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A. Proof of Section 1
Proof of Proposition 1.1. To ease the exposition, we use the following notational shorthands Bc = Bρc(P̂c) ∩ P for
c ∈ {0, 1} and

fmax
c (x) = sup

fc∈Bc
fc(x), fmin

c (x) = inf
fc∈Bc

fc(x) ∀c ∈ {0, 1}.

If action a = 1 is chosen, then the worst-case probability of mis-classification is

sup
P∈B

P(Y = 0|X = x) =

 sup
f0(x)π0

f0(x)π0 + f1(x)π1

s. t. f0 ∈ B0, f1 ∈ B1

= sup
f0∈B0

sup
f1∈B1

f0(x)π0

f0(x)π0 + f1(x)π1

= sup
f0∈B0

f0(x)π0

f0(x)π0 + fmin
1 (x)π1

(A.1a)

=
fmax

0 (x)π0

fmax
0 (x)π0 + fmin

1 (x)π1
, (A.1b)

where equality (A.1a) holds because π1 > 0, thus for any f0 ∈ B0, the optimal choice of f1 for the inner supremum
problem will minimize f1(x) over all f1 ∈ B1. Equality (A.1b) holds because fmin

1 (x)π1 > 0, thus it is optimal to choose
f0 that maximizes f0(x) over all f0 ∈ B0. Using similar lines of arguments, if action a = 0 is chosen, then the worst-case
probability of mis-classification is

sup
P∈B

P(Y = 1|X = x) =

 sup
f1(x)π1

f0(x)π0 + f1(x)π1

s. t. f0 ∈ B0, f1 ∈ B1

=
fmax

1 (x)π1

fmin
0 (x)π0 + fmax

1 (x)π1
.

Thus, by comparing the two values of the worst-case probability, action a = 1 is optimal whenever

fmax
0 (x)π0

fmax
0 (x)π0 + fmin

1 (x)π1
≤ fmax

1 (x)π1

fmin
0 (x)π0 + fmax

1 (x)π1
,

which in turn is equivalent to the condition
fmax

1 (x)

fmax
0 (x)

≥ fmin
0 (x)π2

0

fmin
1 (x)π2

1

. (A.2)

By setting the right-hand side of (A.2) to a threshold τ(x) ∈ R+, we arrive at the postulated result.
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As the proof reveals in (A.2), the optimal threshold τ(x) in the statement of Proposition 1.1 admits an explicit expression

τ(x) =
fmin

0 (x)π2
0

fmin
1 (x)π2

1

.

This value τ(x) can be found by evaluating the minimum likelihood values fmin
0 (x) and fmin

0 (x). Unfortunately, it remains
intractable to find the exact values of fmin

0 (x) and fmin
1 (x). To demonstrate this fact, we consider the Gaussian parametric

setting as in Section 4, and evaluating the minimum likelihood in this case is equivalent to solving

min − (µ− x)>Σ−1(µ− x)− log det Σ
s. t. µ ∈ Rd, Σ ∈ Sd++

(µ− µ̂)>Σ−1(µ− µ̂) + Tr
[
Σ̂Σ−1

]
− log det Σ̂Σ−1 − d ≤ ρ

(A.3)

for some µ̂ ∈ Rd, Σ̂ ∈ Sd++ and ρ ≥ 0. Problem (A.3) is the minimization counterpart of the maximization problem (11a),
it is also non-convex, however, we are not aware of any tractable approach to solve (A.3).

B. Proofs of Section 2
Proof of Theorem 2.2. Throughout this proof, we use dist.−−−→ and

p.−→ to denote the convergence in distribution and in
probability, respectively. For n sufficiently big, Σ̂n defined as in (7) is invertible with probability 1. In this case, we find

D
(
(µ̂n, Σ̂n) ‖ (m,S)

)
= Tr

[
Σ̂nS

−1
]

+ (m− µ̂n)>S−1(m− µ̂n)− d− log det(Σ̂nS
−1)

=
1

n

n∑
t=1

η̂>t η̂t − d− log det(S−
1
2 Σ̂nS

− 1
2 ), (A.4)

where η̂t = S−
1
2 (ξ̂t −m) is the isotropic transformation of ξ̂t for each t = 1, . . . , n. Furthermore, denote by µ̄n the sample

average of η̂1, . . . , η̂n defined as

µ̄n =
1

n

n∑
t=1

η̂t = S−
1
2 (µ̂n −m).

