
Supplementary material to: “Aggregation of Multiple Knockoffs”

Outline. The supplementary material is organized as follows. First, the main theoretical results of the article are proved:

• Proof of Proposition 1: AKO+BH with B = 1 and γ = 1 is equivalent to vanilla KO.

• Proof of Lemma 1: for Lasso-coefficient differences, the non-zero Wj are distinct.

• Proof that the πj are asymptotically valid p-values (without any multiplicative correction): Lemma A.1.

• Statement and proof of a new general result about FDR control with quantile-aggregated p-values: Lemma A.2.

• Proof of Theorem 1.

Second, the results of some additional experiments are reported:

• Additional experiments to show that the KO-GZ alternative aggregation procedure by Gimenez and Zou (2019) has
decreasing power when the number κ of knockoff vectors x̃ considered simultaneously increases (we compare κ = 2
with κ = 3). We show empirically that this is not the case for AKO with respect to B.

• Empirical evidence for the near independence of p-values πj .

• Additional figures for HCP 900 experiments.

A. Detailed Proofs
A.1. Proof of Proposition 1

We begin by noticing that the function f : R+ → Z+, f(x) =
#{k : Wk 6 −x}

p
is decreasing in x. This means the

first step of both FDR control step-up procedures, that involves ordering the intermediate p-values ascendingly, is the same
as arranging the knockoff statistic in descending order: W(1) > W(2) > · · · > W(p). Therefore from Eq. (7) and the
definition of πj we have:

k̂ = max

{
k :

1 + #{i : W(i) 6 −W(k)}
p

6
kα

p

}
(note that we can exclude all the π(k) = 1 due to the fact that ∀ k ∈ [p], α ∈ (0, 1) : kα/p < 1).

This can be written as:

k̂ = max

{
k :

1 + #{i : W(i) 6 −W(k)}
#{i : W(i) >W(k)}

6 α

}
,

since #{i : W(i) >W(k)} = k because {W(j)}j∈[p] is ordered descendingly and because of the assumption that non-zero
LCD statistics are distinct. Furthermore, finding the maximum index k of the descending ordered sequence is equivalent
to finding the minimum value in that sequence, or

k̂ = min

{
W(k) > 0 :

1 + #{i : W(i) 6 −W(k)}
#{i : W(i) >W(k)}

6 α

}
,

since all W(j) 6 0 (corresponding with π(k) = 1) have been excluded. Without loss of generality, we can write:

t̂+ = min

{
t > 0 :

1 + #{i : Wi 6 −t}
#{i : Wi > t}

6 α

}
.

This threshold t̂+ is exactly the same as the definition of threshold τ+ in Eq. (4) from the original KO procedure.



A.2. Proof of Lemma 1

Setting. Let X ∈ Rn×q , β∗ ∈ Rq, λ > 0, σ > 0 be fixed. Define

y = Xβ∗ + ε

∀β ∈ Rq, L(β) := ‖y −Xβ‖22 + λ‖β‖1 .

with ε ∼ N (0, σIn) the Gaussian noise and ‖·‖p the Lp norm.

Classical Optimization Properties. Since L is convex, non-negative, and tends to +∞ at infinity, its minimum over
Rq exists and is attained (although may not be unique). Since L is convex, its minima are characterized by a first-order
condition:

β̂λ ∈ argmin
β∈Rq

{L(β)} ⇔ 0 ∈ ∂L(β)

which is equivalent to ∃ ẑ ∈ [−1, 1]q : X>Xβ̂λ = X>y − λ

2
ẑ

∀j s.t. (β̂λ)j 6= 0, ẑj = sign((β̂λ)j)

(A.1)

As shown by Giraud (2014, Section 4.5.1) for instance, the fitted value f̂λ ∈ Rn is uniquely defined:

∃! f̂λ ∈ Rn such that ∀β̂λ ∈ argmin
β∈Rq

{L(β)} , f̂λ = Xβ̂λ .

