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Abstract
Constant step-size Stochastic Gradient Descent
exhibits two phases: a transient phase during
which iterates make fast progress towards the
optimum, followed by a stationary phase during
which iterates oscillate around the optimal point.
In this paper, we show that efficiently detecting
this transition and appropriately decreasing the
step size can lead to fast convergence rates. We
analyse the classical statistical test proposed by
Pflug (1983), based on the inner product between
consecutive stochastic gradients. Even in the sim-
ple case where the objective function is quadratic
we show that this test cannot lead to an adequate
convergence diagnostic. We then propose a novel
and simple statistical procedure that accurately
detects stationarity and we provide experimental
results showing state-of-the-art performance on
synthetic and real-world datasets.

1. Introduction
The field of machine learning has had tremendous success
in recent years, in problems such as object classification (He
et al., 2016) and speech recognition (Graves et al., 2013).
These achievements have been enabled by the development
of complex optimization-based architectures such as deep-
learning, which are efficiently trainable by Stochastic Gra-
dient Descent algorithms (Bottou, 1998).

Challenges have arisen on both the theoretical front – to
understand why those algorithms achieve such performance,
and on the practical front – as choosing the architecture of
the network and the parameters of the algorithm has become
an art itself. Especially, there is no practical heuristic to set
the step-size sequence. As a consequence, new optimization
strategies have appeared to alleviate the tuning burden, as
Adam (Kingma & Ba, 2014), together with new learning rate
scheduling, such as cyclical learning rates (Smith, 2017) and
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warm restarts (Loshchilov & Hutter, 2016). However those
strategies typically do not come with theoretical guarantees
and may be outperformed by SGD (Wilson et al., 2017).

Even in the classical case of convex optimization, in which
convergence rates have been widely studied over the last 30
years (Polyak & Juditsky, 1992; Zhang, 2004; Nemirovski
et al., 2009; Bach & Moulines, 2011; Rakhlin et al., 2012)
and where theory suggests to use the averaged iterate and
provides optimal choices of learning rates, practitioners
still face major challenges: indeed (a) averaging leads to
a slower decay during early iterations, (b) learning rates
may not adapt to the difficulty of the problem (the optimal
decay depends on the class of problems), or may not be
robust to constant misspecification. Consequently, the state
of the art approach in practice remains to use the final iterate
with decreasing step size a/(b+ tα) with constants a, b, α
obtained by a tiresome hand-tuning. Overall, there is a
desperate need for adaptive algorithms.

In this paper, we study adaptive step-size scheduling based
on convergence diagnostic. The behaviour of SGD with con-
stant step size is dictated by (a) a bias term, that accounts for
the impact of the initial distance ‖θ0 − θ∗‖ to the minimizer
θ∗ of the function, and (b) a variance term arising from the
noise in the gradients. Larger steps allow to forget the initial
condition faster, but increase the impact of the noise. Our
approach is then to use the largest possible learning rate
as long as the iterates make progress and to automatically
detect when they stop making any progress. When we have
reached such a saturation, we reduce the learning rate. This
can be viewed as “restarting” the algorithm, even though
only the learning rate changes. We refer to this approach
as Convergence-Diagnostic algorithm. Its benefits are thus
twofold: (i) with a large initial learning rate the bias term
initially decays at an exponential rate (Kushner & Huang,
1981; Pflug, 1986), (ii) decreasing the learning rate when
the effect of the noise becomes dominant defines an efficient
and practical adaptive strategy.

Reducing the learning rate when the objective function stops
decaying is widely used in deep learning (Krizhevsky et al.,
2012) but the epochs where the step size is reduced are
mostly hand-picked. Our goal is to select them automati-
cally by detecting saturation. Convergence diagnostics date
back to Pflug (1983), who proposed to use the inner product
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between consecutive gradients to detect convergence. Such
a strategy has regained interest in recent years: Chee &
Toulis (2018) provided a similar analysis for quadratic func-
tions, and Yaida (2018) considers SGD with momentum and
proposes an analogous restart criterion using the expecta-
tion of an observable quantity under the limit distribution,
achieving the same performance as hand-tuned methods on
two simple deep learning models. However, none of these
papers provide a convergence rate and we show that Pflug’s
approach provably fails in simple settings. Lang et al. (2019)
introduced Statistical Adaptive Stochastic Approximation
which aims to improve upon Pflug’s approach by formaliz-
ing the testing procedure. However, their strategy leads to a
very small number of reductions of the learning rate.

An earlier attempt to adapt the learning rate depending on
the directions in which iterates are moving was made by
Kesten (1958). Kesten’s rule decreases the step size when
the iterates stop moving consistently in the same direction.
Originally introduced in one dimension, it was generalized
to the multi-dimensional case and analyzed by Delyon &
Juditsky (1993).

Finally, some orthogonal approaches have also been used
to automatically change the learning rate: it is for example
possible to consider the step size as a parameter of the risk
of the algorithm, and to update the step size using another
meta-optimization algorithm (Sutton, 1981; Jacobs, 1988;
Benveniste et al., 1990; Sutton, 1992; Schraudolph, 1999;
Kushner & Yang, 1995; Almeida et al., 1999).

Another line of work consists in changing the learning rate
for each coordinate depending on how much iterates are
moving (Duchi et al., 2011; Zeiler, 2012). Finally, Schaul
et al. (2013) propose to use coordinate-wise adaptive learn-
ing rates, that maximize the decrease of the expected loss
on separable quadratic functions.

We make the following contributions:

• We provide convergence results for the Convergence-
Diagnostic algorithm when used with the oracle diagnos-
tic for smooth and strongly-convex functions.

• We show that the intuition for Pflug’s statistic is valid for
all smooth and strongly-convex functions by computing
the expectation of the inner product between two consec-
utive gradients both for an arbitrary starting point, and
under the stationary distribution.

• We show that despite the previous observation the em-
pirical criterion is provably inefficient, even for a simple
quadratic objective.

• We introduce a new distance-based diagnostic based on a
simple heuristic inspired from the quadratic setting with
additive noise.

• We illustrate experimentally the failure of Pflug’s statis-

tic, and show that the distance-based diagnostic competes
with state-of-the-art methods on a variety of loss func-
tions, both on synthetic and real-world datasets.

The paper is organized as follows: in Section 2, we intro-
duce the framework and present the assumptions. Section 3
we describe and analyse the oracle convergence-diagnostic
algorithm. In Section 4, we show that the classical criterion
proposed by Pflug cannot efficiently detect stationarity. We
then introduce a new distance-based criterion Section 5 and
provide numerical experiments in Section 6.

2. Preliminaries
Formally, we consider the minimization of a risk function f
defined on Rd given access to a sequence of unbiased esti-
mators of f ’s gradients (Robbins & