
Regularized Optimal Transport is Ground Cost Adversarial

A. Proofs
A.1. Proof for Proposition 1

Proof. Let π? be a minimizer of (3). Then using the op-
timality condition for supc∈C(X 2)

∫
c dπ − F ∗(c), any c

such that π? ∈ ∂F ∗(c) is a best response to π?. But
by Fenchel-Young inequality, such c are exactly those in
∂F (π?) = {∇F (π?)}. Since ∇F (π?) is the unique best
response to π?, it is necessarily optimal in (4). Conversely,
if there is a unique maximizer c?, then as a result of the
above, c? = ∇F (π?) for some minimizer π? of the primal.
Then ∇F ∗(c?) is optimal in the primal.

A.2. Proof for Remark 2

Proof. As in the proof of Theorem 1:

inf
π∈Π(µ,ν)

F (π) = inf
π∈Π(µ,ν)

−(−F )∗∗(π)

= inf
π∈Π(µ,ν)

− sup
c∈C(X 2)

∫
c dπ − (−F )∗(c)

= inf
π∈Π(µ,ν)

inf
c∈C(X 2)

∫
−c dπ + (−F )∗(c)

= inf
π∈Π(µ,ν)

inf
c∈C(X 2)

∫
c dπ + (−F )∗(−c)

= inf
c∈C(X 2)

Tc(µ, ν) + (−F )∗(−c).

A.3. Proof for Proposition 2

Proof. As in the proof of Theorem 1, we use Sion’s mini-
max theorem to get

sup
c∈Rn×n

+

min
π∈Π(µ,ν)

〈c,π〉 − ε
∑
ij

R∗ij

(
cij − c0ij

ε

)

= min
π∈Π(µ,ν)

sup
c∈Rn×n

+

〈c,π〉 − ε
∑
ij

R∗ij

(
cij − c0ij

ε

)
.

Since the optimization in c ∈ Rn×n+ is separable, we only
need to consider this optimization coordinate by coordinate,
i.e. we only need to compute supcij∈R+

πijcij − f∗ij(cij)
for all i, j ∈ JnK, where f∗ij(cij) = εR∗ij

(
cij−c0ij

ε

)
.

Fix π ∈ Π(µ,ν) and i, j ∈ JnK, and define gij : R 3
cij 7→ πijcij − f∗ij(cij).

Suppose that zij = f ′ij(πij) ≥ 0. Then

fij(πij) = f∗∗ij (πij) = gij(zij) = sup
cij∈R

gij(cij),

and since zij ≥ 0, supcij∈R+
gij(cij) = fij(πij). This

means that R̂ij(πij) = Rij(πij).

Suppose now that zij = f ′ij(πij) < 0. This means that

sup
cij∈R+

gij(cij) < sup
cij∈R

gij(cij).

Since gij is concave, this shows that supcij∈R+
gij(cij) =

gij(0) = −f∗ij(0), i.e. R̂ij(πij) =
−c0ij

ε πij −
R∗ij

(
−c0ij

ε

)
.

Since Rij is convex, R′ij is increasing with pseudo-inverse
R∗ij
′. Furthermore, the optimality condition in the convex

conjugate problem gives, for any α ∈ R:

R∗ij(α) = α×R∗ij
′(α)−Rij ◦R∗ij

′(α).

So if Rij is of class C1, taking α =
−c0ij

ε , as x increases
to R∗ij

′ (−c0ij

ε

)
:

R̂ij(x) −→ Rij ◦R∗ij
′
(
−
c0ij

ε

)
= R̂ij ◦R∗ij

′
(
−
c0ij

ε

)
,

meaning that R̂ij is of class C1.

A.4. Proof for Example 3

Proof. We denote by sgn(x) the set {+1} if x > 0, {−1}
if x < 0 and [−1, 1] if x = 0. We apply Corollary 1 with
R : Rn×n → R defined as R(π) = 1

p‖π‖
p
w,p, for which

we need to compute its convex conjugate:

R∗(c) = sup
π∈Rn×n

〈π, c〉 − 1

p

∑
ij

wij |πij |p.

