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Abstract
We propose a novel Stochastic Frank-Wolfe (a.k.a.
conditional gradient) algorithm for constrained
smooth finite-sum minimization with a general-
ized linear prediction/structure. This class of prob-
lems includes empirical risk minimization with
sparse, low-rank, or other structured constraints.
The proposed method is simple to implement,
does not require step-size tuning, and has a con-
stant per-iteration cost that is independent of the
dataset size. Furthermore, as a byproduct of the
method we obtain a stochastic estimator of the
Frank-Wolfe gap that can be used as a stopping
criterion. Depending on the setting, the proposed
method matches or improves on the best computa-
tional guarantees for Stochastic Frank-Wolfe algo-
rithms. Benchmarks on several datasets highlight
different regimes in which the proposed method
exhibits a faster empirical convergence than re-
lated methods. Finally, we provide an implemen-
tation of all considered methods in an open-source
package.

1 Introduction
We consider constrained finite-sum optimization problems
of the form

minimize
w∈C

1

n

n∑
i=1

fi
(
x>i w

)
, (OPT)

where C is a compact and convex set and X =
(x1, · · · ,xn)> ∈ Rn×d is a data matrix, with n sam-
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Table 1. Worst-case convergence rates for the function suboptimal-
ity after t iterations, for a dataset with n samples. κ ≤ n and can
be much smaller than n for datasets of interest. κ is introduced in
Section 5.

RELATED WORK CONVEX NON-CONVEX

FRANK & WOLFE (1956) O (n/t) O
(
n/
√
t
)

MOKHTARI ET AL. (2018) O
(
1/ 3
√
t
)

7
LU & FREUND (2018) O (n/t) 7
THIS WORK O (κ/t) → 0

ples and d features. This template includes several prob-
lems of interest, such as constrained empirical risk min-
imization. The LASSO (Tibshirani, 1996) may be writ-
ten in this form, where fi(x>i w) =

1

2
(x>i w − yi)

2 and
C = {w : ‖w‖1 ≤ λ} for some parameter λ. We focus on
the case where the fis are differentiable with L-Lipschitz
derivative, and study the convex and non-convex cases.

The classical Frank-Wolfe (FW) or Conditional Gradient
algorithm (Frank & Wolfe, 1956; Levitin & Polyak, 1966;
Demyanov & Rubinov, 1967) is an algorithm for con-
strained optimization. Contrary to other projection-based
constrained optimization algorithms, such as Projected
Gradient Descent, it relies on a Linear Minimization Oracle
(LMO) over the constraint set C, rather than a Quadratic
Minimization Oracle (the projection subroutine). For
certain constraint sets such as the trace norm or most `p
balls, the LMO can be computed more efficiently than the
projection subroutine. Recently, the Frank-Wolfe algorithm
has garnered much attention in the machine learning
community where polytope constraints and sparsity are
of large interest, e.g. Jaggi (2013); Lacoste-Julien & Jaggi
(2015); Locatello et al. (2017).

In the unconstrained setting, stochastic variance-reduced
methods (Shalev-Shwartz & Zhang, 2013; Schmidt et al.,
2013; Hofmann et al., 2015) exhibit the same iteration com-
plexity as full gradient (non-stochastic) methods, while
reaching much smaller per-iteration complexity, usually at
some (small) additional memory cost. This work takes a step
in the direction of designing such a method for Frank-Wolfe
type algorithms, which remains an important open problem.
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Our main contributions are:

1. A constant batch-size Stochastic Frank-Wolfe (SFW)
algorithm for finite sums with linear prediction. We
describe the method in Section 2 and discuss its compu-
tational and memory cost.

2. A non-asymptotic rate analysis on smooth and con-
vex objectives. The suboptimality of the SFW algorithm
after t iterations can be bounded as O (κ/t), where κ
is a data-dependent constant we will discuss later. It is
upper bounded by the sample-size n but, depending on
the setting, can be potentially much smaller.

3. An asymptotic analysis for non-convex objectives.
We prove that SFW converges to a stationary point for
smooth but potentially non-convex functions. This is the
first stochastic FW variant that has convergence guaran-
tees in this setting of large practical interest.

Finally, we compare the SFW algorithm with other stochas-
tic Frank-Wolfe algorithms amenable to constant batch size
on different machine learning tasks. These experiments
show that the proposed method converges at least as fast as
previous work, and notably faster on several such instances.

1.1 Related Work

We split existing stochastic FW algorithm into two cate-
gories: methods with increasing batch size and methods
with constant batch size.

Increasing batch size Stochastic Frank-Wolfe. This
variant allows the number of gradient evaluations to grow
with the iteration number (Goldfarb et al., 2017; Hazan &
Luo, 2016; Reddi et al., 2016). Because of the growing
number of gradient evaluations, these methods converge
towards a deterministic full gradient FW algorithm and so
asymptotically share their computational requirements. In
this work we will instead be interested in constant batch-
size methods, in which the number of gradient evaluations
does not increase with the iteration number. See Hazan &
Luo (2016) for a detailed comparison of assumptions and
complexities for Stochastic Frank-Wolfe methods with in-
creasing batch sizes, in terms of both iterations and gradient
calls.

Constant batch size Stochastic Frank-Wolfe. These
methods use a constant batch size b, which is chosen by
the user as a hyperparameter. In the convex and smooth
setting, Mokhtari et al. (2018) and Locatello et al. (2019)
reach O

(
1/ 3
√
t
)

convergence rates. The rate of Locatello
et al. (2019) further holds for non-smooth and non-Lipschitz
objectives. Zhang et al. (2019) requires second order knowl-
edge of the objective. Lu & Freund (2018) proves conver-
gence for an averaged iterate in O(n/t) with n the number

of samples in the dataset. Let us assume for simplicity that
we use unit batch size. Since each iteration involves only
one data point, the per-iteration complexity of their method
reduces by a factor of n the per-iteration complexity of full-
gradient method. On the other hand, the method proposed in
this work loses this factor in the rate in number of iterations,
reaching the same overall complexity as the deterministic
full gradient method. Depending on the use-case (large or
small datasets), each of the rates reported in Lu & Freund
(2018) and Mokhtari et al. (2018) can have an advantage
over the other. In favorable cases, the rate of convergence
achieved by our method is nearly independent of the num-
ber of samples in the dataset. In these cases, our method is
therefore faster than both. In the worst case, it matches the
O (n/t) bound (Lu & Freund, 2018).