By adding and subtracting log det
(
n−1

∑n
t=1 η̂tη̂

>
t

)
into (A.4), we have

D
(
(µ̂n, Σ̂n) ‖ (m,S)

)
=(

log det
( 1

n

n∑
t=1

η̂tη̂
>
t

)
− log det(S−

1
2 Σ̂nS

− 1
2 )

)
︸ ︷︷ ︸

(A)

+

(
1

n

n∑
t=1

η̂>t η̂t − d− log det
( 1

n

n∑
t=1

η̂tη̂
>
t

))
︸ ︷︷ ︸

(B)

.

We analyze the 2 terms (A) and (B) separately. First, rewrite

S−
1
2 Σ̂nS

− 1
2 = S−

1
2

( 1

n

n∑
t=1

(ξ̂t − µ̂n)(ξ̂t − µ̂n)>
)
S−

1
2

= S−
1
2

( 1

n

n∑
t=1

(ξ̂t −m+m− µ̂n)(ξ̂t −m+m− µ̂n)>
)
S−

1
2

=
1

n

n∑
t=1

(
η̂tη̂
>
t + S−

1
2 (m− µ̂n)η̂>t + η̂t(m− µ̂n)>S−

1
2 + S−

1
2 (m− µ̂n)(m− µ̂n)>S−

1
2

)
=

1

n

n∑
t=1

(
η̂tη̂
>
t − µ̄nη̂>t − η̂tµ̄>n + µ̄nµ̄

>
n

)
=

(
1

n

n∑
t=1

η̂tη̂
>
t

)
− µ̄nµ̄>n .
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Then, (A) becomes

log det
( 1

n

n∑
t=1

η̂tη̂
>
t

)
− log det(S−

1
2 Σ̂nS

− 1
2 ) = − log det

Id −( 1

n

n∑
t=1

η̂tη̂
>
t

)−1 (
µ̄nµ̄

>
n

) .

By the weak law of large numbers, as n ↑ ∞, we find

1

n

n∑
t=1

η̂tη̂
>
t

p.−→ Id and
1

n

n∑
t=1

η̂t
p.−→ 0.

By the central limit theorem, we find as n ↑ ∞

√
nµ̄n

dist.−−−→ H,
√
n

(
1

n

n∑
t=1

η̂tη̂
>
t − Id

)
dist.−−−→ Z,

where the random vector H and the random matrix Z are defined as in the statement of the theorem. By Slutsky’s
theorem (van der Vaart, 1998, Theorem 2.8), we find

n

(
1

n

n∑
t=1

η̂tη̂
>
t

)−1 (
µ̄nµ̄

>
n

) dist.−−−→ HH>.

By the delta method (van der Vaart, 1998, Theorem 3.1), we have

n×
(

log det
( 1

n

n∑
t=1

η̂tη̂
>
t

)
− log det(S−

1
2 Σ̂nS

− 1
2 )︸ ︷︷ ︸

(A)

)
dist.−−−→ Tr

[
HH>

]
= H>H. (A.5)

Now, we are ready to analyze (B). Using a Taylor expansion for the log-determinant function around Id, we find

log det
( 1

n

n∑
t=1

η̂tη̂
>
t

)
= log det(Id) + Tr

[(
1

n

n∑
t=1

η̂tη̂
>
t − Id

)]
− 1

2
Tr

( 1

n

n∑
t=1

η̂tη̂
>
t − Id

)2
+ o

Tr

( 1

n

n∑
t=1

η̂tη̂
>
t − Id

)2
 .

Therefore, by the second-order delta method, we have

n×
( 1

n

n∑
t=1

η̂>t η̂t − d− log det
( 1

n

n∑
t=1

η̂tη̂
>
t

)
︸ ︷︷ ︸

(B)

)
dist.−−−→ 1

2
Tr
[
Z2
]
. (A.6)

Finally, by combining the limits from (A.5) and (A.6), we obtain the postulated result.

Proof of Corollary 2.3. From Theorem 2.2, we have as n ↑ ∞

n× 1

2
KL
(
N (µ̂n, Σ̂n) ‖ N (m,S)

)
= n×D

(
(µ̂n, Σ̂n) ‖ (m,S)

)
→ H>H +

1

2
Tr
[
Z2
]

in distribution,

where the random vector H and the random matrix Z are defined as in the statement of Theorem 2.2. In the Gaussian setting,
the elements of the isotropic random vector η are i.i.d. standard univariate normal random variables. Therefore, we have

cov(Zjk, Zj′k′) =


EP

[
(ηj)

4
]
− 1 if j = k = j′ = k′,

1 if j < k, (j = j′, k = k′ or j = k′, j′ = k) ,

0 otherwise.

Recall that EP

[
(ηj)

4
]

= 3, which gives cov(Zjj , Zjj) = 2. Hence, 1
2 Tr

[
Z2
]

follows χ2 (d(d+ 1)/2) and H>H

follows χ2 (d). Finally, since H and Z are independent in the Gaussian case, we have H>H + 1
2 Tr

[
Z2
]

follows
χ2 (d) + χ2 (d(d+ 1)/2) = χ2 (d(d+ 3)/2).
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C. Proofs of Section 3
We first prove the compactness property of the uncertainty set Uρ(µ̂, Σ̂).

Lemma C.1 (Compactness of Uρ(µ̂, Σ̂)). For any µ̂ ∈ Rd, Σ̂ ∈ Sd++ and ρ ∈ R+, the set Uρ(µ̂, Σ̂) written as

Uρ(µ̂, Σ̂) = {(µ,Σ) ∈ Rd × Sd++ : Tr
[
Σ̂Σ−1

]
− log det(Σ̂Σ−1)− d+ (µ− µ̂)>Σ−1(µ− µ̂) ≤ ρ}

is compact.

Proof of Lemma C.1. If ρ = 0 then Uρ(µ̂, Σ̂) is a singleton {(µ̂, Σ̂)} and the claim holds trivially. For the rest of the proof,
we consider when ρ > 0. Pick an arbitrary (µ,Σ) ∈ Uρ(µ̂, Σ̂), it is obvious that Σ should satisfy

Tr
[
Σ̂

1
2 Σ−1Σ̂

1
2

]
− log det(Σ̂

1
2 Σ−1Σ̂

1
2 )− d ≤ ρ,

which implies that Σ is bounded. To see this, suppose that {Σk}k∈N is a sequence of positive definite matrices and {σk}k∈N
is the corresponding sequence of the minimum eigenvalues of {Σ̂− 1

2 Σ−1
k Σ̂−

1
2 }k∈N. Because the function σ 7→ σ− log σ−1

is non-negative for every σ > 0, we find

Tr
[
Σ̂

1
2 Σ−1

k Σ̂
1
2

]
− log det(Σ̂

1
2 Σ−1

k Σ̂
1
2 )− d ≥ σk − log σk − 1.

If Σk tends to infinity, then σk tends to 0, and in this case σk − log σk − 1→ +∞. This implies that Σ should be bounded
in the sense that Σ � σ̄Id for some finite positive constant σ̄. Using an analogous argument, we can show that Σ is lower
bounded in the sense that Σ � σId for some finite positive constant σ. As a consequence, µ is also bounded because µ
should satisfy σ‖µ− µ̂‖22 ≤ ρ. We now can rewrite Uρ(µ̂, Σ̂) as

Uρ(µ̂, Σ̂) = {(µ,Σ) ∈ Rd × Sd++ : σ‖µ− µ̂‖22 ≤ ρ, σId � Σ � σ̄Id, D
(
(µ̂, Σ̂) ‖ (µ,Σ)

)
≤ ρ},

which implies that Uρ(µ̂, Σ̂) is a closed set because D
(
(µ̂, Σ̂) ‖ ( · , · )

)
is a continuous function over (µ,Σ) when Σ ranges

over σId � Σ � σ̄Id. This observation coupled with the boundedness of (µ,Σ) established previously completes the
proof.

