C models using raw features.

2

Bayesian Sparsification of Deep C-valued Networks

−8 −6 −4 −2 0 2 4 6 8
logα

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

∂K
L

∂KLℝ-approx
∂KLℝ-exact
ΔKLℝ-MC

∂KLℂ-approx
∂KLℂ-exact
ΔKLℂ-MC

dK(�)
Figure 15.

d log � of the approximation (27), MC estimate of (4), and the exact derivative using (26).