1.2 Notation

Throughout the paper we denote vectors in lowercase bold-
face letters (w), matrices in uppercase boldface letters (X),
and sets in calligraphic letters (e.g., C). We say a function
f is L-smooth in the norm ‖ · ‖ if it is differentiable and
its gradient is L-Lipschitz continuous with respect to ‖ · ‖,
that is, if it verifies ‖∇f(x) −∇f(y)‖∗ ≤ L‖x − y‖ for
all x,y in the domain (where ‖ · ‖∗ is the dual norm of
‖ · ‖). For a one dimensional function f , this reduces to
|f ′(z) − f ′(z′)| ≤ L|z − z′| for all z, z′ in the domain.
For the time dependent vector ut, we denote by u(i)

t its i-th
coordinate.

We distinguish E, the full expectation taken with respect to
all the randomness in the system, from Et, the conditional
expectation with respect to the random index sampled at
iteration t, conditioned on all randomness up to iteration t.

Finally, LMO(u) returns an arbitrary element in
arg mins∈C〈s,u〉.

2 Methods

2.1 A Primal-Dual View on Frank-Wolfe

In this subsection, we present the Frank-Wolfe algorithm
as an alternating optimization scheme on a saddle-point
problem. This point of view motivates the design of the
proposed SFW algorithm. This perspective is similar to
the two player game point of view of Abernethy & Wang
(2017); Abernethy et al. (2018), which we express using
convex conjugacy. We suppose here that f is closed, convex
and differentiable.

Let us rewrite our initial problem (OPT) in the equivalent
unconstrained formulation

minimize
w∈Rd

f(Xw) + ıC(w) , (1)

where ıC is the indicator function of C: it is 0 over C and
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+∞ outside of C.

We denote by f∗ the convex conjugate of f , that is,
f∗(α)

def
= maxw〈α,w〉 − f(w). Whenever f is closed

and convex, it is known that f = (f∗)∗, and so we can
write f(Xw) = maxα{−f∗(α) + 〈Xw,α〉}. Plugging
this identity into the previous equation, we arrive at a saddle-
point reformulation of the original problem:

min
w∈Rd

max
α∈Rn

{
L(w,α)

def
= −f∗(α) + ıC(w) + 〈Xw,α〉

}
.

(2)

This reformulation allows to derive the Frank-Wolfe algo-
rithm as an alternating optimization method on this saddle-
point reformulation. To distinguish the algorithm in this
section from the stochastic algorithm we propose, we de-
note the iterates in this section by ᾱt, w̄t.

The first step of the Frank-Wolfe algorithm is to compute
the gradient of the objective at the current iterate. In the
saddle-point formulation, this corresponds to maximizing
over the dual variable α at step t:

ᾱt ∈ arg max
α∈Rn

{L(w̄t−1,α) = −f∗(α) + 〈Xw̄t−1,α〉}

⇐⇒ ᾱt = ∇f(Xw̄t−1). (3)

Then, the LMO step corresponds to fixing the dual variable
and minimizing over the primal one w. This gives

s̄t ∈ arg min
w∈Rd

{
L(w, ᾱt) = ıC(w) + 〈w,XT ᾱt〉

}
⇐⇒ s̄t = LMO(X>ᾱt). (4)

Note that from the definition of the LMO, s̄t can always be
chosen as an extreme point of the constraint set C. We then
update our iterate using the convex combination

w̄t = (1− γt)w̄t−1 + γts̄t, (5)

where γt is a step-size to be chosen. These updates deter-
mine the Frank-Wolfe algorithm.

2.2 The Stochastic Frank-Wolfe Algorithm

We now consider a variant in which we replace the exact
minimization of the dual variable (3) by a minimization over
a single coordinate, chosen uniformly at random.

Let us define the function f from Rn to R as f(θ)
def
=

1
n

∑n
i=1 fi(θi). We can write our original optimization

problem as an optimization over w ∈ C of f(Xw). Still
alternating between the primal and the dual problems, we
replace maximization over the full vector α in (3) with

Algorithm 1 Stochastic Frank-Wolfe

1: Initialization: w0 ∈ C, α0 ∈ Rn, r0 = X>α0

2: for t = 1, 2, . . . , do
3: Sample i ∈ {1, . . . , n} uniformly at random.
4: Update α(i)

t = 1
nf
′
i(x
>
i wt−1)

5: Update α(j)
t = αjt−1, j 6= i

6: rt = rt−1 + (α
(i)
t −α

(i)
t−1)xi

7: st = LMO(rt)
8: wt = wt−1 + 2

t+2 (st −wt−1)
9: end for

optimization along the coordinate i only. We obtain the
update α(i)

t = 1
nf
′
i(x
>
i wt−1). Doing so changes the cost

per-iteration from O(nd) to O(d), and yields Algorithm 1.

We now describe our main contribution, Algorithm 1 (SFW)
above. It follows the classical Frank-Wolfe algorithm, but
replaces the gradient with a stochastic estimate of the gradi-
ent.

Throughout Algorithm 1, we maintain the following iterates:

• the iterate wt,

• the stochastic estimator of ∇f(Xwt−1) denoted by
αt ∈ Rn,

• the stochastic estimator of the full gradient of our loss
X>∇f(Xwt−1), denoted by rt ∈ Rd.

Algorithm. At the beginning of iteration t, we have access
to αt−1, rt−1 and to the iterate wt−1.