For a fixed µ̂ ∈ Rd, x ∈ Rd and ε ∈ R+, define the following function g : Sd++ → R+ as

g(Ω) ,

{
min (µ− x)>Ω(µ− x)
s. t. µ ∈ Rd, (µ− µ̂)>Ω(µ− µ̂) ≤ ε, (A.7)

where the dependence of g on µ̂, x and ε has been made implicit to avoid clutter. The objective function of problem (A.7)
is continuous in µ and the feasible set of problem (A.7) is compact because Ω ∈ Sd++, which justify the minimization
operator of problem (A.7). The next lemma asserts that the value g(Ω) coincides with the optimal value of a univariate
convex optimization problem.

Lemma C.2 (Reformulation of g). For any µ̂ ∈ Rd, x ∈ Rd, ε ∈ R+ and Ω ∈ Sd++, the value g(Ω) coincides with the
optimal value of the univariate convex optimization problem

max
λ≥0

{
λ

1 + λ
(x− µ̂)>Ω(x− µ̂)− λε

}
. (A.8)

Moreover, denote by λ? the unique optimal solution of the maximization problem (A.8), then the unique minimizer µ? of
problem (A.7) is µ? = (x+ λ?µ̂)/(1 + λ?). Furthermore, we have{

λ? = 0, g(Ω) = 0 if ε ≥ (x− µ̂)>Ω(x− µ̂),

λ? =
(√

ε(x− µ̂)>Ω(x− µ̂)− ε
)
/ε, g(Ω) =

(√
ε−

√
(x− µ̂)>Ω(x− µ̂)

)2
otherwise.

Proof of Lemma C.2. Using a change of variables y ← µ− µ̂ and a change of parameters w ← x− µ̂, problem (A.7) can
be recast in the following equivalent form

g(Ω) =

{
min (y − w)>Ω(y − w)
s. t. y ∈ Rd, y>Ωy ≤ ε, (A.9)
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which is a convex optimization problem. Assume momentarily that ε > 0. By invoking a duality argument, we find

g(Ω) = min
y

max
λ≥0

(y − w)>Ω(y − w) + λ
(
y>Ωy − ε

)
= max

λ≥0
w>Ωw − λε+ min

y
{(1 + λ)y>Ωy − 2y>Ωw} (A.10a)

= max
λ≥0

λ

1 + λ
w>Ωw − λε, (A.10b)

where the interchanging of the inf-sup operators are justified because the feasible set of the primal problem (A.9) is
non-empty and compact (Bertsekas, 2009, Proposition 5.5.4). For any λ ≥ 0, the minimizer of the inner minimization
problem in (A.10a) is

y?(λ) =
w

1 + λ
.

Furthermore, this minimizer y?(λ) is unique for any λ ≥ 0 because the objective function of the inner minimization over
y in (A.10a) is strictly convex in y. Substituting this optimal solution into the objective of (A.10a) leads to (A.10b), and
substituting the value of w by x− µ̂ leads to the reformulation (A.9).

We now study the maximizer λ? of problem (A.10b). The Karush-Kuhn-Tucker condition asserts that there exists γ? ∈ R+

such that (λ?, γ?) satisfy the system of algebraic equations (1 + λ?)−2w>Ωw − γ? = ε
γ?λ? = 0

γ? ≥ 0, λ? ≥ 0.

If w>Ωw ≤ ε, then λ? = 0. If w>Ωw > ε, then

λ? =

√
w>Ωw

ε
− 1.

In both cases, λ? is unique. Substituting the value of λ? into the objective function of (A.10b) gives the analytical expression
for g(Ω).

We note that when ε = 0, we have g(Ω) = (x − µ̂)>Ω(x − µ̂). The expressions for λ? remain still valid in this case by
taking the limit as ε ↓ 0. Finally, the uniqueness of µ? follows from the uniqueness of λ? and y?(λ) obtained previously.
The proof is thus completed.

We are now ready to prove Theorem 3.1 in the main text.

