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Abstract
We present an explicit deep neural network
construction that transforms uniformly dis-
tributed one-dimensional noise into an arbitrar-
ily close approximation of any two-dimensional
Lipschitz-continuous target distribution. The key
ingredient of our design is a generalization of
the “space-filling” property of sawtooth func-
tions discovered in (Bailey & Telgarsky, 2018).
We elicit the importance of depth—in our neu-
ral network construction—in driving the Wasser-
stein distance between the target distribution and
the approximation realized by the network to
zero. An extension to output distributions of ar-
bitrary dimension is outlined. Finally, we show
that the proposed construction does not incur a
cost—in terms of error measured in Wasserstein-
distance—relative to generating d-dimensional
target distributions from d independent random
variables.

1. Introduction
Deep neural networks have been used very successfully as
generative models for complex natural data such as im-
ages (Radford et al., 2016; Karras et al., 2019) and natural
language (Bowman et al., 2016; Xu et al., 2018). Specifi-
cally, the idea is to learn the parameters of deep networks
(Kingma & Welling, 2014; Goodfellow et al., 2014) so that
they realize complex high-dimensional probability distri-
butions by transforming samples taken from simple low-
dimensional distributions such as uniform or Gaussian.

Generative networks with higher output than input dimen-
sion occur, for instance, in language modelling where deep
networks are used to predict the next word in a text se-
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quence. Here, the input layer size is determined by the
dimension of the word embedding (typically ∼ 100) and
the output layer, representing a vector of probabilities for
each of the words in the vocabulary, is of the size of the
vocabulary (typically ∼ 100k). Another example where
the dimensionality of the input distribution is mandated to
be lower than that of the output distribution is given by
the variational inference methods according to (Kingma &
Welling, 2014; Tolstikhin et al., 2018).

Notwithstanding the practical success of deep generative
networks, a profound theoretical understanding of their
representational capabilities is still lacking. First results
along those lines appear in (Lee et al., 2017), which es-
tablishes that generative networks can approximate distri-
butions arising from the composition of Barron functions
(Barron, 1993).

Bailey and Telgarsky (Bailey & Telgarsky, 2018) show how
deep ReLU networks can be used to increase the dimen-
sionality of uniform distributions and how a univariate uni-
form distribution can be turned into a univariate Gaussian
distribution and vice versa. Finally, (Lu & Lu, 2020) shows
that neural networks constitute universal approximators for
continuous probability distributions when source and target
distribution are of the same dimension.

Classical approaches for generating multi-dimensional ran-
dom variables of a given distribution such as the Box-
Muller method (Box & Muller, 1958) or conditional dis-
tribution, rejection, and composition methods (Devroye,
1986) are all based on transforming initial distributions
of the same dimensionality as the target distribution. We
are not aware of methods that map one-dimensional inputs
to prescribed d-dimensional outputs. The purpose of the
present paper is to show that deep generative networks are
capable of doing exactly that and moreover are also univer-
sal generators, in contrast to, e.g., the Box-Muller method
(Box & Muller, 1958), which maps uniform distributions
to Gaussian distributions, albeit with zero error. We also
quantify how the connectivity of the resulting networks
scales with the approximation error measured in Wasser-
stein distance.

The problem is approached in two steps. Specifically,
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given a two-dimensional Lipschitz-continuous target dis-
tribution, we first find the (two-dimensional) histogram dis-
tribution that best approximates it—for a given histogram
resolution—in Wasserstein distance. The resulting his-
togram distribution is then realized by a ReLU network
driven by a uniform univariate input distribution. To this
end, we develop a new space-filling property of ReLU net-
works, generalizing that discovered in (Bailey & Telgar-
sky, 2018). The main conceptual insight of this paper is
that generating arbitrary d-dimensional target distributions,
with d ≥ 2, from a one-dimensional uniform distribution
through a deep neural network does not come at a cost—
in terms of approximation error measured in Wasserstein
distance—relative to generating the target distribution from
d independent random variables. We emphasize that the
generating network has to be deep, in fact the depth has
to go to infinity to obtain the same error in Wasserstein-
distance as a construction from d independent random vari-
ables would yield.

We finally note that our results pertain only to represen-
tational capabilities of generative (ReLU-)networks and
we do not consider the problem of learning the network
weights and biases.

1.1. Notation and Definitions

We denote the set of integers in the range [1, n] by [[1, n]].
U(∆) stands for the uniform distribution on the interval ∆,
when ∆ = [0, 1], we simply write U . Given a probability
distribution with pdf p, we denote the push-forward of p
under the function f as f#p. For a given compact set C,
we let pX(x ∈ C) =

∫
C pX(x)dx. We define ReLU neural

networks as follows.