Thus equipped, we sample an index i uniformly at ran-
dom over {1, . . . , n}. We then compute the gradient of
our loss function for that datapoint, on our iterate, yielding
[∇f(Xwt−1)]i = 1

nf
′
i(x
>
i wt−1). We update the stochas-

tic gradient estimator αt by refreshing the contribution
of the i-th datapoint and leaving the other coordinates un-
touched.

Remark 1. Coordinate j of our estimator αt contains the
latest sampled one-dimensional derivative of 1

nfj .

To get rt, we do the same, removing the previous contribu-
tion of the i-th datapoint, and adding the refreshed contri-
bution. This allows us not to store the full data-matrix in
memory.

The rest of the algorithm continues as the deterministic
Frank-Wolfe algorithm from the previous subsection: we
find the update direction from st = LMO(rt), and we up-
date our iterate using a convex combination of the previous
iterate wt−1 and st, whereby our new iterate is feasible.

Remark 2. Our algorithm requires to keep track of the
αt vector and amounts to keeping one scalar per sample
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in memory. Our method requires the same small memory
caveat as other variance reduced algorithms such as SDCA
(Shalev-Shwartz & Zhang, 2013), SAG (Schmidt et al., 2013)
or SAGA (Defazio et al., 2014). Despite the resemblance of
our gradient estimator to the Stochastic Average Gradient
(Schmidt et al., 2013), the convergence rate analyses are
quite different.

3 Analysis

3.1 Preliminary tools

Recall that in our setting, our objective function is w 7→
f(Xw), where f(θ) = 1

n

∑n
i=1 fi(θi). We suppose that

for all i, fi is L-smooth, which then implies that f satisfies
the following non-standard smoothness condition:

‖∇f(θ)−∇f(θ̄)‖p ≤
L

n
‖θ − θ̄‖p (6)

for every p ∈ [1,∞]. Note that in this inequality – unlike
in the standard definition of L-smoothness with respect to
the `p norm – the same norm appears on both sides of the
inequality. This inequality is proven in Appendix A. In
particular it follows from (6) that f is (L/n)-smooth with
respect to the `2 norm.

We therefore have the following quadratic upper bound on
our objective function f , valid for all w,v in the domain:

f(Xw) ≤ f(Xv) + 〈∇f(Xv),w − v〉

+
L

2n
‖X (w − v) ‖22 .

(7)

For p ∈ {1, 2,∞}, we define the diameters

Dp = max
u,v∈C

‖X(u− v)‖p. (8)

Remark 3. For p ∈ {1, 2}, we have that Dp
p ≤ nDp

∞.

3.2 Worst-Case Convergence Rates for Smooth and
Convex Objectives

We state our main result in the L-smooth, convex setting.
In this section, we suppose that the fis are L-smooth and
convex and that for all θ, f(θ) = 1

n

∑n
i=1 fi(θi). The

objective function f then satisfies (6) as noted previously.

Theorem 1. Let H0
def
= ‖α0 −∇f(Xw0)‖1 be the initial

error of our gradient estimator and w? ∈ C a solution to
OPT. We run Algorithm 1 with step sizes γt = 2/(t+ 2). At
time-step t ≥ 2, the expected primal suboptimality Eεt =
E[f(Xwt)− f(Xw?)] has the following upper bound

Eεt ≤2L

(
D2

2 + 4(n− 1)D1D∞
n

)
t

(t+ 1)(t+ 2)

+
2ε0 + (2D∞H0 + 64LD1D∞)n2

(t+ 1)(t+ 2)

(9)

Remark 4. The rate of the proposed method in terms of
gradient calls is also given by (9) (one gradient call per
iteration), whereas for deterministic Frank-Wolfe, the (de-
terministic) suboptimality after t gradient calls has the fol-
lowing upper bound (Jaggi, 2013; Hazan & Luo, 2016)

εt ≤
2LD2

2

t
. (10)

In this paper, we will only discuss unit batch size. We can
adapt our algorithm and proofs to consider sampling a mini-
batch of b datapoints at each step. The leading term in our
rate from Theorem 1 will change: we will use ρ = 1 − b

n
in Lemma 3. The overall rate will be modified accordingly.
The per-iteration complexity will then become O(bd).

We first sketch the outline of the proof before delving
into details. The proof of this convergence rate builds on
three key lemmas. The first is an adaptation of Lemma 2
of Mokhtari et al. (2018) which bounds the suboptimality
at step t by the sum of a contraction in the suboptimality
at t − 1, a vanishing term due to smoothness, and a last
term depending on our gradient estimator’s error in `1 norm.
The first two terms show up in the convergence proof of
the full-gradient Frank-Wolfe, see Lacoste-Julien & Jaggi
(2015). The last term is an error, or noise term. Supposing
the error term vanishes fast enough, we can fall back on the
full-gradient proof technique (Frank & Wolfe, 1956; Jaggi,
2013).

From there, we show that the error term verifies a particular
recursive inequality in lemma 2. In lemma 3, we then lever-
age this inequality to prove that the error term vanishes as
O(1/t), finally allowing us to obtain the promised rate. The
formal statements of these lemmas follow.

Lemma 1. Let fi be convex and L-smooth for all i. For
any direction αt ∈ Rn, define st = LMO(X>αt), xt =
(1− γt)xt−1 + γtst and Ht = ‖αt −∇f(Xwt−1)‖1.

We have the following upper bound on the primal subopti-
mality at step t:

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht︸ ︷︷ ︸

error term

. (11)

We defer this proof to Appendix B.

Remark 5. This lemma holds for any direction αt ∈ Rn,
not necessarily the αt given by the SFW algorithm.
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Remark 6. This lemma generalizes the key inequality used
in many proofs in the Frank-Wolfe literature (Jaggi, 2013)
but includes an extra error term to account for the fact
that the direction αt, which we use for the LMO step and
therefore to compute the updated iterate, is not the true
gradient. If αt = ∇f(Xwt−1), that is, if we compute the
gradient on the full dataset, then Ht = 0 and we recover
the standard quadratic upper bound.

In the following, αt is the direction given by Algorithm 1,
and the `1 error term is in terms of that αt:

Ht
def
= ‖αt −∇f(Xwt−1)‖1 (12)

for t > 0 and H0 = ‖α0 −∇f(Xw0)‖1.

Notice that we define the gradient estimator’s error with the
`1 norm. The previous lemma also holds with the `2 norm
of the gradient error (replacing D∞ by D2). We prefer the
`1 norm because of the finite-sum assumption: it induces a
coordinate-wise separation over αt which corresponds to a
datapoint-wise separation. The following lemma crucially
leverages this assumption to upper bound Ht given by the
SFW algorithm.

Lemma 2. For the stochastic gradient estimator αt given
by Algorithm 1 (SFW), we can upper bound Ht =
‖αt −∇f(Xwt−1)‖1 in conditional expectation as fol-
lows

EtHt ≤
(

1− 1

n

)(
Ht−1 + γt−1

LD1

n

)
. (13)

Proof. We have the following expression for αt, supposing
that index i was sampled at step t.

αt = αt−1 +

(
1

n
f ′i(x

>
i wt−1)−α(i)

t−1

)
ei (14)

where ei is the i-th vector of the canonical basis of Rn.
Consider a fixed coordinate j. Since there is a 1

n chance
of αj being updated to f ′j(x

>
j wt−1), taking conditional

expectations we have

EtHj
t

def
= |α(j)

t −
1

n
f ′j(x

>
j wt−1)| (15)

=

(
1− 1

n

)
|α(j)
t−1 −

1

n
f ′j(x

>
j wt−1)|. (16)

Summing over all coordinates we then have

EtHt =

n∑
j=1

EtHj
t (17)

=

(
1− 1

n

)
‖αt−1 −∇f(Xwt−1)‖1︸ ︷︷ ︸

δt−1

. (18)

We denote the `1 norm term by δt−1 for ease. Let us intro-
duce the full gradient at the previous step∇f(Xwt−2) and
use the triangle inequality. Our finite sum assumption gives
us that for all j ∈ {1, . . . , n} and w ∈ C, [∇f(Xw)]j =
1
nf
′
j(x
>
j w). Then, we separate the `1 norm, use

L-smoothness of each of the fjs and the definition ofwt−1.

δt−1 ≤ Ht−1 + ‖∇f(Xwt−2)−∇f(Xwt−1)‖1 (19)

≤ Ht−1 +
L

n

n∑
j=1

|x>j (wt−1 −wt−2)| (20)

≤ Ht−1 + γt−1
L

n

n∑
j=1

|x>j (st−1 −wt−2)| (21)

≤ Ht−1 + γt−1
L

n
‖X(st−1 −wt−2)‖1 (22)

where we used wt−1 − wt−2 = γt−1(wt−1 − st−2).
Finally, using the definition of the diameter D1, we obtain
inequality (13).

Now, we can use the structure of this recurrence to obtain
the desired rate of convergence for our gradient estimator.
We state this in the following lemma.

Lemma 3. Let γt = 2
t+2 . We have the following bound on

the expected error EHt, for t ≥ 2:

EHt ≤ 2
LD1

n

(
2(n− 1)

t+ 2
+
(

1− 1

n

)t/2
log t

)
+
(

1− 1

n

)t
H0. (23)

Remark 7. Our gradient estimator’s error in `1 norm goes
to zero as O

(
D1

t

)
. This rate depends on the assumption of

the separability of f into a finite sum of L-smooth fi’s. On
the other hand, it does not require that each (or any) fi be
convex.

Proof. Consider a general sequence of nonnegative num-
bers, u0, u1, u2, . . . , ut ∈ R+ where for all t, the following
recurrence holds:

ut ≤ ρ
(
ut−1 +

K

t+ 1

)
(24)

where 0 < ρ < 1 and K > 0 are scalars.

First note that all the iterates are nonnegative. Suppose
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t ≥ 2,

ut ≤ ρtu0 +K

t∑
k=1

ρt−k+1

k + 1

= ρtu0 +K

bt/2c∑
k=1

ρt−k+1

k + 1
+

t∑
k=bt/2c+1

ρt−k+1

k + 1


≤ ρtu0 +K

bt/2c∑
k=1

ρt/2

k + 1
+

t∑
k=bt/2c+1

2
ρt−k+1

t+ 2

 .

To go from the second line to the third line, we observe that
for “old” terms with large steps sizes, we are saved by the
higher power in the geometric term. For the more recent
terms, the step-size is small enough to ensure convergence.
More formally, in the early terms (1 ≤ k ≤ bt/2c), we
upper bound ρt−k+1 by ρt/2. In the later terms (bt/2c+1 ≤
k ≤ t), we upper bound 1

k+1 by 2
t+2 .

To obtain the full rate, we now study both parts separately.
For the first part, we use knowledge of the harmonic series:

ρt/2
bt/2c∑
k=1

1

k + 1
≤ ρt/2 log

(
t

2
+ 1

)
(25)

for t ≥ 2, we can upper bound log
(
t
2 + 1

)
by log t.

For the second part, we use knowledge of the geometric
series:

t∑
k=bt/2c+1

ρt−k+1 ≤ ρ

1− ρ
. (26)

Finally, for t ≥ 2

0 ≤ ut ≤ K
(

ρ

(1− ρ)

2

(t+ 2)
+ ρt/2 log t

)
+ ρtu0.

(27)

The expected error EHt verifies our general conditions with
u0 = H0 = ‖α0 − ∇f(Xw−1)‖1, defining w−1

def
= w0

for the sake of the proof; ρ = 1 − 1

n
and K =

2LD1

n
.

Specifying these values gives us the claimed bound.

The remainder of the proof of Theorem 1 follows the usual
Frank-Wolfe proofs in the full gradient case, which can be
found e.g. in Frank & Wolfe (1956); Jaggi (2013). Here is
a brief sketch of these steps: we tie the three key lemmas
together, plugging in the bound on EHt given by Lemma
3 into the upper bound on the suboptimality at step t given
by Lemma 1. By specifying the step size 2/(t + 2), and

scaling the bounds by a factor of (t+ 1)(t+ 2), we obtain
a telescopic sum, allowing us to upper bound the expected
suboptimality at the latest step considered. The details are
deferred to Appendix C.

