A. Proof that L is concave and positive.

We will use the notations previously introduced as well as:

$$
z_{p}=U_{n} x_{p}
$$

As $L(W)=\sum_{p} \ell\left(W, z_{p}\right)$, we will simply study $\forall z$,

$$
W \rightarrow \ell(W, z)=\|(\mathbf{I}-A) z\|^{2}-\|A|W z|\|^{2} .
$$

Observe first that if $\|\{W, A\}\| \leq 1$, then $\| A \mid \leq 1$, and:

$$
\|W z\| \leq\|(\mathbf{I}-A) z\|
$$

Thus,

$$
\||W z|\| \leq\|(\mathbf{I}-A) z\|
$$

and:

$$
\|A|W z|\| \leq\|(\mathbf{I}-A) z\| .
$$

Consequently, $\ell(W, z) \geq 0, \forall z, \forall W \in \mathcal{C}$. Furthermore, let $W_{1}, W_{2} \in \mathcal{C}$ two operators and $0 \leq \lambda \leq 1$. Then:

$$
\left|\left(\lambda W_{1}+(1-\lambda) W_{2}\right) z\right| \leq \lambda\left|W_{1}\right| z+(1-\lambda)\left|W_{2}\right| z
$$

where for $x \in \mathbb{R}^{n}, x \geq 0$ iff $x_{i} \geq 0$. If $A x>0$ when $x>0$, then:
$A\left|\left(\lambda W_{1}+(1-\lambda) W_{2}\right) z\right| \leq \lambda A\left|W_{1}\right| z+(1-\lambda) A\left|W_{2}\right| z \mid$,
which implies (as all coordinates are non negative):
$\left\|A\left|\left(\lambda W_{1}+(1-\lambda) W_{2}\right) z\right|\right\|^{2} \leq\left\|\lambda A\left|W_{1}\right| z+(1-\lambda) A\left|W_{2}\right| z \mid\right\|^{2}$,
yet one can use the fact that $z \rightarrow\|z\|^{2}$ is convex to conclude. Thus, $W \rightarrow \ell(W, z)$ is convex in W.

B. Proof of Proposition 3.5

Proof. Observe that \mathcal{F} linearly conjugates \mathcal{C} to $\{\hat{W} \in$ $\mathbb{C}^{(2 d+1) \times K}, \sum_{k=1}^{K}\left|\hat{W}^{k}[i]\right|^{2}+\left|W^{k}[2 d+1-i]\right|^{2}+|\hat{A}[i]|^{2}+$ $|\hat{A}[2 d+1-i]|^{2} \leq 1, \forall i \leq d, \sum_{k=1}^{K}\left|W^{k}[2 d+1]\right|^{2}+$ $\left.|\hat{A}[2 d+1]|^{2} \leq 1\right\}$. The extremal points of the latter are simply $\mathcal{S}^{\prime}=\left\{\hat{W} \in \mathbb{C}^{(2 d+1) \times K}, \sum_{k=1}^{K}\left|\hat{W}^{k}[i]\right|^{2}+\right.$ $\left|W^{k}[2 d+1-i]\right|^{2}+|\hat{A}[i]|^{2}+|\hat{A}[2 d+1-i]|^{2}=1, \forall i \leq$ $\left.d, \sum_{k=1}^{K}\left|W^{k}[2 d+1]\right|^{2}+|\hat{A}[2 d+1]|^{2}=1\right\}$, which is conjugated by \mathcal{F}^{*} to \mathcal{S}. But \mathcal{S}^{\prime} corresponds to the spectrum of an isometry, leading to the conclusion.