Definition 1.1. Let L,N0, N1, . . . , NL ∈ N, L ≥ 2. A
map Φ : RN0 → RNL given by

Φ(x) =

{
W2(ρ (W1(x))), L = 2

WL(ρ (WL−1(ρ (. . . ρ (W1(x)))))), L ≥ 3
,

with affine linear maps W` : RN`−1 → RN` ,
` ∈ {1, 2, . . . , L}, and the ReLU activation function
ρ(x) = max(x, 0), x ∈ R, acting component-wise (i.e.,
ρ(x1, . . . , xN ) := (ρ(x1), . . . , ρ(xN ))) is called a ReLU
neural network. The map W` corresponding to layer ` is
given by W`(x) = A`x + b`, with A` ∈ RN`×N`−1 and
b` ∈ RN` . We define the network connectivity M(Φ) as
the total number of non-zero entries in the matrices A`,
` ∈ {1, 2, . . . , L}, and the vectors b`, ` ∈ {1, 2, . . . , L}.
The depth of the network or, equivalently, the number of
layers is L(Φ) := L and its width is given by W(Φ) :=
max`=0,...,LN`. We denote by Nd,d′ the set of ReLU net-
works with input dimension N0 = d and output dimension
NL = d′.

We measure the distance between distributions in terms of
Wasserstein distance defined as follows.
Definition 1.2. Let µ and ν be distributions on Rd and
denote the set of distributions on Rd × Rd whose first and
second marginals coincide with µ and ν, respectively, by∏

(µ, ν). Then, the Wasserstein distance between µ and ν
is defined as

W (µ, ν) := inf
π∈

∏
(µ,ν)

∫
|x− y|dπ(x, y),

where the elements of the set
∏

(µ, ν) are called couplings
of µ and ν.
Definition 1.3. For distributions µ and ν on Rd with cor-
responding pdfs pµ, pν supported on Ω ⊂ Rd, the total
variation (TV) distance is defined as

TV (µ, ν) :=
1

2
||pµ − pν ||L1(Ω).

The following relation between Wasserstein distance and
TV-distance was found in (Gibbs & Su, 2002).
Theorem 1.4. (Gibbs & Su, 2002) For distributions µ and
ν on Rd with pdfs pµ, pν supported on Ω ⊂ Rd, the Wasser-
stein distance and the TV-distance satisfy

W (µ, ν) ≤ diam(Ω) · TV (µ, ν),

where diam(Ω) = sup{|x− y| : x, y ∈ Ω}.

Next, we define d-dimensional histogram distributions.
Definition 1.5. A random vector X = (X1, X2, . . . , Xd) is
said to have a general histogram distribution of resolution
n on the d-dimensional unit cube, denoted as X ∼ G[0, 1]dn,
if for some 0 = tj0 < tj1 < · · · < tjn = 1, j ∈ [[1, d]], its
pdf is given by

p(x) =
∑
k

wkχck(x),
∑
k

wk

d∏
j=1

(tjij+1 − t
j
ij

) = 1,

wk > 0, for all k ∈ [[0, n− 1]]d,

where k = (i1, i2, . . . , id) ∈ [[0, n − 1]]d is an index
vector and χck(x) is the characteristic function of the d-
dimensional cube ck = [t1i1 , t

1
i1+1] × [t2i2 , t

2
i2+1] × · · · ×

[tdid , t
d
id+1].

We will mostly be concerned with histogram distributions
of uniform tile size, defined as follows.
Definition 1.6. A random vector X = (X1, X2, . . . , Xd)
is said to have a histogram distribution of resolution n on
the d-dimensional unit cube, denoted as X ∼ E [0, 1]dn, if
its pdf is given by

p(x) =
∑
k

wkχck(x),
∑
k

wk = nd,

wk > 0, for all k ∈ [[0, n− 1]]d,
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where k = (i1, i2, . . . , id) ∈ [[0, n − 1]]d is an index
vector and χck(x) is the characteristic function of the d-
dimensional cube ck = [i1/n, (i1 + 1)/n] × [i2/n, (i2 +
1)/n]× · · · × [id/n, (id + 1)/n].

Remark 1.7. For ease of exposition, in Definitions 1.5 and
1.6, we let ck be a product of closed intervals, thus allow-
ing the breakpoints to belong to different cubes. While this
comes without loss of generality, for concreteness, it is un-
derstood that the value of the pdf at the breakpoints is the
average across the cubes the corresponding breakpoint be-
longs to.

2. Universal approximation
As mentioned in the introduction, the intermediate step in
our construction consists of a ReLU network that turns a
univariate one-dimensional input distribution into a two-
dimensional histogram distribution. This histogram distri-
bution is then chosen such that it approximates the two-
dimensional Lipschitz-continuous target distribution. To
understand why we chose this two-step approach, note that
ReLU networks generate piecewise linear functions and the
pushforward f#U of any piecewise linear f : R → R
yields a histogram distribution. We start by quantifying the
TV distance between an arbitrary distribution and a his-
togram distribution of resolution n.