3.3 Worst-case Convergence Rates for Smooth,
Non-Convex Objectives

We start by recalling the definition of the Frank-Wolfe gap:

gt = max
s∈C
〈∇f(Xwt−1),X(wt−1 − s)〉. (28)

Previous work (Jaggi, 2013) has shown the importance
of the Frank-Wolfe gap. In the convex setting, it is a
primal-dual gap, and as such, upper bounds both primal
and dual suboptimalities. In the general non-convex set-
ting, it is a measure of near-stationarity. We define a sta-
tionary point as any point w? such that for all w ∈ C,
〈∇f(Xw?),X(w −w?)〉 ≥ 0 (Bertsekas, 1999). From
this definition, it is clear that the Frank-Wolfe gap gt is zero
only at a stationary point.

In this section, we suppose that fi is L-smooth for i in
{1, . . . , n}, but not necessarily convex. The following the-
orem states that we can still obtain a stationary point from
Algorithm 1.

Theorem 2. Letwt be computed according to Algorithm 1,
then

lim inf
t→∞

Etgt = 0, (29)

where gt is the Frank-Wolfe gap.

The proof of this result is deferred to Appendix F.

4 Stopping Criterion
In this section, we define a natural stochastic Frank-Wolfe
gap, and explain why it can be used as a stopping criterion.

We recall the definition of the true Frank-Wolfe gap gt, and
define the stochastic Frank-Wolfe gap ĝt as:

gt = max
s∈C
〈∇f(Xwt−1),X(wt−1 − s)〉, (30)

ĝt = max
s∈C
〈αt,X(wt−1 − s)〉 (31)

for αt given by SFW.

The Frank-Wolfe gap’s properties make estimating it very
desirable: when the gap is small for a given iteration of
a Frank-Wolfe type algorithm, we can guarantee we are
close to optimum (or to a stationary point in the general non-
convex case). Unfortunately, in datasets with many samples,
and since it depends on the full gradient, computing this gap
can be impractical.
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The following proposition shows that the stochastic Frank-
Wolfe gap estimator resulting from Algorithm 1 can be used
as a proxy for the true Frank-Wolfe gap.
Proposition 1. For αt given by Algorithm 1, we can bound
the distance between the stochastic Frank-Wolfe gap and
the true Frank-Wolfe gap as follows:

|gt − ĝt| ≤ D∞Ht, (32)

which yields the following bound in expectation

E|gt − ĝt| ≤ 2
LD1D∞

n

(
2(n− 1)

t+ 2
+
(

1− 1

n

)t/2
log t

)
+
(

1− 1

n

)t
D∞H0. (33)

We defer the proof to Appendix E.

If ĝt goes to 0, then the true Frank-Wolfe gap will be ex-
pected to vanish as well. We therefore propose to use ĝt,
which is computed as a byproduct of our SFW algorithm,
as a heuristic stopping criterion, but defer a more in-depth
theoretical and empirical analysis of this gap to future work.

5 Discussion
In this section, we compare the convergence rate of the
proposed SFW, Lu & Freund (2018) and Mokhtari et al.
(2018) as shown in Table 1. We use big O notation, only
focusing on dependencies in n and t to upper bound the
suboptimality at step t.

To make a fair comparison, including dependencies in n,
the number of samples, we first standardize notations across
papers. Lu & Freund (2018) use the same formal setting
as ours, where x>i w is the argument to the i-th objective
fi, and the full objective is the average of these. Mokhtari
et al. (2018) set themselves in a more general setting, where
they only assume access to an unbiased estimator of the full
gradient.

For ease of comparison, we rewrite the two algorithms of Lu
& Freund (2018) and Mokhtari et al. (2018) in Appendix G
using our notations.

Because of their more general setting, the Lmok Lipschitz
constant appearing in Mokhtari et al. (2018) can be written
Lmok = L

nnmaxi ‖xi‖2 (using Cauchy-Schwartz). Their
diameter constant Dmok = maxu,v∈C ‖u−v‖2 is also inde-
pendent of n. Finally, their σ2 term controlling the variance
of their stochastic estimator should also be n-independent.
Under this notation, their convergence rate (Theorem 3,
Mokhtari et al. (2018)) is O

(
1/ 3
√
t
)

with no dependency in
n as expected.

Lu & Freund (2018) have a detailed discussion of the rate
of their method, and achieve the overall rate of O (n/t).

To fairly compare these rates to the one given by Theo-
rem 1, we must consider the D1 and D∞ terms, which may
depend on the number of samples n. The rate we obtain
has a leading term of O (D1D∞/t), and a second term of
O
(
D1D∞n2/t2

)
. The second term is dominated by the

first in the regime t > n2. Defining κ = D1/D∞, we
can write D1D∞ as κD2

∞. We have that κ ≤ n, meaning
that in the worst case, this bound matches the one in Lu
& Freund (2018). When the constraint set is the `1 ball
{w | ‖w‖1 ≤ λ}, we have the following closed form ex-
pression:

κ =
‖X‖1,1
‖X‖1,∞

=
maxj

∑n
i=1 |Xij |

maxij |Xij |
. (34)

We can therefore easily compute it for given datasets.
Remark 8. We briefly remark that if for every feature, the
contribution of that feature is limited to a few datapoints,
this ratio will be small, and therefore the overall bound does
not depend on the number of samples. This tends to happen
for TF-IDF text representations, and for fat-tailed data.

Formal analysis of this ratio exceeds the scope of this paper,
and we defer it to future work. We report values of κ for the
considered datasets in Section 7.

6 Implementation Details

Our implementation is available in the C-OPT package.1

Initialization. We use the cheapest possible initialization:
our initial stochastic gradient estimator α0 starts out at 0.
We also then have that r0 = 0.

Sparsity in X . Suppose there are at most s non-zero fea-
tures for any datapoint xi. Then for instances where C is an
`1 ball, all updates in SFW algorithm can be implemented
using using only the support of the current datapoint, mak-
ing the per-iteration cost of SFW O(s) instead of O(d).
Large-scale datasets are often extremely sparse, so leverag-
ing this sparsity is crucial. For example, in the LibSVM
datasets suite, 8 out of the 11 datasets with more than a
million samples have a density between 10−4 and 10−6.

7 Experiments
We compare the proposed SFW algorithm with other con-
stant batch size algorithms from Mokhtari et al. (2018) and
Lu & Freund (2018).

Experimental Setting. We consider `1 constrained logis-
tic regression problems on the BREAST CANCER and RCV1
datasets, and an `1 constrained least squares regression prob-
lem on the CALIFORNIA HOUSING dataset, all from the

1https://github.com/openopt/copt

https://github.com/openopt/copt
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Table 2. Datasets and tasks used in experiments.

DATASET n d κ/n fi C

BREAST CANCER 683 10 0.929 log(1 + exp(−yix
>
i w)) {‖w‖1 ≤ λ, λ = 5}

RCV1 20,242 47,236 0.021 log(1 + exp(−yix
>
i w)) {‖w‖1 ≤ λ, λ = 100}

CALIFORNIA HOUSING 20,640 8 0.040 1
2
(yi − x>

i w)2 {‖w‖1 ≤ λ, λ = 0.1}
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Figure 1. Comparing our SFW method to the related works of Lu & Freund (2018) and Mokhtari et al. (2018). From left to right: BREAST

CANCER, RCV1, and CALIFORNIA HOUSING datasets. We plot the relative subtimality values in log-log plots to show empirical rates of
convergence. We use the following batch size: b = bn/100c.

UCI dataset repository (Dua & Graff, 2017). See Table 2
for details and links.

We compare the relative suboptimality computed for each
method, given by (f(Xwt)− fmin)/(fmax− fmin) at step
t, where fmin and fmax are the smallest and largest function
values encountered by any of the compared methods. We
compute these values at different time intervals (the same
for each method) depending on problem size, to limit the
time of each run. We use batches using 1% of the dataset at
each step, following Lu & Freund (2018). Within a batch,
data points are sampled without replacement.

We plot these values as a function of the number of gradient
evaluations, equal to the number of iterations times the
batch size b: for all of the considered methods, an iteration
involves exactly b gradient evaluations and one call to the
LMO. This allows us to fairly compare the convergence
speeds in practice.

Compared to both methods from Mokhtari et al. (2018) and
Lu & Freund (2018), the proposed SFW achieves lower
suboptimality for a given number of iterations on the con-
sidered tasks and datasets. We have no explanation for the
initial regime in the CALIFORNIA HOUSING dataset, before
the methods start showing what resembles a sublinear rate,
as the theory prescribes. Notice that the RCV1 dataset has
the lowest κ/n (due to sparsity of the TF-IDF represented
data), and that the method presented in this paper performs
particularly well on this dataset.

Comparison with Mokhtari et al. (2018). Although the
step-size in our SFW Algorithm and the one proposed
in the paper are of the same order of magnitude O(1/t),
Mokhtari et al. (2018) use f ′i(x

>
i wt−1) instead of our

(1/n)f ′i(x
>
i wt−1), because they require an unbiased es-

timator. Their choice induces higher variance, which then
requires the algorithm to use momentum with a vanishing
step size in their stochastic gradient estimator, damping the
contributions of the later gradients (using ρt = 1

t2/3
, see

the pseudo code in Appendix G). This may explain why the
method proposed in Mokhtari et al. (2018) achieves slower
convergence. On the contrary, the lower variance in our esti-
mator αt allows us to give the same weight to contributions
of later gradients as to previous ones, and to forget all but
the last gradient computed at a given datapoint.

Comparison with Lu & Freund (2018). The method from
Lu & Freund (2018) computes the gradient at an averaged
iterate, putting more weight on earlier iterates, making it
more conservative. This may explain slower convergence
versus the SFW algorithm proposed in this paper in certain
settings.

8 Conclusion and Future Work
Similarly to methods from the Variance Reduction litera-
ture such as SAG, SAGA, SDCA, we propose a Stochastic
Frank Wolfe algorithm tailored to the finite-sum setting. Our
method achieves a step towards attaining comparable com-

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
http://lib.stat.cmu.edu/datasets/houses.zip
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plexity iteration-wise to deterministic, true-gradient Frank-
Wolfe in the smooth, convex setting, at a per-iteration cost
which can be nearly independent of the number of samples
in the dataset in favorable settings. Our rate of convergence
depends on the norm ratio κ on the dataset, which is related
to a measure of the weights of the data distribution’s tails.
We will explore this intriguing fact in future work.

We propose a stochastic Frank-Wolfe gap estimator, which
may be used as a heuristic stopping criterion, including in
the non-convex setting. Its distance to the true gap may
be difficult to evaluate numerically. Obtaining a practical
bound on this distance is an interesting avenue for future
work.

Guélat & Marcotte (1986) and Lacoste-Julien & Jaggi
(2015) have proposed variants of the FW algorithm that
converge linearly on polytope constraint sets for strongly
convex objectives: the Away Steps Frank-Wolfe and the Pair-
wise Frank-Wolfe. Goldfarb et al. (2017) studied stochastic
versions of these and showed linear convergence over poly-
topes using increasing batch sizes. Our SFW algorithm, the
natural stochastic gap and the analyses in this paper should
be amenable to such variants as well, which we plan to
explore in future work.
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A Smoothness

Proposition 2. Let f : Rn → R be defined as f(θ) = 1
n

∑
i fi(θi). If fi is L-smooth for all i ∈ {1, . . . , n}, then f satisfies

(6) for every p ∈ [1,∞].

