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Abstract
We propose to study the generalization error of
a learned predictor ĥ in terms of that of a sur-
rogate (potentially randomized) predictor that is
coupled to ĥ and designed to trade empirical risk
for control of generalization error. In the case
where ĥ interpolates the data, it is interesting to
consider theoretical surrogate predictors that are
partially derandomized or rerandomized, e.g., fit
to the training data but with modified label noise.
We also show that replacing ĥ by its conditional
distribution with respect to an arbitrary σ-field is
a convenient way to derandomize. We study two
examples, inspired by the work of Nagarajan and
Kolter (2019) and Bartlett et al. (2020), where
the learned predictor ĥ interpolates the training
data with high probability, has small risk, and,
yet, does not belong to a nonrandom class with
a tight uniform bound on two-sided generaliza-
tion error. At the same time, we bound the risk
of ĥ in terms of surrogates constructed by con-
ditioning and denoising, respectively, and shown
to belong to nonrandom classes with uniformly
small generalization error.

1. Introduction
One of the central problems in learning theory is to ex-
plain the statistical performance of deep learning algo-
rithms. There is particular interest in explaining how over-
parameterized neural networks, trained by simple vari-
ants of stochastic gradient descent (SGD), simultaneously
achieve low risk and zero empirical risk on benchmark
datasets. While certain naive explanations have been ruled
out (Zhang et al., 2017), progress has been slow.
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The bulk of recent work has approached this problem by ar-
guing that the classifier learned by SGD belongs to a class
for which there is a uniform and tight (two-sided) bound
on the generalization error (Bartlett, Foster, and Telgarsky,
2017; Golowich, Rakhlin, and Shamir, 2018; Long and
Sedghi, 2020; Neyshabur et al., 2017; Wei and Ma, 2019).
After raising this observation, Nagarajan and Kolter (2019)
argue that this approach may be unable to explain perfor-
mance observed in overparameterized models. They argue
this point by constructing a simple problem where an SGD-
like algorithm learns a classifier that achieves low risk and
zero empirical risk, yet the learned classifier does not be-
long (even with high probability) to a class whose gener-
alization error is uniformly small. Nagarajan and Kolter
conjecture that SGD finds a fit that is simple at a macro-
scopic level (leading to good generalization) but complex
at the microscopic level due to data-dependent fluctuations
(hurting “uniform convergence”). A similar observation for
minimum-norm interpolating kernel methods is made by
Belkin, Ma, and Mandal (2018, Sec. 4), where they find
that norm-dependent bounds will be vacuously large.

In this work, we initiate a response to Nagarajan and Kolter
(2019) in defense of the utility of uniform convergence for
understanding learning algorithms that obtain zero empir-
ical risk. We do so by introducing the technique of de-
randomization, whereby a risk bound is obtained by com-
paring the learned hypothesis with a surrogate that is less
influenced by the data. This technique can be seen to be
implicit in several classical analyses, including the bias–
variance analysis of linear regression. We look at the high-
dimensional case as our first example. Our second ex-
ample mimics one by Nagarajan and Kolter and shows
how rerandomization can produce a derandomized surro-
gate without microscopic fluctuations. In each case, we
show that the surrogate belongs to a class possessing an
appropriate uniform convergence property and is similar
enough to the original learned hypothesis to yield a tight
bound on risk.

In order to formalize our results, we require a notion of
uniform convergence that is applicable to learning algo-
rithms that produce interpolating predictors.1 In general,

1We use the term “interpolating predictors” to refer to predic-



In Defense of Uniform Convergence: Generalization via Derandomization

to learn an interpolating predictor, the capacity of the hy-
pothesis space must increase with the dataset size. This
mirrors deep learning practice, where scientists will train
larger, more complex models when presented with a larger
dataset. Since the complexity of the learning problems in
question—and possibly even the sample spaces generating
the data—change with the sample size, the traditional no-
tions of uniform convergence (Glivenko–Cantelli classes)
are not applicable. Therefore we need to extend the con-
cept of uniform convergence to the setting of sequences of
learning problems of increasing complexity, which we do
in Section 3 by defining the structural Glivenko–Cantelli
property.

In Section 4, we introduce a general approach to relate
sequences of learning problems which are not structural
Glivenko–Cantelli to ones that may be. The basic idea
is to introduce a surrogate hypothesis that is coupled to
the output of the learning algorithm of interest, yet be-
longs to a class (the surrogate hypothesis class) for which
a uniform and vanishing bound on two-sided generaliza-
tion error holds. Surrogates arise implicitly in several ex-
isting analyses of interpolating hypotheses, including the
risk analysis of 1-Nearest Neighbors (Devroye, Györfi, and
Lugosi, 2013). Recent work can also be interpreted as
employing surrogates, e.g., in high-dimensional halfspace
learning (Kabán and Durrant, forthcoming) and deep learn-
ing (Mücke and Steinwart, 2019).

The observations of Nagarajan and Kolter (2019) relate
to a number of other empirical learning phenomena that
demand explanation. One example is the phenomenon
of double descent, brought to light by Advani and Saxe
(2017), Belkin et al. (2019), and Geiger et al. (2019). The
difficulty of explaining these double descent curves using
standard uniform convergence arguments is a central theme
of recent talks by Belkin. In a line of work by Hastie
et al. (2019) and Mei and Montanari (2019), double de-
scent was observed in unregularized, overparameterized
linear regression. Bartlett et al. (2020) show that, for se-
quences of overparameterized linear regression tasks, the
minimum norm interpolating solution to least squares will
achieve asymptotically optimal risk with high probability
given constraints on the covariate (feature) distribution. In
this setting, we show that no class containing the learned
hypothesis with high probability can have a vanishing uni-
form bound on the absolute generalization error. In fact,
such a bound cannot be representative of the risk of the
learned hypothesis. In Section 5, we show that the analysis
of Bartlett et al. (2020) may be viewed as introducing a sur-
rogate classifier. The surrogate in this case is the minimum-
norm interpolating solution on the training data with label

tors that achieve zero empirical risk, borrowing the terminology
used for functions that achieve zero mean squared error.

noise removed. We use standard techniques from empir-
ical process theory to demonstrate that the surrogate hy-
pothesis class—the collection of all surrogate hypotheses
that could have been learned from the training data—has
the structural Glivenko–Cantelli property. We combine our
uniform bound based on the structural Glivenko–Cantelli
property with other components of the analysis of Bartlett
et al. (2020) to obtain similar bounds on the expected risk
of the minimum norm interpolating solution under weaker
hypotheses.

In Section 6 we provide a relatively flexible recipe for con-
structing surrogate classifiers via probabilistic condition-
ing. The approach produces a probability measure over hy-
potheses via retraining on data that is equal in distribution
to the original training data but has been partially “reran-
domized”. The approach effectively trades empirical risk
for generalization error. Lastly, in Section 7, we apply this
recipe to an example, inspired by Nagarajan and Kolter
(2019), where an interpolating learning algorithm is con-
structed for which there is no structural Glivenko–Cantelli
class containing the learned hypothesis with high probabil-
ity. In that example, we construct a surrogate by condi-
tioning with respect to a specific σ-field. We show the cor-
responding surrogate class is structural Glivenko–Cantelli
and can be used to derive risk bounds for the learned clas-
sifier, which exhibit a form of double descent.

1.1. Contributions

In this work, we extend our theoretical understanding of
generalization, by way of the following contributions:

1. Defining the structural Glivenko–Cantelli property, a
notion of uniform convergence for sequences of learn-
ing problems.

2. Proposing to study generalization error of learning
algorithms—including interpolating ones—in terms of
surrogate hypotheses that may belong to structural
Glivenko–Cantelli classes, even when the original hy-
potheses do not.

3. Demonstrating that the hypothesis spaces correspond-
ing to a sequence of unregularized, overparameter-
ized linear regression tasks are not structural Glivenko–
Cantelli, but that they can be analyzed by introducing a
sequence of surrogates for which the surrogate hypothe-
sis class is structural Glivenko–Cantelli. We further use
this fact to provide bounds on the expected risk of the
original sequence of tasks under weaker hypotheses than
Bartlett et al. (2020).

4. Introducing a generic technique by which one may in-
troduce surrogate learning algorithms via conditioning,
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which naturally trades empirical risk for generalization
error relative to the original learning algorithm.

5. Analyzing an example that distills the key features of
an example in Nagarajan and Kolter (2019), via a fam-
ily of surrogates obtained from conditioning. We show
that, while the original learning algorithm does not out-
put hypotheses in a sequence of classes with the struc-
tural Glivenko–Cantelli property, discarding a few bits
of information leads to one that does. We also show that
bounds obtained via the surrogate learning algorithm ex-
hibit a form of double descent.

2. Preliminaries
Let Z,Z1, . . . , Zn be i.i.d. random elements in a space S
with common distribution D. Let S = (Z1, . . . , Zn) repre-
sent the training set. Fix a loss function ` : H × S → R+

for a space H of hypotheses. Let M1(H) be the space
of distributions on H. Note that H can be embedded into
M1(H) by the map h 7→ δh taking a classifier to a Dirac
measure degenerating on {h}. For Q ∈ M1(H), the (av-
erage) loss and risk are defined to be

`(Q, z) =

∫
`(h, z)Q(dh), LD(Q) =

∫
`(Q, z)D(dz).

Let LS(Q) = LD̂n(Q) denote the empirical (average) risk,

where D̂n = 1
n

∑n
i=1 δZi is the empirical distribution. For

h ∈ H, define LD(h) = LD(δh) and LS(h) = LS(δh).
Let ĥ or ĥ(S) be a random element in H, representing a
learned classifier.

A hypothesis h interpolates a dataset S with respect to a
non-negative loss ` when LS(h) = 0. A learning algorithm
ĥ(S) is (almost surely) interpolating if LS(ĥ(S)) = 0 a.s.
(or equivalently ELS(ĥS) = 0). This extends our geomet-
ric intuition that a surface h : Rd → R interpolates points
in {(xi, yi)}i∈[n] Rd × R when (h(xi)− yi)2

= 0 for all
i ∈ [n]. The surprising properties of interpolating classi-
fiers are explored in Belkin et al. (2019). See also Advani
and Saxe (2017) and Geiger et al. (2019).

3. Structural Uniform Convergence
Nagarajan and Kolter (2019) argue that uniform conver-
gence does not explain generalization in several examples
that are emblematic of the modern interpolating regime.
In those examples, however, the size of the learning prob-
lem varies with the cardinality of the training dataset. The
standard notion of uniform convergence (i.e., of Glivenko–
Cantelli classes, etc.) is not normally defined in this setting.
In order to formalize the specific failure of “uniform con-
vergence” in these sequences of learning problems, we in-
troduce a structural version of the Glivenko–Cantelli prop-
erty.

Definition 3.1. Let {
(
S(p),F (p),D(p)

)
}p∈N be a sequence

of probability spaces where S(p) denotes the sample space,
F (p) denotes the σ-field and D(p) denotes the probability
measure. Let H(p) be a collection of measurable functions
on
(
S(p),F (p),D(p)

)
and let np ∈ N for all p ∈ N.

ThenH(·) has the structural (D(·), n(·))-Glivenko–Cantelli
property, denoted (D(·), n(·))-SGC, if

lim
p→∞

E

[
sup

h∈H(p)

∣∣∣D(p)h− D̂(p)
nph
∣∣∣] = 0,

where Ph =
∫
h(x)P (dx) and D̂(p)

np is the empirical dis-
tribution of an IID sample of size np from D(p).

It is this property which is made to fail in the exam-
ples presented by Nagarajan and Kolter (2019). When{(
S(p),F (p),D(p)

)}
p∈N and H(p) are constant and np =

p, this reduces to the classical notion of Glivenko–Cantelli.
Remark 3.2 (Relationship between PAC and nonuniform
learning). PAC learnability and nonuniform learnability,
as defined in (Shalev-Shwartz and Ben-David, 2014), can
both be understood in terms of the structural Glivenko–
Cantelli property. That PAC learnability implies structural
Glivenko–Cantelli follows from the equivalence of PAC
learnability with the uniform Glivenko–Cantelli property.

To understand the nonuniform learnability of a class H
in terms of the structural Glivenko–Cantelli property, re-
call the equivalence that H is non-uniformly learnable
if and only if it is a countable union of VC classes—
H =

⋃
j∈NHj with

⋃
j∈[p]Hj of finite VC dimension

dp. Then, for any sequences δp ↘ 0 and εp ↘ 0, take
np ≥ C2

dp+log(1/δp)
ε2p

where C2 is the universal constant
appearing in (Shalev-Shwartz and Ben-David, 2014, The-
orem 6.8, Item 1.). Taking {

(
S(p),F (p),D(p)

)
}p∈N to be

constant, and H(p) =
⋃
j∈[p]Hj , it follows immediately

that

E

[
sup

h∈H(p)

∣∣∣D(p)h− D̂(p)
nph
∣∣∣] ≤ (1− δp)εp + δp → 0,

and henceH(·) is (D(·), n(·))-SGC. It would be reasonable
in this case to say that H(·) is (n(·))-SGC uniformly over
data generating distributions.

The partitioning of the hypothesis space in synchroniza-
tion with increasing sample size in this derivation is similar
to the partitioning of the hypothesis space by sample size
occurring in the structural risk minimization algorithm for
nonuniform learning. The analysis above tells us that any
ERM algorithm restricted to H(p) when the sample size is
np will achieve low generalization error. /
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4. Decompositions of Generalization Error
using Surrogate Classifiers

We now describe how one may pass from bounding the
generalization error of a learning algorithm to bounding
the generalization error of a surrogate and controlling dif-
ferences in the risk and empirical risk profiles between the
original algorithm and the surrogate.

The following result is immediate from the linearity of ex-
pectation:

Lemma 4.1 (Surrogate decomposition). For every random
element Q inM1(H),

E[LD(ĥ)− LS(ĥ)] = E[LD(ĥ)− LD(Q)]

+ E[LD(Q)− LS(Q)]

+ E[LS(Q)− LS(ĥ)],

provided the three expectations on the r.h.s. are finite.

This decomposition suggests that one can obtain a bound
on the generalization error (and then the risk) of ĥ by
bounding the three terms individually. We interpret Q here
as a (possibly randomized) surrogate hypothesis that is cou-
pled with ĥ via some information in the training algorithm
and/or the training data. The choice of Q trades off one
term for another. In the particular case of a.s. interpolating
classifiers (i.e., E[LS(ĥ)] = 0), one approach is to trade
excess empirical risk, E[LS(Q)−LS(ĥ)], for less general-
ization error, E[LD(Q)− LS(Q)].

One way to control generalization error is to show that Q
belongs to a nonrandom class for which there holds a uni-
form and tight bound on generalization error.

Proposition 4.2 (Bounded loss, two-sided control). As-
sume ` takes values in an interval of length L. For every
random element Q inM1(H) and class G ⊆M1(H),

E[LD(Q)− LS(Q)]

≤ LP[Q 6∈ G] + E
[

sup
P∈G
|LD(P )− LS(P )|

]
.

Just as we interpret Q as a surrogate hypothesis that de-
pends on the dataset S, we view G in Proposition 4.2 as a
surrogate hypothesis class that contains the surrogate hy-
pothesis with high probability.

The surrogate decomposition may be viewed as similar to
a one-step covering argument, where the cover is given by
the class of surrogate hypotheses, and the approximation
error is given by E[LD(ĥ)−LD(Q)]+E[LD(Q)−LS(Q)].
In a typical one-step covering argument, the cover is chosen
to be sufficiently fine as to have a uniformly small approx-
imation error. The optimal cover density will vary with
sample size so that approximation error vanishes as sam-
ple size increases. The key difference here is that we may

not be able to control the approximation error uniformly or
have any hope that it will vanish based on the covering in-
duced by a surrogate. We will only attempt to uniformly
control the cover given by the surrogate class. We then can
rely on other techniques to handle the approximation error.
This allows us to divide the objective of explaining gener-
alization into a portion explained by uniform convergence
and portion not explained by uniform convergence.

5. Overparameterized Linear Regression
Our first application of using surrogates and the struc-
tural Glivenko–Cantelli property to understand generaliza-
tion error is inspired by the recent work of Bartlett et al.
(2020). They determine necessary and sufficient conditions
under which the minimum norm interpolating linear pre-
dictor generalizes well in mean-squared error for random
design linear regression in the overparameterized regime
(i.e., more features than observations) for sub-Gaussian
random designs with conditionally sub-Gaussian residuals.
We chose overparameterized linear regression as a first ex-
ample to present because of 1) the failure of uniform con-
vergence to directly explain performance of the learned
hypothesis in the problem (in particular we show that the
structural Glivenko–Cantelli property fails for any classes
containing the learned hypotheses with high probability),
and 2) recent work (e.g., by Hastie et al. (2019) and Mei
and Montanari (2019) and others) showing that double de-
scent occurs in variants of this problem such as random
feature regression.

In overparameterized linear regression, our dataset is
formed by n (feature, response) pairs, ((Xi, Yi))

n
i=1 with

features as row vectors X ′i ∈ Rd and responses Yi ∈ R.
The hypotheses are vectors in Rd, and the loss function is
squared error `(γ, (x, y)) = (y − xβ)2. Being overparam-
eterized means that there are more features, d, than there
are observations, n, i.e., n < d. For convenience we ar-
range the responses into a vector Y = (Yi)

n
i=1 ∈ Rn, and

the features into a design matrix X = (Xi)
n
i=1 ∈ Rn×d (so

that the design matrix has one row per observation and one
column per feature). Whenever X has full row rank and
n < d, there is an affine space of dimension d− n of inter-
polating hypotheses. The learned hypothesis which we will
consider will be the minimum norm interpolating solution,
β̂ = (X ′X)+X ′Y , where A+ denotes the Moore–Penrose
pseudoinverse of the matrix A. It is the risk properties of
this learning algorithm which is analyzed by Bartlett et al.
(2020). For simplicity, we will work with Gaussian design
and Gaussian responses. Let Xi

iid∼ N1×d(0,Σ) be random
row vectors with non-singular d×d feature covariance ma-
trix Σ. Let X = (X ′1, . . . X

′
n)′ be the corresponding n× d

random design matrix. Let (Yi | X)
ind∼ N(Xiβ, σ

2) and
Y = (Y1, . . . Yn)′ be the responses and response vector
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respectively. Let Z = Y −Xβ be the residual vector.

In order to remain overparameterized as the number of ob-
servations increases, it is necessary to consider a sequence
of distinct learning problems so that the number of features
grow with the number of observations. Thus, whether or
not the learned hypothesis belongs to a classical Glivenko–
Cantelli class with high probability is irrelevant to the de-
terminaiton of the risk properties of the learned hypoth-
esis when we stay overparameterized. We will see that
the structural Glivenko–Cantelli property is relevant to the
problem. However, there is no SGC class containing the
learned hypothesis with high probability.

Lemma 5.1 (Failure of uniform convergence for overpa-
rameterized linear regression). There is no sequence of
measurable sets {An}n∈N such that P((X,Y ) ∈ An) >
2/3 for all n ∈ N and for which

lim sup
n→∞

E sup
(X̃,Ỹ )∈An

∣∣∣LD(β̂(X̃, Ỹ ))− LS(β̂(X̃, Ỹ ))
∣∣∣ ≤ 3

2
LD(β).

The proof of this result is found in Appendix B.

Even though there is no SGC class containing the learned
hypothesis with high probability, Bartlett et al. (2020) are
able to show that, under some conditions, the minimum
norm solution is consistent, i.e., its risk converges to the
Bayes risk. In the remainder of this section we discuss
the conditions required by those authors to ensure consis-
tency, and weaker conditions under which we prove sim-
ilar results. Having formalied our hypotheses, we show
that the bias–variance decomposition used by Bartlett et al.
(2020) can be seen to be a natural surrogate decomposi-
tion, and that the sequence of surrogate classes is struc-
tural Glivenko–Cantelli. We then use a uniform conver-
gence argument to prove the risk of the learned hypothesis
converges to the Bayes risk under weaker conditions than
those of Bartlett et al. (2020), closing the gap between their
necessary and sufficient conditions for consistency.

We handle only the Gaussian design / Gaussian response
case, but note that the results can be extended to the sub-
Gaussian with minor modifications.2 We provide bounds
on the expected generalization error only, as the purpose of
this example is to illustrate how uniform convergence of a
surrogate may be used. However, we would like the reader
to be aware that high-probability bounds may be obtained
using the high-probability versions of the chaining argu-
ments that appear in the proofs, as is standard in empirical
process theory.

Bartlett et al. (2020) define a sequence of covariance matri-

2Bartlett et al. (2020) handled the Gaussian design / Gaussian
response case in the first version of their work, and gave exten-
sions to the sub-Gaussian case in a recent update.

ces Σn ∈ Rdn×dn to be benign when ‖Σn‖ = 1 and

lim
n→∞

(√
r0(Σn)

n
+
k∗n(Σn)

n
+

n

Rk∗n(Σn)(Σn)

)
= 0,

where, writing {λi(Σ)}i∈[d] for the eigenvalues of Σ in de-
creasing order (with multiplicity),

rk(Σ) =

∑
i>k λi(Σ)

λk+1(Σ)
, Rk(Σ) =

(∑
i>k λi(Σ)

)2∑
i>k λ

2
i (Σ)

,

and k∗n(Σ) = min {k ≥ 0 : rk(Σ) ≥ bn}, for some uni-
versal constant b > 0 defined by Bartlett et al. Their
work shows that it is sufficient that Σn be benign and
‖βn‖2

√
r0(Σn)/n → 0 in order that LD(β̂) → σ2 in

probability. (In fact, ELD(β̂)→ σ2 also.) They then show
that it is necessary that

lim
n→∞

(
k∗n(Σn)

n
+

n

Rk∗n(Σn)(Σn)

)
= 0

in order that ELD(β̂) → σ2. Note that the risk of the true
coefficient vector (and global optimizer of the risk), β, is
σ2, and so we expect the risk of any estimator to be at least
that large.

Bartlett et al. (2020) describe rk(Σ) and Rk(Σ) as mea-
sures of effective rank. The condition,

√
r0(Σn)/n → 0,

i.e., the effective rank grows slower than the sample size,
parallels the classical fixed dimension setting where we
need fewer features (measured by the rank of Σ) than ob-
servations, n. To achieve this, the spectrum of Σ must
decay sufficiently quickly. In contrast, for k∗n(Σ)/n and
n/Rk∗n(Σn)(Σn) to vanish, Bartlett et al. (2020) argue that
we need the spectrum of Σ to decay sufficiently slowly.
The requirement that the spectrum decay quickly enough
to ensure

√
r0(Σn)/n → 0, but not too quickly to prevent

k∗n(Σ)/n + n/Rk∗n(Σn)(Σn) → 0, suggests there is a bal-
ance to strike.

In fact, for convergence in mean, we show that fast decay
is unnecessary by establishing convergence in mean under
strictly weaker hypotheses:
Definition 5.2. A sequence {Σn}n∈N is weakly benign if

lim
n→∞

(
k∗n(Σn)

n
+

n

Rk∗n(Σn)(Σn)

)
= 0.

Clearly if {Σn}n∈N is benign then it is weakly benign since
r0(Σ) ≥ 1. The converse does not hold in general. The
condition that {Σn}n∈N forms a weakly benign sequence
is, therefore, weaker than the sufficient condition of Bartlett
et al. (2020) and equivalent to the necessary condition. Our
weaker conditions remove the tension between rapid and
slow decay of the spectrum required for the sequence to
be benign. Instead, we need only favor slow decay of the
spectrum.
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5.1. Introducing a surrogate

Consider the surrogate predictor β̂0 corresponding to the
minimum norm interpolating predictor for the training data
without label noise. Mathematically, this surrogate is de-
fined by β̂0 = (X ′X)+X ′Xβ. Notice that β̂0 = P (X)β
where P (X) is the projection onto the row-space of X .

The surrogate decomposition of the generalization error for
β̂ is given in the following lemma.

Lemma 5.3 (Surrogate decomposition of β̂).

LD(β̂)− LS(β̂)

= (LS(β̂0)− LS(β̂)) + (LD(β̂)− LD(β̂0))

+ (LD(β̂0)− LS(β̂0)),

with

LS(β̂0)− LS(β̂) =
1

n
‖Z‖2 ,

LD(β̂)− LD(β̂0) = Tr(X(X ′X)+Σ(X ′X)+X ′ZZ′),

LD(β̂0)− LS(β̂0) = σ2 − ‖Z‖
2

n
+ β′P (X)⊥ΣP (X)⊥β.

The proof appears in Appendix B. Note that (in expec-
tation) (LD(β̂) − LD(β̂0)) and (LS(β̂0) − LS(β̂)) +

(LD(β̂0) − LS(β̂0)) are exactly the terms which Bartlett
et al. (2020) arrive at via the bias–variance decomposition
and bound separately. They, however, made this decision
using a problem-specific decomposition of the generaliza-
tion error rather than arriving at the decomposition because
it naturally arose from a choice of surrogate.
Lemma 5.4. The sequence of implied surrogate hypothesis
classes, {β̂0(S) : S ∈ S(n)}n∈N is (D(n), n)-SGC as long
as (β′nΣnβn)/

√
n → 0. Quantitatively, for a universal

constant C > 0,

E sup
(X0,Y0)∈Rn×d×Rn

∣∣∣LD(β̂0(X0, Y0))− LS(β̂0(X0, Y0))
∣∣∣

≤ Cσ
2 + β′Σβ√

n
.

The proof appears in Appendix B. Combining Lemma 5.4
with (Bartlett et al., 2020, Lemma 11) (which controls
LD(β̂) − LD(β̂0)), we get the following bound on the ex-
pected generalization error.
Theorem 5.5 (Expected risk bound for overparameterized
linear regression). For some universal constantC, c, b > 0,

ELD(β̂) ≤ σ2 + C
σ2 + β′Σβ√

n

+ cσ2

(
k∗n
n

+
n

Rk∗n(Σn)

)
where b is the same constant appearing in the definition of
k∗ above. In particular, if {Σn}n∈N is weakly benign and
(β′nΣnβn)/

√
n→ 0 then ELD(β̂)→ σ2.

This result is similar to what one would obtain by con-
verting the high-probability bound of Bartlett et al. (2020)
into a bound in expectation. However, this result removes
the dependence on r0(Σn) and replaces the dependence on
‖βn‖2 ‖Σn‖ with β′nΣnβn/

√
n, hence weakening the con-

ditions sufficient to ensure generalization. Indeed, the gap
between the necessary and sufficient conditions is reduced
to β′nΣnβn/

√
n. In addition, the apparent need to balance

slow and fast decay of the spectrum of Σn highlighted by
Bartlett et al. (2020) is not necessary.

More importantly, our approach highlights the role of uni-
form convergence in this problem. It is noteworthy that,
when viewing the surrogate class as a type of one-step cov-
ering as discussed in the comments after Proposition 4.2,
the approximation error component of the surrogate de-
composition does not vanish in this case. Instead, it tends
to σ2 when the covariance matrices form a weakly benign
sequence and β′nΣnβn/

√
n → 0, but may have more er-

ratic behavior otherwise.

6. Constructing Surrogates by Conditioning
In the overparameterized linear regression example, the
surrogate obtained by training on “de-label-noised” data al-
lowed us to construct meaningful generalization bounds for
our learning problem via uniform bounds on the generaliza-
tion error of the surrogate. For a generic learning problem,
however, there may be no notion of label noise or such an
approach may not prove useful. This leads us to seek natu-
ral constructions of surrogates in less structured problems.

One generic way to introduce such a surrogate is by condi-
tioning. Let PF denote the conditional probability operator
given a σ-field F (or a random variable), taking an event
to its conditional probability. For a random variable ψ, let
PF [ψ] denote the conditional distribution of ψ given F .
Lemma 6.1 (Derandomization via conditioning). Let F
be a σ-field on (some possible extension of) the underly-
ing probability space upon which S and ĥ are defined. Let
Q = PF [ĥ]. Then E[LD(ĥ)− LD(Q)] = 0.

The following is then immediate by Lemmas 4.1 and 6.1.
Lemma 6.2 (Surrogate decomposition by conditioning).
Let F and Q be as in Lemma 6.1. Then

E[LD(ĥ)− LS(ĥ)] = E[LS(Q)− LS(ĥ)]

+ E[LD(Q)− LS(Q)].

If ĥ is a.s. interpolating (i.e., E[LS(ĥ)] = 0), then

E[LD(ĥ)] = E[LS(Q)] + E[LD(Q)− LS(Q)].

Every conditional distribution Q = PF [ĥ] represents a
derandomization of ĥ: i.e., by the definition of condi-
tioning, ĥ has equal or greater dependence on the data S



In Defense of Uniform Convergence: Generalization via Derandomization

than Q. There are other ways to achieve derandomiza-
tion rather than conditioning. However, they may require
one to obtain some explicit control on the risk difference,
E[LD(ĥ)− LD(Q)].

Informally, if ĥ interpolates (or more generally overfits),
we would expect a derandomized classifier to have excess
empirical risk, yet lower generalization error.

Finally, it is important to understand how tautologies can
arise from this perspective. If Q is a.s. nonrandom (cor-
responding, e.g., to conditioning on the trivial σ-algebra),
then Q = P[ĥ] a.s., i.e., Q is the distribution of ĥ. In this
case, ELS(Q) = ELD(Q) = ELD(ĥ), and we obtain the
tautology

E[LD(ĥ)− LS(ĥ)] = E[LD(ĥ)− LD(Q)]

+ E[LD(Q)− LS(Q)]

+ E[LS(Q)− LS(ĥ)]

= 0 + E[LD(ĥ)− LS(ĥ)] + 0.

For this extreme example, Q belongs to the singleton class
{P[ĥ]}, which exhibits “uniform convergence” trivially. On
the other end of the spectrum, if Q = δĥ, i.e., we condition
on F = σ(S), then we get an equally tautological state-
ment from the decomposition. The idea behind introducing
the surrogate classifier Q is that it allows one to conceptu-
ally interpolate between these two tautological end points
in order to find a (non-tautological) bound on the general-
ization error of a learning algorithm.

7. Hypercube Classifier
The following example is inspired by theoretical and em-
pirical work by Nagarajan and Kolter (2019). Like in their
work modeling SGD, we describe an example of a low-
risk learned classifier, ĥ, such that there is no nonrandom
class containing ĥ almost surely for which one may estab-
lish a uniform and non-vacuous bound on generalization
error. Using Lemma 6.2 and Proposition 4.2, we show that
a derandomization of ĥ, obtained by conditioning on an ex-
plicit σ-field F , yields a tight generalization bound based
on uniform convergence of the surrogate.

In this section, we first construct the learning problem
we will address. Second, we show that the structural
Glivenko–Cantelli property fails on this example even
though is has low generalization error. Lastly, we intro-
duce our surrogate learning algorithm, show that it has
similar empirical and test performance to the original algo-
rithm, verify that the surrogate has the structural Glivenko–
Cantelli property, and finally use this to establish a gener-
alization bound for the original learning algorithms.

7.1. Construction

Let d� 1 index the dimension of the feature space and our
sequence of learning problems, and let nd be the sample
size for the problem with index d. Let X (d) = {0, 1}2d be
the feature space and Y = {0, 1} be the label space, and let
S(d) = X (d) × Y . Let f∗d : X → Y be given by

f∗d (x) =

{
1, ‖X‖1 ≤ d,
0, otherwise.

For x ∈ X (d), note that f∗d (x) = 1 − f∗d (1 − x).
Let D(d) be the distribution of (X, f∗d (X)), where X ∼
Unif

(
X (d)

)
. Let S = (Z1, . . . , Znd) ∼ (D(d))nd where

Zi = (Xi, f
∗
d (Xi)). Let f̂d be the random element in

{0, 1}2d → {0, 1} given by

f̂
(S)
d (x) =

{
1− f∗d (x), x 6∈ S and 1− x ∈ S
f∗d (x), otherwise

.

Let Z̄i = (1−Xi, 1−Yi) and S̄ = (Z̄1, . . . , Z̄n). We refer
to pairs (Zi, Z̄i) as antipodes. Our learning algorithm,Ad :

S → f̂
(S)
d , only makes a classification error when a test

point was not in the training set, but its antipode was. The
loss function will be the 0− 1 loss, `(f, (x, y)) = 1f(x) 6=y .

7.2. Failure of Uniform Convergence for this Problem

First, we note that at every problem size, d, the VC dimen-
sion of the collection of accessible decision rules is at least
as large as the training dataset. We do not use this fact
again, but it does highlight the apparent complexity of the
learning problem.

Proposition 7.1 (VC theory not applicable). For nd ≤
22d−1, H(d) = {f̂ (S)

d : S ∈ (S(d))nd} has VC dimension
at least nd.

Proof. For nd ≤ 22d−1, any set of features (X1, . . . Xnd)
of size nd with no antipodal points and no repeated points
can be shattered by the subcollection of H(d) given by{
f̂

(S)
d : S ∈

∏
i∈[nd]

{
Zi, Z̄i

}}
.

Notice this algorithm never makes an error on training data.

Lemma 7.2 (f̂d is interpolating.). LS(f̂d) = 0 a.s.

Furthermore, by construction, the learning algorithm can-
not return a classifier with high risk, no matter the training
data observed, as long as nd ∈ o(22d).

Lemma 7.3 (f̂d has small risk). LD(d)(h) ≤ nd2
−2d for

all h ∈ H(d) = {f̂ (S)
d : S ∈ (S(d))nd}, and hence

LD(f̂d)− LS(f̂d) ≤ nd2−2d a.s.
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The proof appears in Appendix A. The following result
demonstrates that uniform convergence (of a class contain-
ing ĥ) does not explain the risk. The argument mirrors that
of Nagarajan and Kolter (2019).

Theorem 7.4 (H(·) is not SGC). If nd ∈ o(2d) then{
` ◦ H(d)

}
d∈N is not (D(·), n(·))-SGC, in fact

E sup
h∈H
|LD(h)− LS(h)| = 1−O(n22−2d).

The proof appears in Appendix A. In this example, a gen-
eralization error bound was tractable because LD(h) was
readily bounded for all h, despite the fact that uniform con-
vergence failed for H(·). One may then ask “how many
bits of information do we need to forget about our training
data in order for the sequence surrogate hypothesis class
obtained by conditioning is structural Glivenko–Cantelli?”

7.3. Introducing a Surrogate Classifier

Let kd ≤ 2d. Let πkd : {0, 1}2d → {0, 1}2d satisfy

πkd(x1, . . . , x2d)j =

{
0, j ≤ kd,
xj , otherwise.

That is, πkd(x) zeros out the first kd entries of x. Now, let
πkd(S) = (πkd(X1), . . . , πkd(Xnd)), G(d) = σ(πkd(S)),
and put Q(S) = PG(d)

[f̂
(S)
d ]. Q(S) is a Gibbs classifier

that is learned from the data, but is less coupled with the
data than f̂ (S)

d . Intuitively, conditioning our learned clas-
sifier on G(d) can be interpreted as redrawing the first k
features and the labels associated with the training data
independently for each new test point, holding the last
2d − k features of each training point fixed. Since Q(S)
is σ(πkd(S))-measurable, then for distinct datasets S and
S′ with πkd(S) = πkd(S′), we have Q(S) = Q(S′).

The map S 7→ Q(S) is the surrogate learning algorithm
and Q(S) is the surrogate classifier. Note that in this ex-
ample, our chosen surrogate learning algorithm returns a
Gibbs classifier, while the original algorithm returns a de-
terministic classification rule. When the argument S of Q
is omitted then it is assumed to be the training dataset, S.

We first evaluate the risk properties of our surrogate.
Lemma 7.5 (Risk and empirical risk of the surrogate Q).
The following all hold almost surely

LS(Q) ≤ 2−kd(1− 2−kd)

nd

×
∣∣∣{(i, j) : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]

}∣∣∣
LS(Q) ≤ 2−k

nd
|{(i, j) : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]}| and

LD(Q) ≤ nd2−2d.

Furthermore,

ELS(Q) ≤ (nd − 1)2−2d(1− 2−kd),

ELS(Q) ≤ 2−kd + (nd − 1)2−2d, and

ELD(Q) ≤ nd2−2d.

The proof appears in Appendix A. As was foreshadowed
in Section 4, we have increased the empirical risk by re-
placing f̂d with Q. However, at the same time, we have
dramatically lowered the empirical risk on the adversarial
(antipodal) dataset, and not affected the true risk at all. In
fact we are able to trade off empirical risk on the training
data with worst case risk on an adversarial dataset explic-
itly by varying the parameter kd. Even a small amount of
re-randomization in the surrogate (kd small) can yield very
tight control on the adversarial empirical risk. In this exam-
ple, the adversarial empirical risk decreases exponentially
fast in the number of bits of information lost per example.
This allows us to demonstrate that the sequence of surro-
gate hypothesis classes is structural Glivenko–Cantelli.

Lemma 7.6 (The surrogate is SGC). Consider the se-
quence of surrogate hypothesis classes given by I(d) =
{Q(S) : S ∈ S(d)}. If nd ∈ o(2kd/

√
d) then we have

{` ◦ I(d)}d∈N is (D(·), n(·))-SGC. In particular, when nd ∈
o(22d) and kd ≥ d(1 + ε) log2(nd) + log2(d)/2e then we
have {` ◦ I(d)}d∈N is (D(·), n(·))-SGC. If log(nd) ∈ Ω(d)
this is only possible if kd ∈ Ω(d). If log(nd) ∈ o(d) then
this is possible even when kd ∈ o(d)

The proof appears in Appendix A. Note that the restrictions
upon kd we provide may be a product of our particular ap-
proach to bounding the Rademacher complexity (Massart’s
Lemma). A more refined approach may yield looser re-
strictions on kd. Since the surrogate behaves similarly on
training and test data to the original learning algorithm, and
since the sequence of classes of achievable surrogates is
SGC, we can establish a generalization error bound for the
original learning algorithm using the uniform convergence
of the surrogate.
Theorem 7.7 (Bounding generalization error via an SGC
surrogate). We have the following bound on the general-
ization error:

E[LD(f̂d)− LS(f̂d)]

≤ (nd − 1)2−2d + 2
√

log(2)n
1/2
d ((2d− kd)nd + 1)1/22−kd .

If nd ∈ o
(
22d
)
, then for any choice of {kd}d∈N with

limd→∞ (kd − log2(nd)− log2(d)/2) = ∞, our surro-
gate witnesses that the generalization error vanishes

E[LD(f̂d)− LS(f̂d)]→ 0.

The proof appears in Appendix A.
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Figure 1: Visualizing the bound of Theorem 7.7.

7.4. Interpreting the Derandomization Bound

We visualize the dependence of our generalization error
bound on k, n and d in Fig. 1. Notice that the bound de-
cays very rapidly in the proportion of randomness removed
by conditioning, k/2d. When the learning problem is suf-
ficiently complex, even for larger sample size, a small pro-
portion of derandomization leads to a strong control of the
generalization error.

7.5. Relationship with Double Descent

The bound produced by derandomization also exhibits a
form of double descent. The rising left half of each curve
in Fig. 2 is a bound on the generalization error based on uni-
form convergence of a VC class containing the learned pre-
dictor, where the VC dimension is bounded by min(n, 2d−
1). For d � n this gives non-vacuous bounds for the low-
dimensional setting. (Since the classifier is interpolating
almost surely regardless of dimension or sample size, only
the ascent of the first “descent” is present. A more complex
example that models a learning phase would produce a first
descent.) The second half of each curve in Fig. 2—based
on the bound in Theorem 7.7—shows the second descent
in the high dimensional setting. We see that, in sufficiently
high dimensions, one may bound the generalization error
of the learned classifier via uniform convergence of a suit-
able derandomized classifier. The bound obtained via de-
randomization is non-vacuous in the region of the second
descent, exactly where standard uniform convergence tech-
niques based on VC theory would give vacuous bounds.

Recalling that the weakly benign condition for overparam-
eterized linear regression essentially requires that the spec-
trum of the feature covariance decays slowly enough, we
can interpret that condition as requiring a sufficient degree
of overparametrization for the risk to converge to the Bayes
risk, showing that weakly benign overparameterized lin-
ear regression exhibits a form of double descent as well.
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Figure 2: Double descent in the bound of Theorem 7.7.

As the surrogate for overparameterized linear regression
and the surrogate constructed for this example both yield
useful generalization bounds which exhibit double descent,
we expect that there are useful connections between deran-
domization, surrogates and double descent to be explored
in future research.
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A. Proofs for hypercube classifier
Proof of Lemma 7.3.

LD(d)(f̂
(S)
d ) ≤ 1

22d

∑
x∈{0,1}2d

1x∈S̄X ≤ nd2
−2d.

Proof of Theorem 7.4. We require the following claims and lemmas.

Claim A.1. S d
= S̄.

Lemma A.1. Let E be the event that ∃i, ∃j, Xi = 1 − Xj . Then PE ≤
(
n
2

)
2−2d, so PE → 0 as d → ∞ as long as

nd ∈ o(2d).

Proof.

PE = P(∃i, ∃j, Xi = 1−Xj) ≤
∑
i 6=j

P(Xi = 1−Xj) =

(
nd
2

)
2−2d

Lemma A.2. LS̄(f̂d) = 1 on Ec.

Proof.

LS̄(f̂d) =
1

nd

nd∑
i=1

1X̄i∈S̄X1X̄i 6∈SX =
1

nd

nd∑
i=1

1X̄i 6∈SX ≥ 1Ec
1

nd

nd∑
i=1

1 = 1Ec

Now, returning to the proof of Theorem 7.4

E sup
h∈H
|LD(h)− LS(h)| ≥ E

∣∣∣LD(f̂
(S̄)
d )− LS(f̂

(S̄)
d )

∣∣∣ ≥ ELS(f̂
(S̄)
d )− ELD(f̂

(S̄)
d )

≥ 1−
((

nd
2

)
+ nd

)
2−2d = 1−

(
nd + 1

2

)
2−2d

Proof of Lemma 7.5. For each v ∈ {0, 1}kd let gkd(v, x) = (v1, . . . vkd , xkd+1, . . . x2d), and let Gkd(V, SX) =
(gkd(v1, X1), . . . , gkd(vkd , Xnd))

Starting with LS(Q).

LS(Q) =
1

n

n∑
i=1

(2−k)n
∑

V ∈({0,1}k)n

1
Xi∈Gk(V,SX)

1Xi 6∈Gk(V,SX)

≤ 2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

1
Xi∈Gk(V,SX)

1Xi[1:k]6=vi .
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Now, Xi is in Gk(V, SX) only if Xi[1 : k] is antipodal to at least one v, so

2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

1
Xi∈Gk(V,SX)

1Xi[1:k] 6=vi ≤
2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

n∑
j=1

1Xi[1:k]=vj 6=vi1Xi[k+1:2d]=Xj [k+1:2d]

=
2−nk

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
V ∈{0,1}nk

1Xi[1:k]=vj 6=vi .

The inner most summand is constant in all but the ith and jth v, so

2−nk

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
V ∈{0,1}nk

1Xi[1:k]=vj 6=vi

≤ 2−nk

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
(vi,vj)∈{0,1}2k

2k(n−2)1Xi[1:k]=vj 6=vi

=
2−2k

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
(vi,vj)∈{0,1}2k

1Xi[1:k]=vj 6=vi

=
2−2k

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
vj∈{0,1}k

(2k − 1)1Xi[1:k]=vj

=
2−2k

n

n∑
i=1

n∑
j=1

(2k − 1)1
Xi[k+1:2d]=Xj [k+1:2d]

=
2−k(1− 2−k)

n

∣∣∣{(i, j) ∈ [n]2 : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]
}∣∣∣ .

Thus

LS(Q) ≤ 2−k(1− 2−k)

n

∣∣∣{(i, j) ∈ [n]2 : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]
}∣∣∣ .

Taking expectations, we get

ELS(Q) ≤ 2−k(1− 2−k)

n
n(n− 1)2−(2d−k) = (n− 1)2−2d(1− 2−k).

Next, Looking at LS(Q),

LS(Q) =
1

n

n∑
i=1

(2−k)n
∑

V ∈({0,1}k)n

1
Xi∈Gk(V,SX)

1Xi 6∈Gk(V,SX)

≤ 2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

1
Xi∈Gk(V,SX)

.

Now, Xi is in Gk(V, SX) only if Xi[1 : k] is antipodal to at least one v, so

2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

1
Xi∈Gk(V,SX)

≤ 2−nk

n

n∑
i=1

∑
V ∈{0,1}nk

n∑
j=1

1
Xi[1:k]=vj

1
Xi[k+1:2d]=Xj [k+1:2d]

=
2−nk

n

n∑
i=1

n∑
j=1

1
Xi[k+1:2d]=Xj [k+1:2d]

∑
V ∈{0,1}nk

1
Xi[1:k]=vj

=
2−nk

n

n∑
i=1

n∑
j=1

1Xi[k+1:2d]=Xj [k+1:2d]

∑
V ∈{0,1}nk

1Xi[1:k]=vj

.
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The inner most summand is constant in all but the jth v, so

2−nk

n

n∑
i=1

n∑
j=1

1Xi[k+1:2d]=Xj [k+1:2d]

∑
V ∈{0,1}nk

1Xi[1:k]=vj

≤ 2−nk

n

n∑
i=1

n∑
j=1

1Xi[k+1:2d]=Xj [k+1:2d]

∑
vj∈{0,1}k

2k(n−1)1Xi[1:k]=vj

=
2−k

n

n∑
i=1

n∑
j=1

1Xi[k+1:2d]=Xj [k+1:2d]

∑
vj∈{0,1}k

1Xi[1:k]=vj

=
2−k

n

n∑
i=1

n∑
j=1

1Xi[k+1:2d]=Xj [k+1:2d]

=
2−k

n

∣∣{(i, j) ∈ [n]2 : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]
}∣∣ .

Thus

LS(Q) ≤ 2−k

n

∣∣{(i, j) ∈ [n]2 : Xi[k + 1 : 2d] = Xj [k + 1 : 2d]
}∣∣ .

Taking expectations, we get

ELS(Q) ≤
2−k

n
(n+ n(n− 1)2−(2d−k)) = 2−k + (n− 1)2−2d.

Lastly, for LD(Q),

LD(Q) = ELD(f̂d) ≤ n2−2d

Proof of Lemma 7.6. First, using a standard symmetrization argument, we bound the supremum over the empirical process
of Curryed losses by twice the Rademacher complexity,

E
[
sup
S′

∣∣LD(Q(S′))− LS(Q(S′))
∣∣] ≤ 2 R(A)

Where

A =
{

(`′(Zi, Q(f̂
(S′)
d )))i∈[nd] : S′ ∈ (S(d))nd , `′ ∈ {`,−`}

}
.

and R(A) denotes the Rademacher complexity of A. Then, by Massart’s Lemma,

R(A) ≤ max
a∈A
‖a‖

√
log(2 |A|)
nd

≤ max
a∈A
‖a‖

√
((2d− kd)nd + 1) log(2)

nd
.

Next, by the same arguments as in the proof of Lemma 7.5, `′(Zi, Q(f̂
(S′)
d )) ≤ nd2

−kd for all i and for all datasets S′.
Therefore, for all a ∈ A, ‖a‖ ≤ n1/2

d nd2
−kd = n

3/2
d 2−kd .

Hence R(A) ≤
√

log(2)n
1/2
d ((2d− kd)nd + 1)1/22−kd .
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Proof of Theorem 7.7. From Lemmas 6.2 and 7.5 and Proposition 4.2,

E[LD(f̂d)− LS(f̂d)]

≤ E[
∣∣∣LS(Q)− LS(f̂d)

∣∣∣]
+ P[Q 6∈ I(d)] + E

[
sup

P∈I(d)

LD(P )− LS(P )

]
≤ (nd − 1)2−2d(1− 2−kd) + 0 + 0

+ E
[

sup
P∈I(d)

LD(P )− LS(P )

]
.

The last term is controlled using Lemma 7.6 to get

E[LD(f̂d)− LS(f̂d)]

≤ (nd − 1)2−2d(1− 2−kd)

+ 2
√

log(2)n
1/2
d ((2d− kd)nd + 1)1/22−kd

≤ (nd − 1)2−2d

+ 2
√

log(2)n
1/2
d ((2d− kd)nd + 1)1/22−kd .

(1)

B. Proofs for Overparameterized Linear Regression
Proof of Lemma 5.1. Let φ((x, y)) = (x, 2xβ − y). Then (x, y) and (φ(x, y)) are equally probable, and φ is its own
inverse function. Hence φ is measure preserving. Moreover LS(β̂(φ(X,Y ))) = 4

n ‖Z‖
2. Hence for any sequence of sets

An ⊂ Sn

E sup
(X̃,Ỹ )∈An

∣∣∣LD(β̂(X̃, Ỹ ))− LS(β̂(X̃, Ỹ ))
∣∣∣

≥ E1φ(X,Y )∈An

∣∣∣LD(β̂(φ(X,Y )))− LS(β̂(φ(X,Y )))
∣∣∣

≥ E1φ(X,Y )∈A max

(
0, 4
‖Z‖2

n
− LD(β̂(φ(X,Y )))

)

We can couple the spaces for different values of n in any way we choose since no terms in the statement involve multiple
probability spaces at once. Hence we can do so in a way that P({∀n ∈ N : φ(X,Y ) ∈ An}) ≥ 2/3.

Using Bartlett et al. (2020, Theorem 4) and the weak law of large numbers, we have that LD(β̂(φ(X,Y ))
P→ σ2 and

4‖Z‖
2

n

P→ 4σ2 when Σn is benign. Then there is a subsequence along which this convergence is almost sure. Along this

subsequence, max
(

0, 4‖Z‖
2

nk
− LD(β̂(φ(X,Y )))

)
a.s.→ 3σ2. Then by Fatou’s lemma along the subsequence

lim inf
k→∞

E sup
(X̃,Ỹ )∈Ank

∣∣∣LD(β̂(X̃, Ỹ ))− LS(β̂(X̃, Ỹ ))
∣∣∣

≥ E lim inf
k→∞

1φ(X,Y )∈A3σ2

≥ 2σ2

Thus there is a sub-subsequence above 2σ2 − ε infinitely often for each ε > 0, and hence

lim sup
n→∞

E sup
(X̃,Ỹ )∈An

∣∣∣LD(β̂(X̃, Ỹ ))− LS(β̂(X̃, Ỹ ))
∣∣∣ ≥ 2σ2.
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Proof of Lemma 5.3. Let β̂0(X0) = (X ′0X0)+X ′0X0β = P (X0)β. This corresponds to the classifier that solves the
learning problem without label noise if the training design matrix was X0. Let β̂0 = β̂0(X) (if no argument is specified
then it is the “learned” version ).

Let the projection onto the row-span of a matrix A be given by P (A) = (A′A)+A′A = A′A(A′A)+ = A′(AA′)+A

If d > n then (a.s.) X is of rank n so P (X) is a rank n projection on Rd and P (X ′) is a rank n projection on Rn — so
P (X ′) = I a.s. .

The surrogate decomposition (not in expectation) gives use

LD(β̂)− LS(β̂) = LS(β̂0)− LS(β̂) + (LD(β̂)− LD(β̂0)) + (LD(β̂0)− LS(β̂0)). (2)

Then,

LS(β̂0) =
1

n

∥∥X(X ′X)+X ′Xβ − (Xβ + Z)
∥∥2

=
1

n
‖−Z + (P (X ′)− I)Xβ‖2

=
1

n
‖Z‖2 .

(3)

Next, for any X0,

LD(β̂0(X0))− LS(β̂0(X0)) = Ex,z ‖xP (X0)β − (xβ + z)‖2 − 1

n
‖XP (X0)β − (Xβ + Z)‖2

= Ex,z ‖xP (X)β − (xβ + z)‖2 − 1

n
‖XP (X0)β − (Xβ + Z)‖2

= Ex,z ‖xP (X0)β − xβ‖2 + σ2

− 1

n
‖XP (X0)β −Xβ‖2 +

2

n
Z ′(X(I − P (X0))β)− 1

n
‖Z‖2

= σ2 − 1

n
‖Z‖2 +

2

n
Z ′(X(I − P (X0))β)

+ Ex,z ‖x[P (X0)− I]β‖2 − 1

n
‖X[P (X0)− I]β‖2

= σ2 − 1

n
‖Z‖2 +

2

n
Z ′(X(I − P (X0))β)

+ β′
[
[P (X0)− I]

[
Σ− 1

n
X ′X

]
[P (X0)− I]

]
β.