As a consequence, the equicorrelation set

Ĵλ :=
{
j ∈ {1, . . . , q} :

∣∣∣x>j (y −Xβ̂λ)
∣∣∣ = λ/2

}
is uniquely defined. We also have,

∀ β̂λ ∈ argmin
β∈Rq

{L(β)} ,
{
j : (β̂λ)j 6= 0

}
⊂ Ĵλ (A.2)

(but these two sets are not necessarily equal, and the former set may not be uniquely defined).

Note that for every set J ⊂ {1, . . . , q} such that ∀j /∈ J , (β̂λ)j = 0, we have Xβ̂λ = XJ(β̂λ)J so that (X>Xβ̂λ)J =

X>J XJ(β̂λ)J . As a consequence, taking J = Ĵλ, by eq. (A.1) and (A.2), any minimizer β̂λ of L over Rq satisfies

X>
Ĵλ

XĴλ
(β̂λ)Ĵλ = X>

Ĵλ
y − λ

2
ẑĴλ (A.3)

for some ẑĴλ ∈ {−1, 1}Ĵλ .

If the matrix X>
Ĵλ

XĴλ
is non-singular (that is, if XĴλ

is of rank |Ĵλ|), then the argmin of L is unique (Giraud, 2014,
Section 4.5.1).

Result A.1. For every α ∈ Rq\{0}, the event

rank(XĴλ
) = |Ĵλ| , α>β̂λ = 0 and ∃ j ∈ {1, . . . , q} , αj(β̂λ)j 6= 0 , (A.4)

where {β̂λ} = argminβ∈Rq {L(β)} is well-defined by the first property, has probability zero.

Proof. Let Ω be the event defined by Eq. (A.4). If Ω holds true, then there exists some J ⊂ {1, . . . , q} and some
ẑ ∈ {−1, 1}q such that rank(XJ) = |J |, (β̂λ)Jc = 0, and

X>J XJ(β̂λ)J = X>J y − λ

2
ẑJ .



Indeed, this is a consequence of Eq. (A.2) and (A.3), by taking J = Ĵλ and z such that zĴλ = sign
(

(β̂λ)Ĵλ

)
. Therefore,

using that X>J XJ is non-singular, we get

(β̂λ)J = M(J)ε + v(J, z)

where M(J) := (X>J XJ)−1X>J

and v(J, z) := (X>J XJ)−1X>J Xβ∗ − (X>J XJ)−1λ

2
ẑJ ,

hence
α>β̂λ = α>JM(J)ε + α>v(J, z)

follows a normal distribution with variance σ2α>JM(J)M(J)>αJ = σ2
∥∥M(J)>αJ

∥∥2
. Now, on Ω, we also have the

existence of some j such that αj(β̂λ)j 6= 0. Since (β̂λ)Jc = 0, we must have j ∈ J , which shows that αJ 6= 0.

Overall, we have proved that

Ω ⊂
⋃

J∈J ,z∈{−1,1}q
ΩJ,z

where J := {j ∈ {1, . . . , q} : rank(XJ) = |J | and αJ 6= 0}
and ΩJ,z :=

{
α>JM(J)ε + α>v(J, z) = 0

}
.

For every J ∈ J , M(J)>αJ 6= 0 since αJ 6= 0 and M(J) is of rank |J |. As a consequence, for every J ∈ J and
z ∈ {−1, 1}p, P(ΩJ,z) is the probability that a Gaussian variable with non-zero variance is equal to zero, so it is equal to
zero. We deduce that

P(Ω) 6
∑

J∈J ,z∈{−1,1}q
P(ΩJ,z) = 0

since the sets J and {−1, 1}q are finite.

Applying Result A.1 to the case where X concatenates the original p covariates and their knockoff counterparts (hence
q = 2p), we get that, apart from the event where XĴλ

is not full rank, for every j ∈ {1, . . . , p},Wj takes any fixed non-zero
value with probability zero (with αj = ±1, αj+p = ±1, αk = 0 otherwise).

Similarly, the above lemma shows that for every j 6= j′ ∈ {1, . . . , p}:

P(XĴλ
is full-rank and ∃j 6= j′,Wj = Wj′ ,Wj 6= 0,Wj′ 6= 0) = 0.

As a consequence, with probability 1, all the non-zero Wj are distinct if XĴλ
is full-rank.

Remark A.1. The proof of Result A.1 is also valid for other noise distributions: it only assumes that the support of the
distribution of ε is not included into any hyperplane of Rn.

A.3. Asymptotic Validity of Intermediate P-values

We consider in this section an asymptotic regime where p→ +∞.

Assumption A.1 (Asymptotic regime p→ +∞). When p grows to infinity, n, X, β∗, ε and y all depend on p implicitly.
We assume that for every integer j > 1, 1β∗j=0 does not depend on p (as soon as p > j), and that

|S|
p

=

∣∣{j ∈ [p] : β∗j 6= 0}
∣∣

p
−−−−−→
p→+∞

0 .

When making Assumption 1, we also assume that P0 does not depend on p.

Lemma A.1. If Assumptions 1 and A.1 hold true, then for all j > 1 such that β∗j = 0, the empirical p-value πj defined by
Eq. (5) is a valid p-value asymptotically, that is,

∀t ∈ [0, 1] , lim
p→+∞

P(πj 6 t) 6 t .



Note that our proof of Theorem 1 in Section A.5 relies on the use of Lemma 2 with t that can be of order 1/p. Therefore,
Lemma A.1 above is not sufficient for our needs. Nevertheless, it still provides a interesting insight about the πj , and
justifies (asymptotically) their name, which is why we state and prove this result here.

Proof. By definition, πj 6 1 almost surely, so the result holds when t = 1. Let us now focus on the case where t ∈
[0, 1). Let F0 denote the c.d.f. of P0, the common distribution of the null statistics {Wj}16j6p / β∗j=0, which exists by

Assumption 1. Let j > 1 such that β∗j = 0 be fixed, and assume that p > j is large enough so that |Sc| > 2. Let
m = |Sc| − 1 > 1 as in the proof of Lemma 2. Note that m depends on p, and m/p→ 1 as p→ +∞ by Assumption A.1,
hence m→ +∞ as p→ +∞.

By definition of πj , when Wj > 0 we have:

πj =
1 + #{k ∈ [p] : Wk 6 −Wj}

p

=
1 + #{k ∈ S : Wk 6 −Wj}+ #{k ∈ Sc \ {j} : Wk 6 −Wj}

p
(since Wj > 0 > −Wj)

>
#{k ∈ Sc \ {j} : Wk 6 −Wj}

p
(A.5)

=
F̂m(−Wj)

αp
(A.6)

where αp
∆
=

p

m

and ∀u ∈ R, F̂m(u)
∆
=

#{k ∈ Sc \ {j} : Wk 6 u}
m

is the empirical cdf of {Wk}k∈Sc\{j}.

Now, since {Wk}k∈Sc\{j} are i.i.d. with distribution P0 by Assumption 1, the law of large numbers implies that, for all
u ∈ R,

F̂m(u)
a.s.−−−−−→

p→+∞
F0(u) .

Since we assume limp→+∞ |S| /p = 0, limp→+∞ αp = 1 and we get that for all u ∈ R,

1

αp
F̂m(u)

a.s.−−−−−→
p→+∞

F0(u) .

Since Wj is independent from {Wk}k∈Sc\{j}, this result also holds true conditionally to Wj , with u = −Wj . Given that
almost sure convergence implies convergence in distribution, we have: conditionally to Wj ,

1

αp
F̂m(−Wj)

(d)−−−−−→
p→+∞

F0(−Wj)
(d)
= F0(Wj) (A.7)

where the latter equality comes from the fact that Wj has a symmetric distribution, as shown in Remark 1.

So, when Wj > 0, for every t ∈ [0, 1),

lim sup
p→+∞

P(πj 6 t |Wj) 6 lim sup
p→+∞

P

(
F̂m(−Wj)

αp
6 t
∣∣∣Wj

)
by Eq. (A.6)

6 1F0(Wj)6t (A.8)

by Eq. (A.7) combined with the Portmanteau theorem.