Theorem 2.1. Let p be a d-dimensional L-Lipschitz-
continuous pdf of finite differential entropy on its support
[0, 1]d. Then, for every n > 0, there exists a p̃ ∈ E [0, 1]dn
such that

TV (p, p̃) =
1

2
‖p− p̃‖L1([0,1]d) ≤

L
√
d

2n
.

Proof. The proof is based on the Mean Value Theorem,
which states that, for any continuous d-dimensional func-
tion p supported on Ω ∈ Rd, there exists a z ∈ Ω, such
that ∫

Ω

p(x)dx = p(z)

∫
Ω

dx. (1)

Next, we divide the unit cube [0, 1]d into the nd cubes ck
per Definition 1.6. Take an arbitrary k ∈ [[0, n − 1]]d and
fix zk according to Equation 1 with Ω = ck. Then, using
the Lipschitz property of p, we obtain

‖p(x)− p(zk)‖L1(ck) =

∫
ck

|p(x)− p(zk)|dx

≤
∫
ck

L|x− zk|dx ≤
∫
ck

L

√
d

n
dx = L

√
d

n
· 1

nd
.

We set
p̃(x) =

∑
k

p(zk)χck(x)

and note that p̃ ∈ E [0, 1]dn as
∑

k p(zk) = nd owing to
Equation 1; moreover, p(zk) > 0, for all k, as p is of finite
differential entropy on [0, 1]d. Finally, summing up across
all cubes ck, we obtain

‖p− p̃‖L1([0,1]d) =

∫
[0,1]d

|p(x)− p̃(x)|dx

≤
∑
k

∫
ck

L|x− zk|dx ≤ L
√
d

n
.

Henceforth, we shall always assume that probability den-
sity functions p are of finite differential entropy on their
support, without explicitly declaring it.

We are now ready to state the main result of the paper, the
proof of which is largely based on Theorem 4.4 below.

Theorem 2.2. Let pX,Y be an L-Lipschitz-continuous pdf
supported on [0, 1]2. Then, for every n > 0, there exists a
Φ ∈ N1,2 with connectivityM(Φ) ≤ 88(n2 + ns) and of
depth L(Φ) = s+ 5, such that

W (Φ#U, pX,Y ) ≤ L
√

2

2n
+

2
√

2

n2s
.

Proof. Combining Theorem 2.1 with Theorem 1.4, we ob-
tain that for every n > 0, there exists a p̃ ∈ E [0, 1]2n such
that

W (p, p̃) ≤ L

n
.

On the other hand, it follows from Theorem 4.4 that, for
every p̃ ∈ E [0, 1]2n, there exists a neural network Φ ∈ N1,2

with connectivity M(Φ) ≤ 88(n2 + ns) and of depth
L(Φ) = s+ 5 such that

W (Φ#U, p̃) ≤ 2
√

2

n2s
.

We finalize the proof by application of the triangle inequal-
ity for Wasserstein distance (Clement & Desch, 2008) to
get

W (Φ#U, p) ≤W (Φ#U, p̃)

+W (p, p̃) =
L

n
+

2
√

2

n2s
.

The error bound in Theorem 2.2 illustrates the main con-
ceptual insight of this paper, namely that generating ar-
bitrary two-dimensional Lipschitz-continuous distributions
from a one-dimensional uniform distribution through a
deep neural network does not come at a cost—in terms
of Wasserstein-distance error—relative to generating this
two-dimensional target distribution from two independent
random variables. Specifically, if we let the depth s of the
generating network go to infinity, the second term in the
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error bound will go to zero exponentially fast in s leaving
us only with the first term, which reflects the error stem-
ming from the histogram approximation of the distribution.
Moreover, this first term is inversely proportional to the his-
togram resolution n and linear in the Lipschitz constant
and can thus be made arbitrarily small by letting the his-
togram resolution n approach infinity. The width of the
corresponding generating network will grow according to
n2. When the target distribution is uniform, we recover
the result in (Bailey & Telgarsky, 2018). The intermediate
step via histogram distributions was not needed in (Bailey
& Telgarsky, 2018) as Bailey and Telgarsky only consid-
ered mapping uniform input distributions to uniform output
distributions. Finally, we note that our result carries over
to general d-dimensional output distributions; we briefly
comment on this extension in Section 5.

3. ReLU networks and histograms
This section systematically establishes the connection be-
tween ReLU networks and histogram distributions. Specif-
ically, we show that the pushforward of a uniform distribu-
tion under a piecewise linear function results in a histogram
distribution. We will also identify, for a given histogram
distribution, the corresponding piecewise linear function
generating it under pushforward of a uniform distribution.
Combined with the insight that ReLU networks always re-
alize piecewise linear functions, we will have established
the desired connection.

We start with a simple auxiliary result.