(4)

Since XP (X) = X , then when X0 = X , this simplifies to

LD(β̂0(X))− LS(β̂0(X)) = σ2 − 1

n
‖Z‖2 +

+ β′ [[P (X)− I]Σ[P (X)− I]]β.
(5)

Lastly,

LD(β̂)− LD(β̂0) = Ex,z
(
x(X ′X)+X ′(Xβ + Z)− (xβ + z)

)2 − Ex,z
(
x(X ′X)+X ′Xβ − (xβ + z)

)2
= Ex

(
x(X ′X)+X ′(Xβ + Z)− xβ

)2 − Ex
(
x(X ′X)+X ′Xβ − xβ

)2
= Ex

(
x(X ′X)+X ′Z

)2
= Ex(Z ′X(X ′X)+x′x(X ′X)+X ′Z)

= Z ′X(X ′X)+Σ(X ′X)+X ′Z

= Tr(X(X ′X)+Σ(X ′X)+X ′ZZ ′)

(6)
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Proof of Lemma 5.4. We want to bound

E sup
X0

∣∣∣LD(β̂0(X0))− LS(β̂0(X0))
∣∣∣

= E sup
X0

∣∣∣∣σ2 − 1

n
‖Z‖2 +

2

n
Z ′(X(I − P (X0))β) + β′

[
[P (X0)− I]

[
Σ− 1

n
X ′X

]
[P (X0)− I]

]
β

∣∣∣∣
≤ E

∣∣∣∣σ2 − 1

n
‖Z‖2

∣∣∣∣+ E sup
X0

∣∣∣∣ 2nZ ′(X(I − P (X0))β)

∣∣∣∣+ E sup
X0

∣∣∣∣β′ [[P (X0)− I]

[
Σ− 1

n
X ′X

]
[P (X0)− I]

]
β

∣∣∣∣
(7)

We will handle each of the three terms separately.

First

E
∣∣∣∣σ2 − 1

n
‖Z‖2

∣∣∣∣ ≤
√
E
[
σ2 − 1

n
‖Z‖2

]2

=

√√√√√E

σ4 − 2σ2

n
‖Z‖2 +

1

n2

∑
i∈[n]

∑
j∈[n]

Z2
i Z

2
j


=

√
σ4 − 2σ4 +

n(n− 1)

n2
σ4 + 3

n

n2
σ4

= σ2

√
2

n
.

(8)

Next, for some universal constants C2, C3 > 0, the second term is bounded by C2
σ
√
β′Σβ√
n

in Lemma B.3 and the third

term is bounded by C3
β′Σβ√
n

in Lemma B.1.

Putting these all together yields the desired result.

Lemma B.1 (Third Term). For some universal constant C3 > 0

E sup
X0∈Rn×d

∣∣∣∣β′[P (X0)− I]

[
Σ− 1

n
X ′X

]
[P (X0)− I]β

∣∣∣∣ = E sup
P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ ≤ C3
β′Σβ√
n

(9)

where OP(d, k) is the collection of orthogonal projections on Rd of rank k.

The proofs of Lemmas B.1 and B.3 in this section control the supremum of the respective empirical processes in a bespoke
way using the fact that we can identify a particular sub-exponential random variable on the same space which upper bounds
the supremum almost surely. The ability to do this is somewhat specific to the present problem. In Appendix C we provide
alternative proofs of the same results using chaining, a standard tool in empirical process theory. This illustrates that
underlying principal letting us bound the empirical process is not problem specific. Of course, the chaining approach of
Appendix C yields slightly worse constants than the more direct approach in this section.

We will use the following trivial lemma a number of times.

Lemma B.2 (Rank-1 Trick). If A ∈ Rm×m with rank(A) = 1 then

‖A‖ = |λ1(A)| = |Tr(A)| (10)

where λ1(A) is the dominant eigenvalue of A.
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Proof of Lemma B.1. Note that rank(ββ′) = 1 so then, for any conforming matrix A, rank(Aββ′) = 1 = rank(ββ′A′)

sup
P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ = sup
P∈OP(d,d−n)

∣∣∣∣Tr

(
β′P

[
Σ− 1

n
X ′X

]
Pβ

)∣∣∣∣
= sup
P∈OP(d,d−n)

∣∣∣∣Tr

(
P

[
Σ− 1

n
X ′X

]
Pββ′

)∣∣∣∣
= sup
P∈OP(d,d−n)

∥∥∥∥P [Σ− 1

n
X ′X

]
Pββ′

∥∥∥∥
≤ sup
P∈OP(d,d−n)

‖P‖
∥∥∥∥[Σ− 1

n
X ′X

]
Pββ′

∥∥∥∥
= sup
P∈OP(d,d−n)

∥∥∥∥[Σ− 1

n
X ′X

]
Pββ′

∥∥∥∥
= sup
P∈OP(d,d−n)

∣∣∣∣Tr

([
Σ− 1

n
X ′X

]
Pββ′

)∣∣∣∣
= sup
P∈OP(d,d−n)

∣∣∣∣Tr

(
ββ′

[
Σ− 1

n
X ′X

]
P

)∣∣∣∣
= sup
P∈OP(d,d−n)

∥∥∥∥ββ′ [Σ− 1

n
X ′X

]
P

∥∥∥∥
≤ sup
P∈OP(d,d−n)

∥∥∥∥ββ′ [Σ− 1

n
X ′X

]∥∥∥∥ ‖P‖
= sup
P∈OP(d,d−n)

∣∣∣∣Tr

(
ββ′

[
Σ− 1

n
X ′X

])∣∣∣∣
=

∣∣∣∣β′ [Σ− 1

n
X ′X

]
β

∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

[
Xi,•ββ

′X ′i,• − β′Σβ
]∣∣∣∣∣

(11)

where Xi,• is the ith row of X , so X ′i,•
iid∼ N(0,Σ). This pointwise inequality can be used derive bounds on the expected

supremum as well as high probability bounds on the supremum. It also holds in the non-Gaussian case and can be used to
extend the result to the case of sub-Gaussian design and sub-Gaussian conditional responses.

Let Wi = β′X ′i,•/
√
β′Σβ. Then Wi

iid∼ N(0, 1). Now,

E sup
P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ ≤ β′ΣβE
∣∣∣∣∣ 1n

n∑
i=1

[
W 2
i − 1

]∣∣∣∣∣
≤ β′Σβ

√√√√E

(
1

n

n∑
i=1

[W 2
i − 1]

)2

≤ β′Σβ
√

2

n

(12)

And, since 1
n

∑n
i=1

[
W 2
i − 1

]
is sub-Exponential with mean 0, (proxy-variance, moment-generating function range) given
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by (2/
√
n, 1/4), then for ε

β′Σβ ∈ (0, 1)

P

(
sup

P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ > ε

)

= P

(∣∣∣∣∣ 1n
n∑
i=1

[
W 2
i − 1

]∣∣∣∣∣ > ε

β′Σβ

)

≤ 2 exp

(
−n ε2

8(β′Σβ)2

)
(13)

For δ ≥ 2e−n/8, taking ε = β′Σβ
√

8 log(2/δ)
n and using a standard sub-exponential tail bound we get

P

(
sup

P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ > β′Σβ

√
8 log(2/δ)

n

)
≤ δ (14)

Lemma B.3 (Second Term). For some universal constant C2 > 0

E sup
X0∈Rn×d

∣∣∣∣ 2nZ ′XP (X0)β

∣∣∣∣ = E sup
P∈OP(d,d−n)

∣∣∣∣ 2nZ ′XPβ
∣∣∣∣ ≤ C2

σ
√
β′Σβ√
n

(15)

where OP(d, k) is the collection of orthogonal projections on Rd of rank k.

Proof of Lemma B.3. Note that rank(βZ ′) = 1 so then, for any conforming matrix A, rank(AβZ ′) = 1 = rank(βZ ′A′)

sup
P∈OP(d,d−n)

∣∣∣∣ 2nZ ′XPβ
∣∣∣∣ =

2

n
sup

P∈OP(d,d−n)

|Tr(Z ′XPβ)|

=
2

n
sup

P∈OP(d,d−n)

|Tr(βZ ′XP )|

=
2

n
sup

P∈OP(d,d−n)

‖βZ ′XP‖

≤ 2

n
sup

P∈OP(d,d−n)

‖βZ ′X‖ ‖P‖

=
2

n
sup

P∈OP(d,d−n)

‖βZ ′X‖

=
2

n
‖Z ′Xβ‖

=
2

n
|Z ′Xβ|

=
2

n

∣∣∣∣∣
n∑
i=1

ZiXi,•β

∣∣∣∣∣

(16)

where Xi,• is the ith row of X , so X ′i,•
iid∼ N(0,Σ). This pointwise inequality can be used derive bounds on the expected

supremum as well as high probability bounds on the supremum. It also holds in the non-Gaussian case and can be used to
extend the result to the case of sub-Gaussian design and sub-Gaussian conditional responses.
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Let Wi = β′X ′i,•/
√
β′Σβ. Then Wi

iid∼ N(0, 1). Now,

E sup
P∈OP(d,d−n)

∣∣∣∣ 2nZ ′XPβ
∣∣∣∣ ≤ 2

√
β′Σβ

n

∣∣∣∣∣
n∑
i=1

ZiWi

∣∣∣∣∣
≤ 2
√
β′Σβ

n

√√√√E

(
n∑
i=1

ZiWi

)2

≤ 2
√
β′Σβ

n

√
nσ2

≤ 2σ
√
β′Σβ√
n

(17)

Moreover, the moment generating function of Z1W1 is given by

E exp(λZ1W1) =
1√

1− λ2σ2

= exp

(
−1

2
log(1− λ2σ2)

) (18)

In particular, for |λ| < 1
σ
√

2
, using log(1− x) ≥ −x

1−x for x ∈ (0, 1]

E exp(λZ1W1) = exp

(
λ2σ2

2(1− λ2σ2)

)
≤ exp

(
λ2σ2

) (19)

Thus, Z1W1 is sub-Exponential with mean 0, (proxy-variance, moment-generating function range) given by (2σ2, 1
σ
√

2
).

Then we get that 1
n

∑n
i=1 ZiWi is sub-Exponential with mean 0, (proxy-variance, moment-generating function range)

given by (2σ2/
√
n, 1

σ
√

2
). Hence, for ε√

β′Σβ
∈ (0, σ

√
2)

P

(
sup

P∈OP(d,d−n)

∣∣∣∣ 2nZ ′XPβ
∣∣∣∣ > ε

)

= P

(∣∣∣∣∣ 1n
n∑
i=1

ZiWi

∣∣∣∣∣ > ε

2
√
β′Σβ

)

≤ 2 exp

(
−n ε2

4σ2(β′Σβ)2

)
(20)

For δ ≥ 2e−n/8, taking ε = σ
√
β′Σβ

√
4 log(2/δ)

n and using a standard sub-exponential tail bound we get

P

(
sup

P∈OP(d,d−n)

∣∣∣∣β′P [Σ− 1

n
X ′X

]
Pβ

∣∣∣∣ > σ
√
β′Σβ

√
4 log(2/δ)

n

)
. ≤ δ (21)

Proof of Theorem 5.5. We only need bounds on E(LS(β̂0)−LS(β̂)) and E(LD(β̂)−LD(β̂0)) to combine with Lemma 5.3
and Lemma 5.4.

