Supplementary Material for Meta Variance Transfer: Learning to Augment from The Others

Seong-Jin Park¹ Seungju Han¹ Jiwon Baek¹ Insoo Kim¹ Juhwan Song¹ Hae Beom Lee² Jae-Joon Han¹ Sung Ju Hwang²

1. Detailed Network Architecture

The detailed network architectures used in our Meta Variance Transfer (MVT) are described in Table 1 and Table 2. Each table shows three networks for backbone θ , variance transfer ϕ , and manifold regularization δ . Table 1 describes the networks based on Conv4 architecture, while Table 2 describes the deeper networks bade on ResNet (He et al., 2016) architecture. For the Conv4 network, we additionally applied a max pooling to reduce the number of parameters for the final fully connected (FC) layer. Note that we used the same parameters for the FC1 and FC2 with simply applying a matrix transposition in the manifold regularization.

Table 1. Network architecture for Meta Variance Transfer using Conv4 backbone.

(a) Conv4-based backbone θ		
Layer	Conv4 ₊	
conv1	$[3 \times 3, 32]$, stride 2	
conv2	$[3 \times 3, 32]$, stride 2	
conv3	$[3 \times 3, 32]$, stride 2	
conv4	$[3 \times 3, 32]$, stride 2	
pooling	Max pooling	
	$(3 \times 3, \text{ stride } 2)$	
FC1	(288, 288)	

C	b)	Variance	transfer	network	¢
---	----	----------	----------	---------	---

Layer	Conv4 ₊
FC1	$(288 \times 4, 32)$
LeakyReLU	-
FC2	(32, 288)

(c) Manifold regularization δ

Layer	Conv4 ₊
$FC1_W_{\delta}$	(288, 32)
$\mathrm{FC2}_{-}\mathrm{W}_{\delta}^{T}$	(32, 288)

*Equal contribution ¹Samsung Advanced Institute of Technology ²KAIST. Correspondence to: Sung Ju Hwang <sjhwang82@kaist.ac.kr>.

Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Table 2. Network architecture for Meta Variance Transfer using ResNet backbone.

(a)	ResNet-based	backbone	θ
-----	--------------	----------	---

Layer	ResNet-10 ₊	ResNet-34 ₊
conv1	$[7 \times 7, 64]$], stride 2
pool1	$3 \times 3 \max p$	oool, stride 2
conv2	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 1$	$\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$
conv3	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 1, s2$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4, s2$
conv4	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 1, s2$	$\begin{bmatrix} 3 \times 3, 256\\ 3 \times 3, 256 \end{bmatrix} \times 6, s2$
conv5	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 1, s2$	$\begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3, s2$
pooling	Global Aver	age Pooling
FC1	(512,	,512)

Layer	ResNet ₊
FC1	$(512 \times 4, 64)$
LeakyReLU	-
FC2	(64, 512)

(c) Manifold regularization	δ
-----------------------------	---

Layer	ResNet ₊
$FC1_W_{\delta}$	(512, 64)
$FC2_W_{\delta}^T$	(64, 512)

2. Decoder Architecture for Visualization

The decoder architecture used in our experiment for the proof of concept is described in Table 3. Given pre-trained backbone network from our MVT meta-training, we trained the decoder by feeding the feature embedding e and reconstructing the original 112×112 input facial images. For each convolutional block, instead of deconvolution, we used a $2 \times$ upsampling by nearest neighbor interpolation followed by a 3×3 convolution. We additionally performed a instance normalization (Ulyanov et al., 2016) and a nonlinear

Layer	Decoder	
FC1	$(512, 7 \times 7 \times 512)$	
conv1	$\begin{bmatrix} 2 \times \text{Upsample} \\ 3 \times 3, 256 \\ \text{InstanceNorm} \\ \text{ReLU} \end{bmatrix}$	
conv2	$\begin{bmatrix} 2 \times \text{Upsample} \\ 3 \times 3, 128 \\ \text{InstanceNorm} \\ \text{ReLU} \end{bmatrix}$	
conv3	$\begin{bmatrix} 2 \times \text{Upsample} \\ 3 \times 3, 64 \\ \text{InstanceNorm} \\ \text{ReLU} \end{bmatrix}$	
conv4	$\begin{bmatrix} 2 \times \text{Upsample} \\ 3 \times 3, 32 \\ \text{InstanceNorm} \\ \text{ReLU} \end{bmatrix}$	
conv5	$[3 \times 3, 3]$	

Table 3. Decoder network architecture for image visualization from a feature embedding *e*.

ReLU for each block. The final output is a $112\times112\times3$ image.

References

- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Ulyanov, D., Vedaldi, A., and Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.