Proof. We observe that the i-th component of the gradient of f is

[∇f(θ)]i =
1

n
f ′i(θi). (35)

Recall that |f ′i(θi)− f ′i(θ̄i)| ≤ L|θi − θ̄i| for all θi, θ̄i in the domain of fi. Then, for the `p norm ‖ · ‖p and for all θ, θ̄ in
the domain of f , the following holds

‖∇f(θ)−∇f(θ̄)‖p =
1

n
p

√√√√ n∑
i=1

|f ′i(θi)− f ′i(θ̄i)|p ≤
L

n
p

√√√√ n∑
i=1

|θi − θ̄i|p =
L

n
‖θ − θ̄‖p . (36)
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B Proof of Lemma 1
We adapt (Mokhtari et al., 2018)’s proof of Lemma 1. For ease, we reproduce its statement first.
Lemma 4. Suppose f is a convex function and is (L/n)-smooth with respect to the `2 norm. For any direction α ∈ Rn,
defining st = LMO(X>α) andwt = (1−γt)wt−1+γtst, we have the following upper bound on the primal suboptimality

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht, (37)

where εt = f(Xwt)− f(Xw?).

Proof. Recall the definition of Dp = maxw, v∈C ‖X(w − v)‖p.

f(Xwt) ≤f(Xwt−1) + 〈∇f(Xwt−1),X(wt −wt−1)〉+
L

2n
‖X(wt −wt−1)‖22 ((L/n)-smoothness)

(38)

f(Xwt) ≤f(Xwt−1) + γt〈∇f(Xwt−1),X(st −wt−1)〉+
γ2tL

2n
‖X(st −wt−1)‖22 (Def of wt)

(39)

≤f(Xwt−1) + γt〈∇f(Xwt−1),X(st −wt−1)〉+ γ2t
LD2

2

2n
(Def of D2)

(40)

=f(Xwt−1) + γt〈∇f(Xwt−1)−α,X(st −wt−1)〉

+ γt〈α,X(st −wt−1)〉+ γ2t
LD2

2

2n

(±γt〈α,X(st −wt−1)〉)

(41)

≤f(Xwt−1) + γt〈∇f(Xwt−1)−α,X(st −w? +w? −wt−1)〉

+ γt〈α,X(w? −wt−1)〉+ γ2t
LD2

2

2n

(±〈∇f(Xwt−1)−α,Xw?〉)
(Opt. of st)

(42)

=f(Xwt−1) + γt〈∇f(Xwt−1)−α,X(st −w?)〉

+ γt〈∇f(Xwt−1),X(w? −wt−1)〉+ γ2t
LD2

2

2n

(rewrite)

(43)

≤f(Xwt−1) + γt〈∇f(Xwt−1),X(w? −wt−1)〉

+ γtD∞‖∇f(Xwt−1)−α‖1 + γ2t
LD2

2

2n

(Hölder’s inequality and def of D∞)

(44)

≤f(Xwt−1) + γt(f(Xw?)− f(Xwt−1)) + γtD∞‖∇f(Xwt−1)−α‖1

+ γ2t
LD2

2

2n

(Convexity of f )

(45)

Subtracting f(Xw?) on both sides, we get

f(Xwt)− f(Xw?) ≤ (1− γt)(f(Xwt−1)− f(Xw?)) + γtD∞‖∇f(Xwt−1)−α‖1 + γ2t
LD2

2

2n
. (46)

We define Ht = ‖α−∇f(Xwt−1)‖1, and recall the definition of εt to obtain the claimed bound

εt ≤ (1− γt)εt−1 + γ2t
LD2

2

2n
+ γtD∞Ht. (47)
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C Completing the proof for Theorem 1.
Given the three key Lemmas 1-3, we can finish the proof. Under the hypotheses of Theorem 1, let us consider step t of the
SFW algorithm.

We plug our upper bound on Ht (23) into the upper bound from Lemma 1 (11) and take expectations on both sides to obtain
the following upper bound on the expected primal-suboptimality Eεt.

Eεt ≤(1− γt)Eεt−1 + γ2t
LD2

2

2n

+ γt
2LD1D∞

n

(
2(n− 1)

t+ 2
+

(
1− 1

n

)t/2
log t

)

+ γtD∞

(
1− 1

n

)t
H0.

(48)

By specifying the step-size γt = 2
t+2 and multiplying the previous inequality by (t+ 1)(t+ 2), we get an expression in

which the expected sub-optimalities telescope under summation. This allows us to get the promised rate. For simplicity, we
upper bound t+1

t+2 by 1.

Let Γt = (t+ 1)(t+ 2)Eεt. We have

Γt ≤ Γt−1 + 2
LD2

2

n
+ 8

(n− 1)

n
LD1D∞

+ 4
LD1D∞

n
(t+ 1)

(
1− 1

n

)t/2
log t

+ 2D∞H0(t+ 1)
(

1− 1

n

)t (49)

If we sum this expression over time-steps k = 1, . . . , t, we obtain

Γt ≤Γ0 + 2L

(
D2

2 + 4(n− 1)D1D∞
n

)
t

+ 4
LD1D∞

n
Bt

+ 2D∞H0Ct

(50)

where

Bt =

t∑
k=1

(k + 1)

(
1− 1

n

)k/2
log k ≤ 16n3 (51)

Ct =

t∑
k=1

(k + 1)

(
1− 1

n

)k
≤ n2. (52)

where the upper bounds use Taylor series and are proven in Appendix D. We get the upper bound

Γt ≤ Γ0 + 2L

(
D2

2 + 4(n− 1)D1D∞
n

)
t

+ (2D∞H0 + 64LD1D∞)n2.

(53)

We divide this upper bound by (t+ 1)(t+ 2), and finally use the bound 1
(t+1)(t+2) ≤

1
t2 to obtain the following rate on Eεt:

Eεt ≤ 2L

(
D2

2 + 4(n− 1)D1D∞
n

)
t

(t+ 1)(t+ 2)
+

2ε0 + (2D∞H0 + 64LD1D∞)n2

(t+ 1)(t+ 2)
. (54)
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D Bounds for Bt, Ct.