First,

E(LS(β̂0)− LS(β̂)) = E
‖Z‖2

n
= σ2 (22)
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Second, Bartlett et al. (2020) shows that there is are universal constant, c, b > 0, such that for all δ < 1, with probability at
least (1− δ),

LD(β̂)− LD(β̂0) = Z ′X(X ′X)+Σ(X ′X)+X ′Z

≤ cσ2 log(1/δ)

(
k∗

n
+

n

Rk∗(Σ)

)
,

(23)

where k∗ = min {k ≥ 0 : rk(Σ) ≥ bn}, rk(Σ) =
∑
i>k λi(Σ)

λk+1(Σ) and Rk(Σ) =
(
∑
i>k λi(Σ))

2∑
i>k λ

2
i (Σ)

.

We can turn this into a bound in expectation by integrating the tail.

ELD(β̂)− LD(β̂0)

cσ2
(
k∗

n + n
Rk∗ (Σ)

) =

∫ ∞
0

P

 LD(β̂)− LD(β̂0)

cσ2
(
k∗

n + n
Rk∗ (Σ)

) > t

 dt

=

∫ ∞
0

e−tdt

= 1.

(24)

Thus, for the same universal constants, c, b,

ELD(β̂)− LD(β̂0) ≤ cσ2

(
k∗

n
+

n

Rk∗(Σ)

)
. (25)

C. Alternative proofs of Lemmas B.1 and B.3 using empirical process theory
Alternative proof of Lemma B.1. Bounding the MGF of the increment

Notice that X ′X ∼Wishartd(Σ, n) follows a degenerate Wishart distribution.

Consider the empirical process WP = β′P
[

1
nX
′X − Σ

]
Pβ with P ∈ OP(d, d− n)

We start by computing the moment generating function of the increments of the process:

E exp (λ(WP −WR)) = E exp

(
λ

(
β′P

[
1

n
X ′X − Σ

]
Pβ − β′R

[
1

n
X ′X − Σ

]
Rβ

))
= E exp

(
λ

(
β′(P −R)

[
1

n
X ′X − Σ

]
(P +R)β

))
= exp(−λβ′(P −R)Σ(P +R)β))E exp

(
λ

(
β′(P −R)

[
1

n
X ′X

]
(P +R)β

))
= exp (−Tr (λ(P +R)ββ′(P −R) Σ))E exp

(
Tr

(
λ

n
(P +R)ββ′(P −R) X ′X

))
(26)

Using the MGF formula for Wishart distributions from Kuriki and Numata (2010) (see also Muirhead (1982, Theorem
3.2.3)),

E exp (λ(WP −WR)) = exp (−Tr (λ(P +R)ββ′(P −R) Σ)) det

(
I − 2

λ

n
(P +R)ββ′(P −R) Σ

)−n2
= g0(λ(P +R)ββ′(P −R) Σ)

(27)

where,

g0(A) = e−Tr(A) det

(
I − 2

n
A

)−n2
(28)
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If rank(A) = 1 and the non-zero eigenvalue of A is a then (since
(
1− 2

na
)n/2 ≤ e−a)

g0(A) = e−a
(

1− 2

n
a

)−n/2
≤ e−‖A‖

(
1− 2

n
‖A‖

)−n/2 (29)

Now, using log(1− x) ≥ −x
1−x for x ∈ [0, 1), if ‖A‖ < n/2 then

g0(A) ≤ e−‖A‖
(

1− 2

n
‖A‖

)−n/2
= exp

([
−‖A‖ − n

2
log

(
1− 2

n
‖A‖

)])
≤ exp

([
−‖A‖+

‖A‖
1− 2

n ‖A‖

])
= exp

([
2
n ‖A‖

2

1− 2
n ‖A‖

])
(30)

In particular, if rank(A) = 1 and ‖A‖ < n
4 then

g0(A) ≤ exp

(
4 ‖A‖2

n

)
(31)

Taking A = λ(P +R)ββ′(P −R) Σ again, then rank(A) = 1 since rank(ββ′) = 1 and ‖A‖ ≤ 2λ ‖ββ′(P −R)Σ‖.

Hence, for λ < n
8‖ββ′(P−R)Σ‖

E exp (λ(WP −WR)) ≤ exp

(
16λ2 ‖ββ′(P −R)Σ‖2

n

)
. (32)

Let ρ(P,R) = ‖ββ′(P −R)Σ‖. Then ρ is a pseudo-metric on OP(d, d− n) and when λ < n
8ρ(P,R)

E exp (λ(WP −WR)) ≤ exp

(
λ2 16ρ(P,R)2

n

)
(33)

Covering the space in our pseudometric

Recall again that for a square matrix A with rank(A) = 1 and non-zero eigenvalue a that

‖A‖ = |a| = |Tr(A)| =
√

Tr(A′A) = ‖A‖F (34)

Thus ρ(P,R) = |Tr(ββ′(P −R)Σ)| = |β′(P −R)Σβ|.

Let g1 : P 7→ β′PΣβ. Then G = g1(OP(d, d− n)) ⊂ I = [−β′Σβ, β′Σβ].

For each ε > 0 let R(ε/2) be an ε/2 cover of I in the usual metric on R. Notice that R(ε/2) may be chosen so that
|R(ε/2)| <

⌈
4β′Σβ
ε

⌉
.

For each r ∈ R(ε) such that Bε/2 ∩ G 6= ∅ select a single Pr(ε) in OP(d, d − n) such that g1(Pr(ε)) ∈ Bε/2. Let
O(ε) = {Pr(ε) : r ∈ R(ε)}. Then g1(O(ε)) is an ε-net for G in the usual metric on R.

Then O(ε) is an an ε-net for OP(d, d− n) in ρ with |O(ε)| ≤
⌈

4β′Σβ
ε

⌉
.
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Hence N(OP(d, d− n), ρ, ε) ≤
⌈

4β′Σβ
ε

⌉
Obtaining a bound via chaining

Let P0 be any element of OP(d, d− n) with P0β = 0. Then WP0
= 0 a.s..

The diameter of OP(d, d − n) in ρ is at most that 2β′Σβ. Without loss of generality take the coarsest cover (at scale
ε0 = 2β′Σβ) to be O(2β′Σβ) = {P0}.

Let πA : P 7→ arg minR∈A ρ(P,R) with ties broken arbitrarily. Note that ρ(P, πO(2ε)(P )) ≤ 2ε for all P, ε, and therefore
(for λ < n

16ε )

E max
P∈O(ε)

∣∣∣WP −WπO(2ε)(P )

∣∣∣ ≤ 1

λ
log 2 |O(ε)|+ λ

64ε2

n
(35)

Taking λ→ min

(√
n log 2|O(ε)|

64ε2 , n
16ε

)
, we get

E max
P∈O(ε)

∣∣∣WP −WπO(2ε)(P )

∣∣∣ ≤ {16ε
√

log 2|O(ε)|
n : 4 log 2 |O(ε)| ≤ n

16ε log 2|O(ε)|
n + 4ε : 4 log 2 |O(ε)| > n

(36)

Then for n > 4 log 2

E sup
P∈OP(d,d−n)

|WP | ≤ E |WP0 |+
∞∑
i=1

E max
P∈O(2−iε0)

∣∣∣WP −WπO(2−(i−1)ε0)
(P )

∣∣∣
≤
∞∑
i=1

16ε02−i
√

log 2|O(ε02−i)|
n : 4 log 2

∣∣O(ε02−i)
∣∣ ≤ n

16ε02−i
log 2|O(ε02−i)|

n + 4ε02−i : 4 log 2
∣∣O(ε02−i)

∣∣ > n

≤
∞∑
i=1


16ε02−i

√
log
(

1+ 4β′Σβ
ε02−i

)
+log 2

n : 4 log
(

1 + 4β′Σβ
ε02−i

)
+ 4 log 2 ≤ n

16ε02−i
log
(

1+ 4β′Σβ
ε02−i

)
+log 2

n + 4ε02−i : 4 log
(

1 + 4β′Σβ
ε02−i

)
+ 4 log 2 > n

≤ 2

∫ ε0/2

0

1[
ε≥ 4β′Σβ

en/4−log 2−1

]
(

16√
n

√
log

(
1 +

4β′Σβ

ε

)
+ log 2

)

+ 1[
ε< 4β′Σβ

en/4−log 2−1

](16

n
log

(
1 +

4β′Σβ

ε

)
+

16 log 2

n
+ 4

)
dε

≤ 2

∫ ε0/2

0

1[
ε≥ 2ε0

en/4−log 2−1

]
(

16√
n

√
log

(
1 +

2ε0
ε

)
+ log 2

)

+ 1[
ε<

2ε0

en/4−log 2−1

](16

n
log

(
1 +

2ε0
ε

)
+

16 log 2

n
+ 4

)
dε

(37)

If n ≤ 9 < 4 log(10) then 2ε0
1
2 e
n/4−1

≥ ε0/2 so only one term appears. We omit this case for brevity, though a quantitative
bound may be derived for this case with the same steps as below.

If n ≥ 10 ≥ 4 log(10) then 2ε0
1
2 e
n/4−1

≤ ε0/2 so both terms appear...

E sup
P∈OP(d,d−n)

WP ≤ 2

∫ ε0/2

2ε0

en/4−log 2−1

(
16√
n

√
log

(
1 +

2ε0
ε

)
+ log 2

)
dε+ 2

∫ 2ε0

en/4−log 2−1

0

(
16

n
log

(
1 +

2ε0
ε

)
+

16 log 2

n
+ 4

)
dε

(38)
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The second integral is a bit easier so we will solve it first...

2

∫ 2ε0

en/4−log 2−1

0

(
16

n
log

(
1 +

2ε0
ε

)
+

16 log 2

n
+ 4

)
dε

=
16ε0

1
2e
n/4 − 1

(
4 log 2

n
+ 1

)
+

32

n

∫ 2ε0
1
2
en/4−1

0

log

(
1 +

2ε0
ε

)
dε

=
16ε0

1
2e
n/4 − 1

(
4 log 2

n
+ 1

)
+

32

n

[(
2ε0

1
2e
n/4 − 1

+ 2ε0

)
log

(
2ε0

1
2e
n/4 − 1

+ 2ε0

)
−
(

2ε0
1
2e
n/4 − 1

)
log

(
2ε0

1
2e
n/4 − 1

)
− (2ε0) log (2ε0)

]
=

16ε0
1
2e
n/4 − 1

(
4 log 2

n
+ 1

)
+

32

n

[(n
4
− log 2

) 2ε0
1
2e
n/4 − 1

+ 2ε0 log

(
1 +

1
1
2e
n/4 − 1

)]
≤ 16ε0

1
2e
n/4 − 1

(
4 log 2

n
+ 1

)
+

32

n

[(n
4
− log 2

) 2ε0
1
2e
n/4 − 1

+ 2ε0
1

1
2e
n/4 − 1

]
≤ 32ε0

1
2e
n/16 − 1

(
1 +

2

n

)

(39)

Then, for the first integral, using Cauchy-Schwarz...