Proof of Theorem 3.1. The optimistic nonparametric score evaluation problem can be decomposed using a two-layer
formulation (6) as

sup
Q∈Bρ(P̂)

Q({x}) = sup
(µ,Σ)∈Uρ(µ̂,Σ̂)

sup
Q∈M(µ,Σ)

Q({x}).

Using the result from Marshall & Olkin (1960) or Bertsimas & Popescu (2005, Theorem 6.1) to reformulate the inner
supremum problem, we have

sup
Q∈M(µ,Σ)

Q({x}) =
1

1 + (µ− x)>Σ−1(µ− x)
,

where the supremum is attained thanks to Bertsimas & Popescu (2005, Theorem 6.2) because the set {x} is a singleton, and
hence it is closed. This establishes equality (8a), where the maximization operator in the right hand side of (8a) is justified
because Uρ(µ̂, Σ̂) is compact by Lemma C.1 and the objective function is continuous over Uρ(µ̂, Σ̂).

It remains to find the optimal solution (µ?,Σ?) that solves the maximization problem (8a). If x = µ̂ then the optimal
value of problem (8a) is trivially 0. It suffices to consider the case when x 6= µ̂. Define ρ , ρ + d + log det Σ̂. Using a
reparametrization Ω← Σ−1, the maximizer (µ?,Σ?) also solves

min (µ− x)>Ω(µ− x)
s. t. µ ∈ Rd, Ω ∈ Sd++

(µ− µ̂)>Ω(µ− µ̂) + Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ.

(A.11)
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This optimization problem with decision variables (µ,Ω) is still a non-convex optimization problem because of the
multiplication terms between µ and Ω. However, it can be re-expressed as

min min (µ− x)>Ω(µ− x)

s. t. µ ∈ Rd, (µ− µ̂)>Ω(µ− µ̂) ≤ ρ− Tr
[
Σ̂Ω
]

+ log det Ω

s. t. Ω ∈ Sd++, Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ,

where we note that the constraint Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ is redundant, but it is added to ensure that the inner problem

over µ is feasible for any feasible value of Ω in the outer problem. Applying Lemma C.2 to solve the inner problem over µ
for any given Ω ∈ Sd++, problem (A.11) is equivalent to

min max
λ≥0

− λ(ρ− Tr
[
Σ̂Ω
]

+ log det Ω) + λ
1+λ (x− µ̂)>Ω(x− µ̂)

s. t. Ω ∈ Sd++, Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ.

For any Σ̂ ∈ Sd++ and ρ = ρ+ d+ log det Σ̂ ∈ R, the feasible set {Ω ∈ Sd++ : Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ} is compact1 and

convex. Moreover, the objective function is convex in Ω and concave in λ. Applying Sion’s minimax theorem (Sion, 1958),
we can interchange the operators and obtain an equivalent problem

max
λ≥0

min − λ(ρ− Tr
[
Σ̂Ω
]

+ log det Ω) + λ
1+λ (x− µ̂)>Ω(x− µ̂)

s. t. Ω ∈ Sd++ , Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ.

For any λ ≥ 0, we can use a duality argument to reformulate the inner minimization, and we obtain the equivalent problem

max
λ≥0

inf
Ω∈Sd++

max
ν≥0

− (λ+ ν)ρ− (λ+ ν) log det Ω + (λ+ ν) Tr
[
ΩΣ̂
]

+
λ

1 + λ
(x− µ̂)>Ω(x− µ̂)

= max
λ≥0
ν≥0

inf
Ω∈Sd++

−(λ+ ν)ρ− (λ+ ν) log det Ω + (λ+ ν) Tr
[
ΩΣ̂
]

+
λ

1 + λ
(x− µ̂)>Ω(x− µ̂),

where the interchange of the infimum operator with the innermost maximum operator is justified thanks to Bertsekas (2009,
Proposition 5.5.4). Using a change of variables γ ← λ+ ν, problem (A.11) is equivalent to

max
γ≥λ≥0

{
ϕ(γ, λ) , inf

Ω∈Sd++

−γρ− γ log det Ω + γ Tr
[
ΩΣ̂
]

+
λ

1 + λ
(x− µ̂)>Ω(x− µ̂)

}
.

If γ = λ = 0, we have ϕ(0, 0) = 0. For any λ ≥ 0 and γ ≥ λ such that γ > 0, the inner minimization admits the optimal
solution

Ω?(λ, γ) =
(

Σ̂ +
λ

γ(1 + λ)
(x− µ̂)(x− µ̂)>

)−1

. (A.12)

Furthermore, because γ > 0, the inner minimization problem has a strictly convex objective function over Sd++, in this case,
the minimizer Ω?(λ, γ) is unique. By substituting the value of the minimizer Ω?(λ, γ), we obtain

ϕ(γ, λ) = − γρ+ γ log det
(
Id +

λ

γ(1 + λ)
Σ̂−

1
2 (x− µ̂)(x− µ̂)>Σ̂−

1
2

)
= −γρ+ γ log

(
1 +

λ

γ(1 + λ)
(x− µ̂)>Σ̂−1(x− µ̂)

)
where Σ̂−

1
2 denotes the inverse of the unique principal square root of Σ̂. In the second equality, we have used Bernstein

(2009, Fact 2.16.3) which implies that

det(Id + ab>) = 1 + b>a ∀(a, b) ∈ Rd × Rd.
1Compactness follows from a reasoning similar to the proof of Lemma C.1, thus the details are omitted.
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In the next step, we show that for any γ ≥ λ, the optimal solution for the variable λ is λ?(γ) = γ. To this end, rewrite the
above optimization problem as a two-layer optimization problem

max
γ≥0

max
λ≥0
λ≤γ

ϕ(γ, λ).

This claim is trivial if γ = 0 because in this case, the only feasible solution for λ is λ?(0) = 0. If γ > 0, the gradient of ϕ in
the variable λ satisfies

∂ϕ

∂λ
=

γ(x− µ̂)>Σ̂−1(x− µ̂)

(1 + λ)(γ(1 + λ) + λ(x− µ̂)>Σ̂−1(x− µ̂))
≥ 0 ∀λ ∈ [0, γ],

which implies that at optimality, we have λ?(γ) = γ. Thus, we can eliminate the variable λ and obtain the equivalent
univariate optimization problem

max
γ≥0

− γρ+ γ log
(

1 +
1

1 + γ
(x− µ̂)>Σ̂−1(x− µ̂)

)
.

Converting this problem into a minimization problem gives the formulation (8d). By studying the objective function of (8d)
and its gradient and Hessian2, one can verify that this objective function is strictly convex and it tends to infinity as γ goes to
infinity. This implies that the minimizer γ? of (8d) exists and is unique. Let γ? be the minimizer of (8d), one can reconstruct
Σ? from (A.12) and µ? from Lemma C.2, which gives the expression (8c). This observation completes the proof.

D. Proof of Section 4
Proof of Theorem 4.1. Evaluating the optimistic score under the Gaussian assumption is equivalent to solving a non-convex
minimization problem

min
{

(µ− x)>Σ−1(µ− x) + log det Σ : (µ,Σ) ∈ Uρ(µ̂, Σ̂)
}
, (A.13)

where the minimization operator is justified by the compactness of the uncertainty set Uρ(µ̂, Σ̂) in Lemma C.1. Define
ρ , ρ+ d+ log det Σ̂. Using a reparametrization Ω← Σ−1, problem (A.13) admits an equivalent formulation

min min (µ− x)>Ω(µ− x)− log det Ω

s. t. µ ∈ Rd, (µ− µ̂)>Ω(µ− µ̂) ≤ ρ− Tr
[
Σ̂Ω
]

+ log det Ω

s. t. Ω ∈ Sd++, Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ,

where we emphasize that the constraint Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ is redundant to ensure the feasibility of the inner

problem over µ for each admissible Ω. Applying Lemma C.2 to solve the inner problem over µ for any given Ω ∈ Sd++,
problem (A.13) is equivalent to{

min max
λ≥0

− λ(ρ− Tr
[
Σ̂Ω
]
)− (λ+ 1) log det Ω + λ

1+λ (x− µ̂)>Ω(x− µ̂)

s. t. Ω ∈ Sd++, Tr
[
Σ̂Ω
]
− log det Ω ≤ ρ.