Subdifferentiating with respect to πij :

cij ∈
1

p
wij

∂

∂πij
|πij |p

= wij sgn(πij)|πij |p−1

This implies that sgn(πij) = sgn(cij), so:

πij = sgn(cij)

∣∣∣∣ cijwij

∣∣∣∣q−1

.

Finally,

R∗(c) =
∑
ij

cij sgn(cij)

∣∣∣∣ cijwij

∣∣∣∣q−1

− 1

p
wij

∣∣∣∣ cijwij

∣∣∣∣q
=

1

q

∑
ij

1

wq−1
ij

|cij |q

=
1

q
‖c‖q

1/wq−1,q
.
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A.5. Proof for Example 6

Proof. Since π ∈ Π(µ,ν),
∑
ij πij = 1 so we can drop

it for now and only consider the term R(π) = 1
q−1‖π‖

q
q

which is separable in the coordinates of π:

R(π) =
∑
ij

f(πij)

where we have defined the convex function

f(x) =

{
1
q−1x

q if x ≥ 0

+∞ otherwise.

We compute its convex conjugate:

f∗(y) = sup
x≥0

{
xy − 1

q − 1
xq
}

=

{(
y
p

)p
if y ≤ 0

+∞ if y > 0

where p = q
q−1 ≤ 0 is such that 1/p + 1/q = 1. Then

R∗(c) = +∞ if c has a positive entry, and over Rn×n− :

R∗(c) =
∑
ij

f∗(cij) =
∑
ij

(
cij
p

)p
=
∑
ij

(
−cij
−p

)p
= (−p)−p

∑
ij

(
1

−cij

)−p
.

Adding the term ε
1−q we left aside to the result of Corol-

lary 1, we find that Tsallis regularized OT is equal to:

sup
c∈Rn×n

Tc(µ,ν)− εR∗
(
c− c0

ε

)
+

ε

1− q

= sup
c∈Rn×n

c≤c0

Tc(µ,ν)− ε(−p)−p
∑
ij

[
ε

c0ij − cij

]−p
+

ε

1− q

= sup
c∈Rn×n

c≤c0

Tc(µ,ν)− ε
1

1−q (−p)−p
∑
ij

[
1

c0ij − cij

]−p
+

ε

1− q

= sup
c∈Rn×n

c≤c0

Tc(µ,ν)− ε
1

1−q (−p)−p
∥∥∥∥ 1

c0 − c

∥∥∥∥−p
−p

+
ε

1− q
.

A.6. Proof for Subsection 7.2

Entropic OT In the case of entropic OT,

F (π) = 〈π, c0〉+ ε
∑
ij

πij [logπij − 1] ,

so

F ∗(c) = ε
∑
ij

exp

(
cij − c0ij

ε

)
and

∇F ∗(c) =

[
exp

(
cij − c0ij

ε

)]
ij

.

Then the system of equations (13) (14) is:

∀i, µi =
∑
j

exp

(
φ?i +ψ?j − c0ij

ε

)
= exp(φ?i/ε) [K exp(ψ?/ε)]i

∀j, νj =
∑
i

exp

(
φ?i +ψ?j − c0ij

ε

)
= exp(ψ?j/ε)

[
K> exp(φ?/ε)

]
j

where K = exp(−c0/ε) ∈ Rn×n and exp is taken elemen-
twise. Then solving alternatively for φ and ψ is exactly
Sinkhorn algorithm.

Quadratic OT In the case of quadratic OT, using the no-
tations and results from example 8:

F (π) = 〈π, c0〉+ εϕ2(πij),

and
F ∗(c) =

1

2ε

∑
ij

[(
cij − c0ij

)
+

]2
.

Then:
∇F ∗(c) =

1

ε
(c− c0)+ .

The system of equations (13) (14) is:

∀i, εµi =
∑
j

(
φ?i +ψ?j − c0ij

)
+

∀j, ενj =
∑
i

(
φ?i +ψ?j − c0ij

)
+

which is what (Blondel et al., 2018) solve in their appendix
B.