2

∫ ε0/2

2ε0
1
2
en/4−1

(
16√
n

√
log

(
1 +

2ε0
ε

)
+ log 2

)
dε

≤ 32√
n

∫ ε0/2

0

√
log

(
1 +

2ε0
ε

)
+ log 2dε

≤ 32√
n

√
ε0
2

√∫ ε0/2

0

log

(
1 +

2ε0
ε

)
+ log 2dε

= 32

√
ε0
2n

√
5ε0
2

log
5ε0
2
− ε0

2
log

ε0
2
− 2ε0 log (2ε0) +

ε0
2

log 2

= 32

√
ε0
2n

√
ε0
2

log 5 + 2ε0 log
5

4
+
ε0
2

log 2

=
32√
n

√
ε0
2

√
5ε0
2

log 5− 7

2
ε0 log 2

=
16ε0√
n

√
5 log 5− 7 log 2

(40)

Putting these two parts together with ε0 = 2β′Σβ, for n ≥ 37...

E sup
P∈OP(d,d−n)

WP = 32β′Σβ

(√
5 log 5− 7 log 2√

n
+

1
1
2e
n/4 − 1

(
1 +

2

n

))
≤ β′Σβ

(
58√
n

+
32

1
2e
n/4 − 1

(
1 +

2

n

)) (41)

Alternative proof of Lemma B.3. Bounding MGF of increments Consider the empirical process VP = 2
nZ
′XPβ with

P ∈ OP(d, d− n)
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E exp (λ(VP − VR)) = E exp

(
2λ

n
Z ′X(P −R)β

)
= E exp

(
4λ2σ2

n2
β′(P −R)X ′X(P −R)β

)
= E exp

(
Tr

(
4λ2σ2

n2
(P −R)ββ′(P −R) X ′X

))
= det

(
I − 8λ2σ2

n2
(P −R)ββ′(P −R)Σ

)−n/2
(42)

Since ββ′ is rank-1, then (P −R)ββ′(P −R)Σ has rank at most 1, so

‖(P −R)ββ′(P −R)Σ‖ = β′(P −R)Σ(P −R)β = ‖(P −R)ββ′(P −R)Σ‖F (43)

and hence

E exp (λ(VP − VR)) ≤
(

1− 8λ2σ2

n2
β′(P −R)Σ(P −R)β

)−n/2
≤ exp

(
−n

2
log

(
1− 8λ2σ2

n2
β′(P −R)Σ(P −R)β

))
≤ exp

(
n

2

8λ2σ2

n2 β′(P −R)Σ(P −R)β

1− 8λ2σ2

n2 β′(P −R)Σ(P −R)β

) (44)

For 8λ2σ2

n2 β′(P −R)Σ(P −R)β < 1
2 , we have

E exp (λ(VP − VR)) ≤ exp

(
2
n

2

8λ2σ2

n2
β′(P −R)Σ(P −R)β

)
≤ exp

(
8λ2σ2

n
β′(P −R)Σ(P −R)β

) (45)

Note that using the rank-1 trick again, and defining ρ(P,R) = ‖Σ(P −R)ββ′‖

β′(P −R)Σ(P −R)β = ‖(P −R)Σ(P −R)ββ′‖

=
1

β′Σβ
‖(P −R)Σ(P −R)ββ′Σββ′‖

=
1

β′Σβ
|Tr ((P −R)Σ(P −R)ββ′Σββ′)|

=
1

β′Σβ
|Tr (ββ′(P −R)Σ(P −R)ββ′Σ)|

=
1

β′Σβ
‖ββ′(P −R)Σ(P −R)ββ′Σ‖

≤ 1

β′Σβ
‖ββ′(P −R)Σ‖ ‖(P −R)ββ′Σ‖

=
1

β′Σβ
ρ(P,R) |Tr ((P −R)ββ′Σ)|

=
1

β′Σβ
ρ(P,R) |Tr (Σ(P −R)ββ′)|

=
1

β′Σβ
ρ(P,R)2

(46)

Therefore, for λ2 ≤ n2β′Σβ
8σ2ρ(P,R)2 ,

E exp (λ(VP − VR)) ≤ exp

(
λ2 8σ2ρ(P,R)2

nβ′Σβ

)
(47)
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Notice that we can use the same covering of OP(d, d− n) in ρ as in the proof of Lemma B.1, to cover OP(d, d− n) in ρ
at scale ε with |O(ε)| ≤

⌈
4β′Σβ
ε

⌉
.

Obtaining a bound via chaining Let P0 be any element of OP(d, d− n) with P0β = 0. Then VP0
= 0 a.s..

The diameter of OP(d, d − n) in ρ is at most that 2β′Σβ. Without loss of generality take the coarsest cover (at scale
ε0 = 2β′Σβ) to be O(2β′Σβ) = {P0}

Let πA : P 7→ arg minR∈A ρ(P,R) with ties broken arbitrarily. Note that ρ(P, πO(2ε)(P )) ≤ 2ε for all P, ε, and therefore

(for λ2 < n2β′Σβ
32σ2ε2 )

max
P∈O(ε)

∣∣∣VP − VπO(2ε)(P )

∣∣∣ ≤ 1

λ
log 2 |O(ε)|+ λ

32σ2ε2

nβ′Σβ
. (48)

Taking λ→ min

(√
n2β′Σβ
32 σ2ε2 ,

√
nβ′Σβ log(2|O(ε)|)

32σ2ε2

)
, we get

max
P∈O(ε)

∣∣∣VP − VπO(2ε)(P )

∣∣∣ ≤
8
√

2 σε√
β′Σβ

√
log(2|O(ε)|)

n : n ≥ log(2 |O(ε)|)
4
√

2 σε√
β′Σβ

[
log(2|O(ε)|)

n + 1
]

: n < log(2 |O(ε)|)
(49)

Then

E sup
P∈OP(d,d−n)

VP ≤ E |VP0
|+

∞∑
i=1

E max
P∈O(2−iε0)

∣∣∣VP − VπO(2−(i−1)ε0)
(P )

∣∣∣
≤
∞∑
i=1


8
√

2σε02−i√
β′Σβ

√
log(2|O(ε02−i)|)

n : n ≥ log(2 |O(ε)|)

4
√

2σε02−i√
β′Σβ

[
log(2|O(ε02−i)|)

n + 1

]
: n < log(2 |O(ε)|)

≤
∞∑
i=1


8
√

2σε02−i√
β′Σβ

√
log
(

1+ 4β′Σβ
ε02−i

)
+log 2

n : n ≥ log
(

1 + 4β′Σβ
ε02−i

)
+ log 2

4
√

2σε02−i√
β′Σβ

[
log
(

1+ 4β′Σβ
ε02−i

)
n + log 2

n + 1

]
: n < log

(
1 + 4β′Σβ

ε02−i

)
+ log 2

≤ 2

∫ ε0/2

0

1[
ε≥ 4β′Σβ

1
2
en−1

]
8
√

2
σ√
β′Σβ

√√√√ log
(

1 + 4β′Σβ
ε

)
+ log 2

n


+ 1[

ε< 4β′Σβ
1
2
en−1

]
4
√

2
σ√
β′Σβ

 log
(

1 + 4β′Σβ
ε

)
n

+
log 2

n
+ 1

 dε

≤ 16σ
√
ε0

∫ ε0/2

0

1[
ε≥ 2ε0

1
2
en−1

]2
√ log

(
1 + 2ε0

ε

)
+ log 2

n

+ 1[
ε<

2ε0
1
2
en−1

]
(

log
(
1 + 2ε0

ε

)
n

+
log 2

n
+ 1

)
dε

(50)

If n ≤ 2 < log(10) then 2ε0
1
2 e
n−1

≥ ε0/2 so only one term appears. We omit this case for brevity, though a quantitative
bound may be derived for this case with the same steps as below.

If n ≥ 3 > log(10) then 2ε0
1
2 e
n−1
≤ ε0/2 so both terms appear...

E sup
P∈OP(d,d−n)

VP ≤
32σ
√
ε0

∫ ε0/2

2ε0
1
2
en−1

√
1

n
log

(
1 +

2ε0
ε

)
+ log 2dε+

16σ
√
ε0

∫ 2ε0
1
2
en−1

0

(
1

n
log

(
1 +

2ε0
ε

)
+

log 2

n
+ 1

)
dε

(51)



In Defense of Uniform Convergence: Generalization via Derandomization

The second integral is a bit easier so we will solve it first...

16σ
√
ε0

∫ 2ε0
1
2
en−1

0

(
1

n
log

(
1 +

2ε0
ε

)
+

log 2

n
+ 1

)
dε

=
16σ
√
ε0

2ε0
1
2e
n − 1

(
1 +

log 2

n

)
+

16σ

n
√
ε0

∫ 2ε0
1
2
en−1

0

log

(
1 +

2ε0
ε

)
dε

=
32σ
√
ε0

1
2e
n − 1

(
1 +

log 2

n

)
+

16σ

n
√
ε0

[(
2ε0

1
2e
n − 1

+ 2ε0

)
log

(
2ε0

1
2e
n − 1

+ 2ε0

)
− 2ε0 log(2ε0)− 2ε0

1
2e
n − 1

log
2ε0

1
2e
n − 1

]
=

32σ
√
ε0

1
2e
n − 1

(
1 +

log 2

n

)
+

16σ

n
√
ε0

[
2ε0 log

(
1 +

1
1
2e
n − 1

)
+ (n− log 2)

2ε0
1
2e
n − 1

]
≤

32σ
√
ε0

1
2e
n − 1

(
1 +

log 2

n

)
+

16σ

n
√
ε0

[
2ε0

1
1
2e
n − 1

+ (n− log 2)
2ε0

1
2e
n − 1

]
≤

32σ
√
ε0

1
2e
n − 1

(
2 +

1

n

)
(52)

Then, for the first integral, using Cauchy-Schwarz

32σ
√
ε0

∫ ε0/2

2ε0
1
2
en−1

√
1

n
log

(
1 +

2ε0
ε

)
+ log 2dε

≤ 32σ
√
nε0

∫ ε0/2

0

√
log

(
1 +

2ε0
ε

)
+ log 2dε

≤ 32σ
√
nε0

√
ε0
2

√∫ ε0/2

0

log

(
1 +

2ε0
ε

)
+ log 2dε

≤ 32σ
√
nε0

√
ε0
2

√
ε0
2

(5 log 5− 7 log 2)

≤
16σ
√
ε0√

n

√
5 log 5− 7 log 2

(53)

Putting these two parts together with ε0 = 2β′Σβ, for n ≥ 3

E sup
P∈OP(d,d−n)

VP =
16σ
√

2β′Σβ√
n

√
5 log 5− 7 log 2 +

32σ
√

2β′Σβ
1
2e
n − 1

(
2 +

1

n

)
≤ σ

√
β′Σβ

(
41√
n

+
46

1
2e
n − 1

(
2 +

1

n

)) (54)
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