For Bt, we use the (aggressive) bound log k ≤ k − 1 and notice that
∑∞
k=1(k + 2)(k + 1)ρk = 2

(1−ρ)3 to get

Bt ≤
t∑

k=1

(k − 1)(k + 1)

(
1− 1

n

)k/2
(55)

≤
t∑

k=1

(k + 2)(k + 1)

(
1− 1

n

)k/2
(56)

≤ 2

 1

1−
√

1− 1
n

3

(57)

= 2n3

(
1 +

√
1− 1

n

)3

≤ 16n3. (58)

Notice that Ct is the beginning of the Taylor series expansion of d
dx

1
1−x = 1

(1−x)2 , for x = n−1
n . We can upper bound it by

the full series, leading to

Ct ≤

(
1

1−
(
1− 1

n

))2

= n2. (59)



Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

E Proof of Proposition 1.
Proof. It suffices to prove that

|gt − ĝt| ≤ D∞Ht . (60)

We recall the definitions of the true and stochastic FW gaps:

gt = max
s∈C
〈∇f(Xwt−1),X(wt−1 − s)〉

def
= 〈∇f(Xwt−1),X(wt−1 − st)〉 (61)

ĝt = max
s∈C
〈αt,X(wt−1 − s)〉

def
= 〈αt,X(wt−1 − ŝt)〉 (62)

where we associate st to the true gap, and ŝt to the stochastic gap.

Now,

gt = 〈∇f(Xwt−1),X (wt−1 − st)〉 (63)
= 〈αt,X (wt−1 − st)〉+ 〈∇f(Xwt−1)−αt,X (wt−1 − st)〉 (64)
≤ 〈αt,X (wt−1 − ŝt)〉+ 〈∇f(Xwt−1)−αt,X (wt−1 − st)〉 (65)
≤ ĝt +D∞Ht, (66)

where the first inequality results from optimality of ŝt, and the second inequality results from Hölder’s inequality and the
definitions of Ht and D∞.

Both gaps gt and ĝt play symmetric roles in the previous bounds, therefore, we also have the bound:

ĝt ≤ gt +D∞Ht, (67)

thus concluding the proof.
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F Proof of Theorem 2.
Let us now show that when the fis are L-smooth, and the iterates are given by the proposed SFW, then lim inft→∞ Et[gt] =
0.

Proof. We adapt the proof of Lemma 1. At step t, using Proposition 2 with p = 2, we obtain

f(Xwt) ≤ f(Xwt−1) + γt〈∇f(Xwt−1),X(st −wt−1)〉+ γ2t
LD2

2

2n
(68)

= f(Xwt−1)− γtĝt + γt〈∇f(Xwt−1)−αt,X(st −wt−1)〉+ γ2t
LD2

2

2n
(69)

≤ f(Xwt−1)− γtĝt + γtD∞Ht + γ2t
LD2

2

2n
. (70)

Rearranging, we have

γtĝt ≤ f(Xwt−1)− f(Xwt) + γtD∞Ht + γ2t
LD2

2

2n
. (71)

Therefore, summing for u = 1, . . . , t

t∑
u=1

γuĝu ≤ f(Xw0)− f(Xwt) +

t∑
u=1

γuD∞Hu + γ2u
LD2

2

2n
. (72)

The right hand side is bounded in expectation: f is continuous on the compact set C, and the series converges, since
EtHt = O( 1

t ) and γ2t = O(1/t2). This implies that lim inf Etĝt = 0, since γt = 2
t+2 is not the general term of a

convergent series. Finally, since |gt − ĝt| ≤ D∞Ht (Appendix E), this yields the claimed result.
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G Comparison with other methods.
To make the comparison with other methods easier to grasp and to implement for the interested reader, we report pseudo code
using our notation for the Stochastic Frank-Wolfe algorithms in Lu & Freund (2018) and Mokhtari et al. (2018). In the case
of Mokhtari et al. (2018), we also specify their algorithm in the same formal setting as ours where f(Xw) = 1

nfi(x
>
i w)

and the sampling is over datapoints.

G.1 Mokhtari et al. (2018)

Mokhtari et al. (2018) have two sets of step-sizes, which we denote by ρt, γt. They use a form of momentum on an unbiased
estimator of the gradient using the ρt step sizes. The values they use are γt = 1

t+1 and ρt = 1
(t+1)2/3

.

Algorithm 2 Mokhtari et al. (2018)
1: Initialization: w0 ∈ C, α0 = 0, r0 = 0
2: for t = 1, 2, . . . , do
3: Sample i uniformly at random in {1, . . . , n}
4: αit = (1− ρt)αit−1 + ρtf

′
i(x
>
i wt−1)

5: rt = rt−1 + (αit −αit−1)xi
6: st = LMO(rt)
7: wt = (1− γt)wt−1 + γtst
8: end for

G.2 Lu & Freund (2018)

Lu & Freund (2018) also have two step-size sequences given by γt = 2(2nb+t)
(t+1)(4nb+t+1) and δt = 2nb

2nb+t+1 , where nb is the
number of batches, i.e. bn/bc, with n the number of samples in the dataset, and b the chosen batch size. They use a form of
momentum on the argument to a given fi, and compute the gradient at an averaged iterate, which we denote by σit. In our
notation, t is the iteration step and i corresponds to the i-th datapoint.

Algorithm 3 Lu & Freund (2018)
1: Initialization: w0 ∈ C, σ0 = Xw0, α0 = 0, r0 = 0
2: for t = 1, 2, . . . , do
3: st = LMO(rt−1)
4: Sample i uniformly at random in {1, . . . , n}
5: σit = (1− δt)σit−1 + δt(x

>
i st)

6: αit = 1
nf
′
i(σ

i
t)

7: rt = rt−1 +
(
αit −αit−1

)
xi

8: wt = (1− γt)wt−1 + γtst
9: end for