Therefore, for every t ∈ [0, 1),

lim sup
p→+∞

P(αpπj 6 t) = lim sup
p→+∞

{
P(αpπj 6 t and Wj > 0) + P(αpπj 6 t and Wj 6 0)︸ ︷︷ ︸

=0 since αp>1>t and πj=1 whenWj60

}
= lim sup

p→+∞
E[P(αpπj 6 t |Wj)1Wj>0]

6 E

[
lim sup
|Sc|→+∞

{P(αpπj 6 t |Wj)1Wj>0)}

]
6 P

(
F0(Wj) 6 t

)
by Eq. (A.8)

6 t ,

which concludes the proof.

A.4. A General FDR Control with Quantile-aggregated P-values

The proof of Theorem 1 relies on an adaptation of results proved by Meinshausen et al. (2009, Theorems 3.1 and 3.3)
about aggregation of p-values. The results of Meinshausen et al. (2009), whose proof relies on the proofs of Benjamini and
Yekutieli (2001), are stated for randomized p-values obtained through sample splitting. The following lemma shows that
they actually apply to any family of p-values.

Lemma A.2. Let (π
(b)
j )16j6p,16b6B be a family of random variables with values in [0, 1]. Let γ ∈ (0, 1], ᾱ ∈ [0, 1] and

N ⊂ [p] be fixed. Let us define

∀j ∈ [p] , Qj
∆
=
p

γ
qγ
(
{π(b)

j : 1 6 b 6 B}
)

where qγ(·) is the γ-quantile function,

ĥ
∆
= max

{
i ∈ [p] : Q(i) 6 iᾱ

}
where Q(1) 6 · · · 6 Q(p) ,

and Ŝ
∆
=
{
j ∈ [p] : Qj 6 Q(ĥ)

}
.

Then,

E

[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
6

p−1∑
j=1

(
1

j
− 1

j + 1

)
F (j) +

F (p)

p
(A.9)

where ∀j ∈ [p] , F (j)
∆
=

1

γ

1

B

B∑
b=1

∑
i∈N

P
(
π

(b)
i 6

jᾱγ

p

)
.

As a consequence, if some C > 0 exists such that

∀t > 0,∀b ∈ [B] , ∀i ∈ N , P
(
π

(b)
i 6 t

)
6 Ct , (A.10)

then we have

E

[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
6
|N |C
p

 p∑
j=1

1

j

 ᾱ . (A.11)

Let us emphasize that Lemma A.2 can be useful in general, well beyond knockoff aggregation. To the best of our knowl-
edge, Lemma A.2 is new. In particular, the recent preprint by Romano and DiCiccio (2019), that studies p-values ag-
gregation procedures, focuses on FWER controlling procedures, whereas Lemma A.2 provides an FDR control for a less
conservative procedure.

Proof. For every i, j, k ∈ [p], let us define

pi,j,k =

{
P
(
Qi ∈

(
(j − 1)ᾱ, jᾱ

]
, i ∈ Ŝ and |Ŝ| = k

)
if j > 2

P
(
Qi ∈ [0, ᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j = 1 .



Then,

|Ŝ ∩N|
|Ŝ| ∨ 1

=

p∑
k=1

1|Ŝ|=k

∑
i∈N 1i∈Ŝ
k

=
∑
i∈N

p∑
k=1

1

k
1|Ŝ|=k and i∈Ŝ

=
∑
i∈N

p∑
k=1

1

k
1|Ŝ|=k and i∈Ŝ and 06Qi6kᾱ

since i ∈ Ŝ and |Ŝ| = k implies that Qi 6 Q(ĥ) 6 ĥᾱ = kᾱ. Taking an expectation and writing that

106Qi6kᾱ = 1Qi∈[0,ᾱ] +

k∑
j=2

1Qi∈((j−1)ᾱ,jᾱ] ,

we get —following the computations of Meinshausen et al. (2009, proof of Theorems 3.3), which themselves rely on the
ones of Benjamini and Yekutieli (2001)—,

