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1. Expected Regret Minimization Derivation
We are given an optimization problem x∗ =
argmaxx∈X f (x) where f is a black-box function that we
can evaluate pointwise. Let Dt = {xi ∈X ,yi ∈R}t

i=1 be
the observation set including an input xi, an outcome yi and
X ∈Rd be the bounded search space. We define the regret
function r (x) = f ∗− f (x) where f ∗ = maxx∈X f (x) is the
known global optimum value. The likelihood of the regret
r (x) on a normal posterior distribution is as follows

p(r(x)) =
1√

2πσ (x)
exp

(
−1

2
[µ (x)− f ∗+ r(x)]2

σ2 (x)

)
.

(1)

The expected regret can be written using the likelihood
function in Eq. (1) to obtain, E [r (x)]

=
∫

∞

0

r(x)√
2πσ (x)

exp

(
−1

2
[µ (x)− f ∗+ r(x)]2

σ2 (x)

)
dr(x).

As the ultimate goal in optimization is to minimize the regret,
we consider our acquisition function to minimize this ex-
pected regret as αERM (x) = E [r (x)]. Let t = µ(x)− f ∗+r(x)

σ(x) ,

then r(x) = t×σ (x)−µ(x)+ f ∗ and dt = dr
σ(x) . We write

αERM (x)

=
∫

∞

t= µ(x)− f∗
σ(x)

t×σ (x)+ f ∗−µ (x)√
2π

exp(−1
2

t2)dt

=σ (x)
∫

∞

t= µ(x)− f∗
σ(x)

t√
2π

exp(−1
2

t2)dt

+[ f ∗−µ (x)]
∫

∞

t= µ(x)− f∗
σ(x)

1√
2π

exp(−1
2

t2)dt. (2)
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We compute the first term in Eq. (2) as

σ (x)
∫

∞

t= µ(x)− f∗
σ(x)

t√
2π

exp(−1
2

t2)dt

=
σ (x)√

2π

[
−exp

(
−1

2

[
µ (x)− f ∗+ r(x)

σ (x)

]2
)]r=∞

r=0

= σ(x)N
(

µ (x)− f ∗

σ (x)
| 0,1

)
.

Next, we compute the second term in Eq. (2) as

[ f ∗−µ (x)]
∫

∞

t= µ(x)− f∗
σ(x)

1√
2π

exp(−1
2

t2)dt

= [ f ∗−µ (x)]

{∫
∞

−∞

N (t | 0,1)dt−
∫ µ(x)− f∗

σ(x)

−∞

N (t | 0,1)dt

}

= [ f ∗−µ (x)]
[

1−Φ

(
µ (x)− f ∗

σ (x)

)]
= [ f ∗−µ (x)]Φ

(
f ∗−µ (x)

σ (x)

)
.

Let z = f ∗−µ(x)
σ(x) , we obtain the acquisition function

α
ERM (x) = σ (x)φ (z)+ [ f ∗−µ (x)]Φ(z) (3)

where φ (z) = N (z | 0,1) is the standard normal p.d.f. and
Φ(z) is the c.d.f. To select the next point, we minimize this
acquisition function which is equivalent to minimize the
expected regret E [r (x)]

xt+1 = arg min
x∈X

α
ERM (x) = arg min

x∈X
E [r (x)] .

We can see that this acquisition function is minimized
αERM (xt) = E[r(xt)] = 0 when f ∗ = µ(xt) and σ(xt) = 0.
Our chosen point xt is the one which offers the smallest
expected regret. We aim to find the point with the desired
property of E[r(xt)] = E[ f (xt)− f (x∗)] = 0.

2. Additional Experiments
We first illustrate the BO with and without the knowledge
of f ∗. Then, we provide additional information about the
deep reinforcement learning experiment in the main paper.
Next, we compare the effect of using the vanilla GP and
transformed GP with different acquisition functions.
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Table 1. Hyperparameters of Advantage Actor Critic.

Variables Min Max Best Parameter x∗

γ discount factor 0.9 1 0.95586
learning rate q model 1e−6 0.01 0.00589
learning rate v model 1e−6 0.01 0.00037

2.1. Illustration per iteration

We provide the illustration of BO with and without the
knowledge of f ∗ for comparison in Figs. 1 and 2. We show
the GP and EI in the left (without f ∗) and the transformed
GP and ERM in the right (with f ∗). As the effect of trans-
formation using f ∗, the transformed GP (right) can lift up
the surrogate model closer to the true value f ∗ (red hori-
zontal line) encouraging the acquisition function to select
at these potential locations. On the other hand, without f ∗,
the GP surrogate (left) is less informative. As a result, the
EI operating on GP (left) is less efficient as opposed to the
transformed GP. We demonstrate visually that using TGP
our model can finally find the optimum input within the
evaluation budget while the standard GP does not.

2.2. Details of A2C on CartPole problem

We use the advantage actor critic (A2C) () as the deep rein-
forcement learning algorithm to solve the CartPole problem
(). This A2C is implemented in Tensorflow and run on a
NVIDIA GTX 2080 GPU machine. In A2C, we use two
neural network models to learn Q(s,a) and V (s) separately.
In particular, we use a simple neural network architecture
with 2 layers and 10 nodes in each layer. The range of
the used hyperparameters in A2C and the found optimal
parameter are summarized in Table 1.

We illustrate the reward performance over 500 train-
ing episodes using the found optimal parameter x∗ =
argmax

x∈X
f (x) value in Fig. 3. In particular, we plot the

raw reward and the average reward over 100 consecutive
episodes - this average score is used as the evaluation output.
Our A2C with the found hyperparameter will take around
300 episodes to reach the optimum value f ∗ = 200.