Lemma 3.1. Let a, b ∈ R, a < b,∆ = [a, b], and let
h(x) = mx+s, for x ∈ R, withm ∈ R\{0}, s ∈ R. Then,
Q = h#U(∆) is uniformly distributed on [ma+s,mb+s],
for m > 0, and on [mb+ s,ma+ s], for m < 0.

Proof. The pdf of the pushforward of a general random
variable with pdf p(x) under the general function h(x) is

q(y) = p(h−1(y))

∣∣∣∣ ddyh−1(y)

∣∣∣∣ .
Particularized to h−1(y) = y−s

m and p(x) = 1
b−aχ∆(x),

this yields

q(y) =

{
1

m(b−a) , if y ∈ [ma+ s,mb+ s]

0, otherwise

for m > 0, and

q(y) =

{
1

|m|(b−a) , if y ∈ [mb+ s,ma+ s]

0, otherwise

for m < 0.

We next show that the pushforward of a uniform distribu-
tion under a piecewise linear function always results in a
histogram distribution.

Theorem 3.2. For any piecewise linear continuous func-
tion f : R → R, such that f(x) ∈ [0, 1],∀x ∈ [0, 1],
and f(0) = 0, f(1) = 1, there exists an n, such that
f#U ∈ G[0, 1]1n.

Proof. As f is piecewise linear, we can split its support
interval into t ∈ N intervals Ii, i ∈ [[0, t−1]], on which it is
linear. We hence have

⋃t−1
j=0 Ij = supp(f). The pdf of q =

f#U can now be computed by conditioning on U being
in the interval Ij and summing up the contributions of the
individual intervals. Using the law of total probability and
the chain rule, we find that

q(y) =

t−1∑
j=0

q(y|u ∈ Ij)P(u ∈ Ij).

As U is uniform, it is also uniform conditional on being in
a given interval Ij . By Lemma 3.1 it therefore follows that
q(y|x ∈ Ij) is uniform, ∀j ∈ [[0, t−1]], and can be written
as q(y|x ∈ Ij) =

χRj

|Rj | , for some interval Rj ⊆ [0, 1].
Setting wj = P(x ∈ Ij), the density q(y) thus has the form

q(y) =

t−1∑
j=0

wj
χRj

|Rj |
.

By continuity of f and the boundary conditions f(0) =
0, f(1) = 1, we know that

⋃
j Rj = [0, 1]. Since q(y) is

a step function, there exists a histogram resolution n such
that q(y) ∈ G[0, 1]1n.

We will also need the converse to the result just established,
in particular a constructive version thereof explicitly iden-
tifying the piecewise linear function that leads to a given
histogram distribution under pushforward of a uniform dis-
tribution on the interval [0, 1].

Theorem 3.3. Let pX(x) be a pdf in G[0, 1]1n with weights
wk, k ∈ [[0, n − 1]], and breakpoints 0 = t0 < t1 <
· · · < tn = 1, and let a0 = 1

w0
, ai = 1

wi
− 1

wi−1
, b0 = 0,

bi =
∑i−1
j=0(tj+1 − tj)wj , i ∈ [[1, n]]. Then,

f(x) =

n−1∑
i=0

ai max(0, x− bi)

is the piecewise linear map satisfying f#U = pX(x).

Proof. Let Ii := [bi, bi+1], i ∈ [[0, n − 1]]. Then,⋃
i∈[[0,n−1]] Ii = [0, 1] and for all i ∈ [[0, n− 1]], the func-

tion f(x) is linear on Ii with slope equal to
∑i
j=0 aj =

1/wi. Next, note that the interval Ii is mapped under
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f(x) to the interval I(1/wi)
i = [f(bi), f(bi) + (bi+1−bi)

wi
] =

[ti, ti+1]. The proof is concluded upon observing that by
Lemma 3.1, the pdf value of f#U corresponding to the
linear piece Ii equals 1

1
wi

= wi.

We finally note that ReLU networks always realize piece-
wise linear functions and hence when pushing forward uni-
form distributions produce histogram distributions. This
extends to arbitrary dimensions, i.e., for any ReLU net-
work Φ ∈ Nd,d′ , the pushforward Φ#U [0, 1]d results in
a histogram distribution.

4. Generating two-dimensional distributions
with ReLU networks

We next develop a new space-filling property of ReLU
networks, generalizing the one discovered in (Bailey &
Telgarsky, 2018), and then show how this idea can be
used to produce arbitrarily accurate approximations of two-
dimensional histogram distributions through deep neural
networks driven by univariate uniform input distributions.

Our construction is based on higher-order sawtooth func-
tions obtained as follows. Consider the sawtooth function
g : [0, 1]→ [0, 1],

g(x) =

{
2x, if x < 1

2 ,

2(1− x), if x ≥ 1
2 ,

let g1(x) = g(x), and define the “sawtooth” function of
order s as the s-fold composition of g with itself according
to

gs := g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
s

, s ≥ 2. (2)

Next, we note that g can be realized by a 2-layer ReLU
network Φg ∈ N1,1 of connectivityM(Φg) = 8 according
to Φg(x) = W2(ρ(W1(x)) = g(x) with

W1(x) =

1
1
1

x −
 0

1/2
1

, W2(x) =
(
2 −4 2

)x1

x2

x3

.
The s-order sawtooth function gs can hence be realized by
a ReLU network Φsg ∈ N1,1 with connectivity M(Φ) =
11s− 3, and of depth L(Φ) = s+ 1 according to Φsg(x) =
W2(ρ(Wg(ρ(. . .Wg︸ ︷︷ ︸

s−1

(ρ(W1(x))))))) = gs(x) with

Wg(x) =

2 −4 2
2 −4 2
2 −4 2

x1

x2

x3

−
 0

1/2
1

 .

Next, we need an auxiliary result on the pushforward—
under shifted and scaled versions of g—of uniformly dis-
tributed random variables.

Lemma 4.1. Fix pX ∈ E [0, 1]1n with weights wk and let f
be the piecewise linear function according to Theorem 3.3,
such that f#U = pX . Fix H ∈ N, 0 < a < b, ∆ = [a, b],
and let cih := [i/n+h/H, i/n+(h+1)/H], i ∈ [[0, n−1]],

h ∈ [[0, H−1]]. Then,
(
f(g((·−a)/(b−a)))#U(∆)

)
(x ∈

cih) = pX(x ∈ cih) = wi/H , for all i ∈ [[0, n − 1]],
h ∈ [[0, H − 1]].

Proof. Follows from the symmetry of g(x) and the proof
of Theorem 3.3.

The following result constitutes an important technical in-
gredient of our space-filling idea.

Lemma 4.2. Let f(x) be a continuous function on [0, 1],
with f(0) = 0. Then, for all s ∈ N,

f(gs(x)) =

2s−1−1∑
k=0

f
(
g(2s−1x− k)

)
,

and for all k ∈ [[0, 2s−1 − 1]],

supp
(
f
(
g(2s−1x− k)

))
=

(
k

2s−1
,
k + 1

2s−1

)
.

Proof. We first note that s-order sawtooth functions satisfy
(Telgarsky, 2016)

gs(x) =

2s−1∑
k=0

g(2s−1x− k),

with g(2s−1x−k) supported in
(

k
2s−1 ,

k+1
2s−1

)
. Since f(0) =

0, the support of f(g(2s−1x − k)) coincides with the sup-
port of g(2s−1x− k). Hence,

f(gs(x)) = f

( 2s−1∑
k=0

g(2s−1x− k)

)

=

2s−1−1∑
k=0

f
(
g(2s−1x− k)

)
.

We next present a result showing that two-dimensional his-
togram distributions that are constant with respect to one
of its dimensions, can be realized efficiently by deep ReLU
networks.

Theorem 4.3. For any pX,Y (x, y) ∈ E [0, 1]2n with weights
wk1,k2 = wk2 , k1, k2 ∈ [[0, n−1]], there exists a Φ ∈ N1,2

with connectivity M(Φ) ≤ 6n + 24s + 2 and of depth
L(Φ) = s+ 3, such that

W (Φ#U, pX,Y ) ≤ 2
√

2

2s
.
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Figure 1. Generating a histogram distribution via the transport
map (x, f(gs(x))). Left—the function f(x), center—f(g4(x)),
right—a heatmap of the resulting histogram distribution.

Figure 2. Generating a general 2-D histogram distribution. Left—
the function f1 = f3, center—

∑3
i=0 fi

(
g3

(
4x − i)

))
, right—

a heatmap of the resulting histogram distribution. The function
f0 = f2 is depicted on the left in Figure 1.

The transport map realized by the network in Theorem
4.3 is based on the generalized space-filling construction
f(gs(x)), which has “teeth” in the form of f(x). For an
illustration see Figure 1.

Now consider a general histogram distribution pX,Y (x, y)
in E [0, 1]2n. We make use of the fact that the marginals
and the conditional distributions of a two-dimensional his-
togram distribution are (one-dimensional) histogram distri-
butions and realize pX,Y (x, y) according to pX,Y (x, y) =

pX(x)
∑n−1
i=0 pY |X(y|x ∈ [i/n, (i + 1)/n]). The formal

statement is as follows.

Theorem 4.4. For every distribution pX,Y (x, y) in
E [0, 1]2n, there exists a Ψ ∈ N1,2 with connectivity
M(Ψ) < 88(n2 + ns) and of depth L(Ψ) = s + 5, such
that

W (Φ#U, pX,Y ) ≤ 2
√

2

n2s
.

The transport map realized by the network in Theorem 4.4
effectively implements a weighted sum of localized trans-
port maps according to Theorem 4.3 and corresponding to
the marginals pY (y|x ∈ [i/n, (i+ 1)/n]), i = [[0, n− 1]].
For an illustration see Figure 2.