E

[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
6
∑
i∈N

p∑
k=1

1

k

k∑
j=1

pi,j,k =
∑
i∈N

p∑
j=1

p∑
k=j

1

k
pi,j,k 6

∑
i∈N

p∑
j=1

p∑
k=j

1

j
pi,j,k =

p∑
j=1

1

j

∑
i∈N

p∑
k=j

pi,j,k︸ ︷︷ ︸
=F (j)−F (j−1)1j>2

where ∀j ∈ {1, . . . , p} , F (j)
∆
=
∑
i∈N

j∑
j′=1

p∑
k=1

pi,j′,k .

Since the above upper bound is equal to

F (1) +

p∑
j=2

1

j

[
F (j)− F (j − 1)

]
=

p∑
j=1

(
1

j
− 1

j + 1

)
F (j) +

F (p)

p
,

we get that E

[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
6

p∑
j=1

(
1

j
− 1

j + 1

)
F (j) +

F (p)

p
. (A.12)

Notice also that
F (j) =

∑
i∈N

P(Qi 6 jᾱ and i ∈ Ŝ) 6
∑
i∈N

P(Qi 6 jᾱ) .

Now, as done by Meinshausen et al. (2009, proof of Theorems 3.1), we remark that Qi 6 jᾱ is equivalent to

1

B

∣∣∣∣∣
{
b ∈ [B] :

pπ
(b)
i

γ
6 jᾱ

}∣∣∣∣∣ =
1

B

B∑
b=1

1
pπ

(b)
i 6jᾱγ

> γ

so that

P(Qi 6 jᾱ) = P

(
1

B

B∑
b=1

1
pπ

(b)
i 6jᾱγ

> γ

)
6

1

γ
E

[
1

B

B∑
b=1

1
pπ

(b)
i 6jᾱγ

]
by Markov inequality

=
1

γ

1

B

B∑
b=1

P
(
pπ

(b)
i 6 jᾱγ

)
.

Therefore,

F (j) 6
∑
i∈N

1

γ

1

B

B∑
b=1

P
(
pπ

(b)
i 6 jᾱγ

)
= F (j) ,



so that Eq. (A.12) implies Eq. (A.9).

If condition (A.10) holds true, then, for every j ∈ [p],

F (j) 6
|N |C
γ

jᾱγ

p
=
|N |Cᾱ
p

j ,

hence Eq. (A.9) shows that

E

[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
6

p−1∑
j=1

F (j)

j(j + 1)
+
F (p)

p
6
|N |Cᾱ
p

p−1∑
j=1

1

j + 1
+
|N |Cᾱ
p

=
|N |Cᾱ
p

 p∑
j=1

1

j

 ,

which is the desired result.

A.5. Proof of Theorem 1

We can now prove Theorem 1. We apply Lemma A.2 with ᾱ = β(p)α, N = Sc, so that Ŝ = ŜAKO+BY . Since the
π

(b)
j , b = 1, . . . , B, have the same distribution as πj , by Lemma 2, condition (A.10) holds true with C = κp/|Sc|, and

Eq. (A.11) yields the desired result.

Note that an FDR control for AKO such as Theorem 1 cannot be obtained straightforwardly from the arguments of Barber
and Candès (2015) and Candès et al. (2018). One key reason for this is that their proof relies on a reordering of the features
according to the values of (|Wj |)j∈[p] (Barber and Candès, 2015, Section 5.2), such a reordering being permitted since the
signs of the Wj are iid coin flips conditionally to the (|Wj |)j∈[p] (Candès et al., 2018, Lemma 2). In the case of AKO,
we must handle the (W

(b)
j )j∈[p] simultaneously for all b ∈ [B], and conditioning with respect to (|W (b)

j |)j∈[p],b∈[B] may

reveal some information about the signs of the (W
(b)
j )j∈[p] as soon as B > 1. At least, it does not seem obvious to us that

the key result of Candès et al. (2018, Lemma 2) can be proved conditionally to the (|W (b)
j |)j∈[p],b∈[B] when B > 1, so that

the proof strategy of Candès et al. (2018) breaks down in the case of AKO with B > 1.