2.3. Comparison using vanilla GP and transformed GP

We empirically compare the proposed transformed Gaus-
sian process (using the knowledge of f ∗) and the vanilla
Gaussian process () as the surrogate model for Bayesian
optimization. We then test our ERM and EI on the two
surrogate models. After the experiment, we learn that the
transformed GP is more suitable for our ERM while it may
not be ideal for the EI.

ERM. We perform experiments on ERM acquisition func-
tion using two surrogate models as vanilla Gaussian process
(GP) and transformed Gaussian process (TGP). Our acqui-
sition function performs better with the TGP. The TGP
exploits the knowledge about the optimum value f ∗ to con-
struct the surrogate model. Thus, it is more informative
and can be helpful in high dimension functions, such as
Alpine1 D = 5 and gSobol D = 5, D = 10, in which the
ERM on TGP achieves much better performance than ERM
on GP. On the simpler functions, such as branin and hart-
mann, the transformed GP surrogate achieves comparable
performances with the vanilla GP. We visualize all results
in Fig. 4.

Expected Improvement (EI). We then test the EI acqui-
sition function on two surrogate models of vanilla Gaussian
process and our transformed Gaussian process (using f ∗)
in Fig. 5. In contrast to the case of ERM above, we show
that the EI will perform well on the vanilla GP, but not on
the TGP. This can be explained by the side effect of the
GP transformation as follows. From Eq. (1) in the main
paper, when the location has poor (or low) prediction value
µ(x) = f ∗− 1

2 µ2
g (x), we will have large value µg(x). As a

result, this large value of µg(x) will make the uncertainty
larger σ(x) = µg(x)σg(x)µg(x) from Eq. (2) in the main
paper. Therefore, TGP will make an additional uncertainty
σ(x) at the location where µ(x) is low.

Under the additional uncertainty effect of TGP, the expected
improvement may spend more iterations to explore these
uncertainty area and take more time to converge than the
case of using the vanilla GP. We note that this effect will
also happen to the GP-UCB and other acquisition functions,
which rely on exploration-exploitation trade-off.

In high dimensional function of gSobol D = 10, TGP will
make the EI explore aggressively due to the high uncertainty
effect (described above) and thus result in worse perfor-
mance. That is, it keeps exploring at poor region in the first
100 iterations (see bottom row of Fig. 5).

Discussion. The transformed Gaussian process (TGP) sur-
rogate takes into account the knowledge of optimum value
f ∗ to inform the surrogate. However, this transformation
may create additional uncertainty at the area where function
value is low. While our proposed acquisition function ERM
and CBM will not suffer this effect, the existing acquisition
functions of EI and UCB will. Therefore, we only recom-
mend to use this TGP with our acquisition functions for the
best optimization performance.

3. Other known optimum value settings
To highlight the applicability of the proposed model, we list
several other settings where the optimum values are known
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Figure 1. Illustration of the optimization process per iteration 1−3 starting given the same initialization. Left: BO using GP as surrogate
and EI as acquisition function. Right: BO using TGP as surrogate and ERM as acquisition function. Given the known optimum f ∗ value,
the transformed GP can lift up the surrogate model closer to the known value. Then, the ERM will make informed decision given f ∗. We
also show that the EI may not make the best decision as ERM. To be continue in the next figure.



Supplement to Knowing The What But Not The Where in Bayesian Optimization
f(

x)

Known Output f∗
Unknown Input x∗

[Without f ∗] GP and EI

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

f(
x)

Known Output f∗
Unknown Input x∗

[With f ∗] Transformed GP and ERM

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

f(
x)

Known Output f∗
Unknown Input x∗

[Without f ∗] GP and EI

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

f(
x)

Known Output f∗
Unknown Input x∗

[With f ∗] Transformed GP and ERM

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

f(
x)

Known Output f∗
Unknown Input x∗

[Without f ∗] GP and EI

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

f(
x)

Known Output f∗
Unknown Input x∗

[With f ∗] Transformed GP and ERM

f(x) Obs µ(x) σ(x)

E
I

x

E
R

M

Figure 2. Continuing from the previous figure. Illustration of the optimization process per iteration 4− 6 starting given the same
initialization. Left: BO using GP as surrogate and EI as acquisition function. Right: BO using TGP as surrogate and ERM as acquisition
function. Given the known optimum f ∗ value, the transformed GP can lift up the surrogate model closer to the known value. Then, the
ERM will make informed decision given f ∗. We also show that the EI may not make the best decision as ERM.
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Figure 3. Left: visualization of a CartPole. Middle and Right: visualization of the reward curve using the best found parameter value x∗.
We have used the Advantage Actor Critic (A2C) algorithm to solve the CartPole problem. The known optimum value is f ∗ = 200.

Table 2. Examples of known optimum value settings.

Environment f ∗ Source

Pong 18 Gym.OpenAI

Frozen Lake 0.79 Gym.OpenAI

Inverted Pendulum v1 135.91 Gym.OpenAI

CartPole 200 Gym.OpenAI

in Table 2.
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Figure 4. Experiments with ERM acquisition function on vanilla Gaussian process (GP) and transformed Gaussian process (TGP). Our
acquisition function using the transformed GP consistently performs better than using the vanilla GP. Particularly, the TGP will be more
useful in high-dimensional functions of Alpine1 D = 5 and gSobol D = 5, D = 10 functions. In these functions, ERM on TGP will
outperform ERM on GP by a wide margin.
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Figure 5. Experiments with EI acquisition function using the surrogate models as GP and TGP. Although the TGP exploits the knowledge
about the optimum value f ∗ to construct the informed surrogate model, it brings the side effect of transformation in making additional GP
predictive uncertainty. As a result, the EI will explore more aggressively using TGP and thus obtain worse performance comparing to the
case of using vanilla GP.
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