We remark that choosing s ∼ n, makes the error in The-
orem 4.4 decay exponentially in n while the connectivity
of the network is in O(n2); this behavior is asymptotically
optimal as the number of parameters in E [0, 1]2n is of the
same order. Moreover, we note that Theorem 4.4 gener-
alizes (Bailey & Telgarsky, 2018)[Theorem 2.1] from uni-

form target distributions to arbitrary ones through the his-
togram approximation method and the novel space-filling
transport map construction developed in the proof of The-
orem 4.3. This construction can be interpreted as a trans-
port operator in the sense of optimal transport theory (Peyré
& Cuturi, 2019; Villani, 2008), with the source distribu-
tion being one-dimensional and the target-distribution two-
dimensional.

5. Higher dimensions
The extension of our main result to target distributions of
dimension higher than 2 follows the same general storyline
as our 2-D results above, i.e., we approximate the target dis-
tribution by a histogram distribution, realize this histogram
distribution through a transport map, and then show how
this transport map can be implemented by a deep ReLU
network. The transport map our extension is based on does
not follow as a generalization of that for the 2-D case, but
is based on an alternative idea.

Theorem 5.1. Let d, n ∈ N. For every pX ∈ E [0, 1]dn,
there exists a Ψ ∈ N1,d with connectivity M(Ψ) ≤ 22 ·
2d(nd + nd−1s) and of depth L(Ψ) = (d− 1)(s+ 3) + 2,
such that

W (Ψ#U [0, 1], pX) ≤
√
d

n2s
.

The transport map underlying this result is based on the
following functions. Let s ∈ N, ∆ = [a, b] ⊂ [0, 1], set
b̃ = a+ 2s(b−a)

1+2s , and define

g∆
s (x) :=

1

n
gs

(
x− a
b− a

)
,

h∆
s (x) := g∆

s

(
x− a
b̃− a

)
+

1

n(b− b̃)
(ρ(x− b̃)− ρ(x− b)).
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Figure 3. Plots of g∆
s (x) (left) and h∆

s (x) (right) with n = 1, a =
0, b = 1, s = 2.

Rather than providing the full details, which are notation-
ally very cumbersome, for illustration purposes, we specify
the transport map for the special case d = 2 and n = 2k,
for some k ∈ N.
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Figure 4. Generating the 2-D histogram distribution using the
alternative method. Top-left—the function fmarg(g(x)), top-
right—the function z(x) = g

[0,1/4]
2 (x) + h

[1/4,1/2]
2 (x) +

g
[1/2,3/4]
2 (x) + g

[3/4,1]
2 (x), bottom-left—plot of the map x →

(fmarg(g(x)), z(x)), bottom-right—heatmap of the generated dis-
tribution.

Let pX,Y (x, y) ∈ E [0, 1]2n have weights wk and de-
note the piecewise linear function corresponding to the
marginal histogram distribution pX according to Theo-
rem 3.3 by fmarg. Note that the marginal histogram
has weights wk = 1

n

∑n−1
i=0 wk,i. Let ∆Sk

:=
[ 1
n2

∑
y:Sy<Sk

wy

wy1
, 1
n2

∑
y:Sy≤Sk

wy

wy1
], where the order

relation Sy < Sk is according to the following definition.

Definition 5.2 (Snake ordering). Let k,k′ ∈ [[0, n − 1]]2,
with k = (x1, x2),k′ = (x′1, x

′
2) be distinct. The snake

ordering is defined as follows

• if x2 < x′2, then k < k′;

• if x2 = x′2 and x2 ∈ 2N0, then k < k′ if x1 < x′1
according to the snake ordering;

• if x2 = x′2 and x2 ∈ (2N0+1), then k < k′ if x1 > x′1
according to the snake ordering.

Finally, the transport map is given by

x→
(
fmarg(gk(x)),

n∑
j=1

(
h∆jn
s (x) +

n−1∑
i=1

g∆i+jn
s (x)

))
.

For a corresponding illustration, see Figure 4.

6. Conclusion
The results in this paper show that every d-dimensional
Lipschitz-continuous target distribution (under mild condi-
tions on its pdf) can be generated through deep ReLU net-
works out of a one-dimensional uniform input distribution.
What is more, this is possible without incurring a cost—
in terms of approximation error measured in Wasserstein-
distance—relative to generating the d-dimensional target
distribution from d independent random variables. This
is accomplished through a two-stage approach, first gen-
erating a histogram distribution and then showing that in-
creasing the histogram resolution drives the approximation
error to zero while the corresponding network connectiv-
ity scales no faster than the number of parameters in the
class of histogram distributions considered. Concretely,
this means that the generating network we devise has min-
imum possible connectivity scaling. We finally note that
all the constructions in this paper employ histogram distri-
butions of uniform tile size. As deep ReLU networks can
generate histogram distributions of general tile sizes, it is
likely that the constants in the bounds on the connectivity
of the generating networks can be improved.