B. Additional Experimental Results
B.1. Demonstration of Aggregated Multiple Knockoff vs. Simultaneous Knockoff

Using the same simulation settings as in Section 5.1 with n = 500, p = 1000 and varying simulation parameters to generate
Figure 2 in the main text, we benchmark only aggregation of multiple knockoffs (AKO) with 5 and 10 bootstraps (B = 5
and B = 10) and compare with simultaneous knockoffs with 2 and 3 bootstraps (κ = 2 and κ = 3). Results in Figure B.1
show that while increasing the number of knockoff bootstraps makes simultaneous knockoffs more conservative, doing so
with AKO makes the algorithm more powerful (and in the worst case retains the same power with fewer bootstraps).

B.2. Empirical Evidence on the Independence of Aggregated P-values π̄

Using the same simulation settings as in Section 5.1 with n = 500, p = 1000, ρ = 0.6, snr = 3.0, sparsity = 0.06 we
generate 100 observations of aggregated p-values π̄. Then, we compute the Spearman rank-order correlation coefficient
of the Null π̄j for these 100 observations along with their two-sided p-value (for a hypothesis test whose null hypothesis is
that two sets of data are uncorrelated).

The results are illustrated in Figure B.2: the Spearman correlation values are concentrated around zero, while the distribu-
tion of associated p-values seems to be a mixture between a uniform distribution and a small mixture component consisting
of mostly non-null p-values. This indicates near independence between the aggregated p-values using quantile-aggregation
(Meinshausen et al., 2009), hence justifies our use of BH step-up procedure for selecting FDR controlling threshold in the
AKO algorithm.

Remark B.2. Again, it is worth noticing that the empirical evidence we have shown is only done in a setting with a Toeplitz
structure for the covariance matrix. However, as explained in the main text, this correlation setting is usually found in
neuroimaging and genomics data. Hence, we believe that assuming short-distance correlations between the (Xj)j∈[p] is a
mild assumption, which should be satisfied in the practical scenarios where we want to apply our algorithm.



B.3. Brain Maps Obtained For Seven Classification Tasks

The decoding maps returned by the KO, AKO and DL inference procedures are presented in Figure B.3. As quantified by
the Jaccard index in the main text, we observe that the AKO solution is typically closer to an external method based on the
desparsified lasso (DL). Moreover, AKO is also typically more sensitive than KO alone.

The seven classification problems are the following:

• Emotion: predict whether the participant watches an angry face or a geometric shape.

• Gambling: predict whether the participant gains or loses gambles.

• Motor foot: predict whether the participant moves the left or right foot.

• Motor hand: predict whether the participant moves the left or right hand.

• Relational: predict whether the participant matches figures or identified feature similarities.

• Social: predict whether the participant watches a movie with social behavior or not.

• Working Memory: predict whether the participant does a 0-back or a 2-back task.
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Figure B.1. Aggregation of multiple knockoffs (B = 5 and B = 10) vs. simultaneous knockoffs (κ = 2 and κ = 3). A clear loss
in statistical power is demonstrated in the latter method when increasing the number of bootstraps κ, while the former (AKO) shows the
opposite: with B = 10 bootstraps there are small, yet consistent gains in the number of true detections compared to using only B = 5
bootstraps.
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Figure B.2. Left: Histogram of Spearman correlation values for 100 samples of null aggregated p-values π̄j. Right: Histogram of
corresponding p-values for the Spearman correlation
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Figure B.3. Decoding maps obtained for seven classification tasks. Emotion, gambling, motor foot, motor hand, relational, social and
working memory refer to 7 binary tasks that were considered based on the HCP900 dataset. We observe that AKO is typically more
sensitive than KO, and yields solution closer to that of an independent solution based on a desparsified-Lasso (DL) estimator.