Follow a similar steps as in the proof of Theorem 3.1, we find that problem (A.13) is equivalent to

max
γ≥λ≥0

{
ϕ(γ, λ) , inf

Ω∈Sd++

−γρ− (γ + 1) log det Ω + γ Tr
[
ΩΣ̂
]

+
λ

1 + λ
(x− µ̂)>Ω(x− µ̂)

}
.

For any λ ≥ 0 and γ ≥ λ such that γ > 0, the inner minimization admits the optimal solution

Ω?(λ, γ) =
( γ

1 + γ
Σ̂ +

λ

(1 + γ)(1 + λ)
(x− µ̂)(x− µ̂)>

)−1

, (A.14)

2The closed form expressions can be found in Section E.
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By substituting the value of the minimizer Ω?(λ, γ), we obtain

ϕ(γ, λ) = (d+ log det Σ̂)− γρ− d(γ + 1) log
(

1 +
1

γ

)
+ (1 + γ) log

(
1 +

λ(x− µ̂)>Σ̂−1(x− µ̂)

γ(1 + λ)

)
,

If γ = λ = 0, we have ϕ(0, 0) = −∞ because the objective value in this case tends to −∞ as Ω tends to +∞. Thus
without loss of optimality, we can omit the variable γ = λ = 0 from the outer maximization problem because this set of
solution is never optimal. Problem (A.13) is hence equivalent to the following two-layer optimization problem

max
γ>0

max
0≤λ≤γ

ϕ(γ, λ), (A.15)

where we emphasize that the feasible set for γ is over the open set (0,+∞). For any γ > 0, the gradient of ϕ in λ satisfies

∂ϕ

∂λ
=

γ(1 + γ)(x− µ̂)>Σ̂−1(x− µ̂)

γ(1 + λ) + λ(x− µ̂)>Σ̂−1(x− µ̂)
≥ 0 ∀λ ∈ [0, γ],

which implies that the inner maximization problem in (A.15) admits the optimal solution λ?(γ) = γ. We thus have

max
γ>0

(d+ log det Σ̂)− γρ− d(γ + 1) log
(

1 +
1

γ

)
+ (1 + γ) log

(
1 +

(x− µ̂)>Σ̂−1(x− µ̂)

(1 + γ)

)
Dropping the constant term in the objective function and converting the problem into the minimization form results in
problem (11d) . By studying the objective function of (11d) and its gradient and Hessian3, one can verify that this objective
function is strictly convex and it tends to infinity as γ goes to infinity. This implies that the minimizer γ? of (11d) exists
and is unique. Let γ? be the minimizer of (11d), one can reconstruct Σ? from (A.14) and µ? from Lemma C.2, which give
expression (11c). This finishes the proof.

E. Calculations of the Gradients and Hessians
Throughout this section, we use the shorthand α = (x− µ̂)>Σ̂−1(x− µ̂) ≥ 0. Denote momentarily by ϕ1 : R+ → R the
objective function of problem (8d), that is,

ϕ1(γ) = γρ− γ log
(

1 +
α

1 + γ

)
.

The gradient and Hessian of ϕ1 are

∂ϕ1

∂γ
= ρ− log

(
1 +

α

1 + γ

)
+

γα

(1 + γ)[1 + γ + α]
,

∂2ϕ1

∂γ2
=
α(2 + 2γ + 2α+ αγ)

(1 + γ)2(1 + γ + α)2
≥ 0.

Now, denote momentarily by ϕ2 : R++ → R the objective function of problem (11d), that is,

ϕ2(γ) = γρ+ d(γ + 1) log
(

1 +
1

γ

)
− (1 + γ) log

(
1 +

α

(1 + γ)

)
.

The gradient and Hessian of ϕ2 are

∂ϕ2

∂γ
= ρ+ d

[
log
(

1 +
1

γ

)
− 1

γ

]
−
[
log
(

1 +
α

1 + γ

)
− α

1 + γ + α

]
,

∂2ϕ2

∂γ2
=

d

γ2(1 + γ)
+

α2

(1 + γ + α)2(1 + γ)
≥ 0.

3The closed form expressions can be found in Section E.
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