7. Omitted proofs
7.1. Proof of Theorem 4.3

Proof. Let pX(x) be the marginal corresponding to
pX,Y (x, y) and note that pX(x) is in E [0, 1]1n and has
weights wk, k ∈ [[0, n − 1]]. Define the map M as fol-
lows M : [0, 1]→ [0, 1]2,

M : x→ (x, f(gs(x))),

where gs is an s-order sawtooth function according to
Equation 2 and f(x) is defined according to Theorem 3.3
such that f#U = pX(x). Fix s ∈ N, take an arbi-
trary r ∈ [[0, 2s−1 − 1]], and consider f(gs(x)) on the
interval Pr = [ r

2s−1 ,
r+1
2s−1 ]. By Lemma 4.2, f(gs(x)) =

f(g(2s−1x−r)),∀x ∈ Pr. Now, let crk,k1 = [r2−s+1, (r+

1)2−s+1]× [k/n+ k12−s+1/n, k/n+ (k1 + 1)2−s+1/n],
r, k1 ∈ [[0, 2s−1 − 1]], k ∈ [[0, n− 1]]. By Lemma 4.1, we
have for all k1, k,

(M#U(Pr))(x ∈ crk,k1) = pX,Y ((x, y) ∈ crk,k1). (3)

Since pX,Y ((x, y) ∈ crk,k1) = wk

n22s−1 , for all r ∈
[[0, 2s−1 − 1]], independently of r, by Lemma 4.2, Equa-
tion 3 holds for all intervals Pr, r ∈ [[0, 2s−1 − 1]].
We have hence established that for all r, k, k1, the map
M distributes probability mass to each of the rectangles
crk,k1 according to pX,Y ((x, y) ∈ crk,k1). We refer to Fig-
ure 1 for a visualization of the transport map M . Since

|x − y| ≤ 2−s+1
√

1 + 1
n ≤ 2−s+3/2 for any two points
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in a rectangle of dimensions (2−s+1 × n−12−s+1), there
exists a coupling π that, in each crk,k1 , associates points be-
tween pX,Y (x, y) and M#U owing to which we have

W (M#U, pX,Y (x, y)) ≤
∫

[0,1]2
2−s+3/2d(x, y) =

2
√

2

2s
.

It remains to show how the transport map

x→ (x, f(gs(x)))

can be realized through a ReLU network.

We start by noting that the function f(x) =∑n
i=1 ai max

(
0, x − bi

)
can be realized through the

network Φ1 ∈ N1,1 with Φ1(x) =
∑n
i=1 aiρ(x − bi),

M(Φ1) ≤ 3n, and L(Φ1) = 2. The network Ψs
g(x)

realizing gs(x) is in N1,1 with M(Ψs
g) = 11s − 3

and L(Ψs
g) = s + 1. It follows by Lemma II.3 in

(Elbrächter et al., 2019) that Ψf
s = Φ1(Ψs

g) is inN1,1, with
M(Ψf

s ) ≤ 22s+ 6n− 6 and L(Ψf
s ) = s+ 3. The network

Φ2(x) = ρ(x) − ρ(−x) = x is in N1,1 withM(Φ2) = 4
and L(Φ2) = 2. By Lemma II.4 in (Elbrächter et al.,
2019), there exists a network Φ̃2(x) = Φ2(x) with
M(Φ̃2) ≤ 2s + 8 and L(Φ̃2) = s + 3. Finally, paral-
lelizing Φ̃2 and Ψf

s using Lemma A.7 in (Elbrächter et al.,
2019), we obtain the network Ψ = (Φ̃2,Ψ

f
s ), Ψ ∈ N1,2,

with M(Ψ) ≤ 6n + 24s + 2 and L(Ψ) = s + 3, imple-
menting the desired transport map x→ (x, f(gs(x))).

7.2. Proof of Theorem 4.4

Proof. Let Ii = [i/n, (i + 1)/n] for i ∈ [[0, n − 1]]
and let the weights of pX,Y (x, y) be given by wk1,k2 .
Then, for every i ∈ [[0, n − 1]], consider the distribution
piY (y) = pY (y|x ∈ [i/n, (i + 1)/n]) ∈ E [0, 1]1n with
weights wik =

nwi,k∑n−1
j=0 wj,k

, for k ∈ [[0, n − 1]], and let

fi(x) be the corresponding piecewise linear function ac-
cording to Theorem 3.3 such that fi#U = piY . It follows
from Definition 1.6, by integrating over y, that the marginal
pX(x) ∈ E [0, 1]1n has weights wi =

∑n−1
j=0 wi,j/n, and we

denote the piecewise linear function generating it accord-
ing to Theorem 3.3 as fmarg(x), i.e., fmarg#U = pX . Take
an arbitrary r ∈ [[0, n − 1]], fix s ∈ N, and consider the
following transport map

M : x→

(
fmarg(x),

n−1∑
i=0

fi(gs(nfmarg(x)− i))

)
(4)

on the interval Pr := [ 1
n

∑r−1
j=0 wj ,

1
n

∑r
j=0 wj ]. For

x ∈ Pr, fmarg(x) ∈ [r/n, (r + 1)/n] and by Theorem 3.3

its explicit form is given by fmarg(x) = x
wr
−

∑r−1
j=0 wj

nwr
+ r
n .

Therefore, (nfmarg(x) − i) ∈ [r − i, r − i + 1] and
fi(gs(nfmarg(x)−i)) = 0, when i 6= r, as gs(x) = 0,∀x /∈

[0, 1]. For x ∈ Pr, the transport map in Equation 4 hence
becomes

x→
(
x

wr
−
∑r−1
j=0 wj

nwr
+
r

n
, pr

(
gs

(nx−∑r−1
j=0 wj

wr

)))
.

Now, let cr,r1k,k1
= [r/n + r12−s+1/n, r/n + (r1 +

1)2−s+1/n]×[k/n+k12−s+1/n, k/n+(k1+1)2−s+1/n],
r1, k1 ∈ [[0, 2s−1 − 1]], k ∈ [[0, n − 1]]. The square cr,r1k,k1

has area 2−2s+2

n2 and pX,Y ((x, y) ∈ cr,r1k,k1
) =

wr,k

22s−2n2 .
Combining Lemmas 4.1 and 4.2, we obtain that for all
r1, k1, k,

(M#U(Pr))(x ∈ cr,r1k,k1
) =

wr
2s−1n

· wrk
2s−1n

=

∑n−1
j=0 wr,j

22s−2n3
· nwr,k∑n−1

j=0 wr,j
=

wr,k
22s−2n2

= pX,Y ((x, y) ∈ cr,r1k,k1
).

In summary, we found that (M#U(Pr))(x ∈ cr,r1k,k1
) =

pX,Y ((x, y) ∈ cr,r1k,k1
), for arbitrary r ∈ [[0, n − 1]]. This

establishes that for all r, r1, k, k1, the map M distributes
probability mass to each of the squares cr,r1k,k1

of area 2−2s+2

n2

according to pX,Y ((x, y) ∈ cr,r1k,k1
). We refer to Figure 2 for

a visualization of the corresponding transport map M .

Since |x − y| ≤ 2−s+3/2/n for any two points in a box of
size (n−12−s+1×n−12−s+1), it follows that there exists a
coupling π between pX,Y (x, y) andM#U owing to which

W (M#U, pX,Y (x, y)) ≤ 2
√

2

n2s
.

It remains to devise a ReLU network realizing the transport
map in Equation 4.

The functions fi(x) can be implemented through networks
Φi1 ∈ N1,1 with Φi1(x) =

∑n
`=1 a`ρ(x − b`), M(Φi1) ≤

3n, and L(Φi1) = 2. We then note that fmarg(x) can be
realized through a network Φ2 ∈ N1,1 with M(Φ2) ≤
3n and L(Φ2) = 2. The networks Φi2(x) implement-
ing nfmarg(x) − i are in N1,1 and have M(Φi2) ≤ 4n,
L(Φi2) = 2, and the network Ψs

g(x) = gs(x) is in N1,1

withM(Ψs
g) = 11s − 3 and L(Ψs

g) = s + 1. By Lemma
II.3 in (Elbrächter et al., 2019), it follows that the net-
works Ψi

s = Φi1(Ψs
g(Φ

i
2)) are in N1,1 with M(Ψi

s) ≤
20n + 44s − 12 and L(Ψi

s) = s + 5. By Lemma II.6
in (Elbrächter et al., 2019), the network ΨΣ =

∑n−1
i=0 Ψi

s

realizing
∑n−1
i=0 fi

(
gs

(
nfmarg(x) − i

))
is in N1,1 with

M(ΨΣ) ≤ 20n2 + 44ns − 12 and L(ΨΣ) = s + 5.
Thanks to Lemma II.4 in (Elbrächter et al., 2019), there
exists a network Φ̃2(x) = Φ2(x) in N1,1 withM(Φ̃2) ≤
4n + 2s + 6 and L(Φ̃2) = s + 5. Parallelizing Φ̃2

and ΨΣ using Lemma A.7 in (Elbrächter et al., 2019),
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we obtain the network Ψ = (Φ̃2,Ψ
Σ), Ψ ∈ N1,2, with

M(Ψ) ≤ 20n2 + 44ns+ 4n+ 2s− 6 < 88(n2 + ns) and
L(Ψ) = s+ 5, and realizing the transport map

x→

(
fmarg(x),

n−1∑
i=0

fi

(
gs

(
nfmarg(x)− i)

)))
.
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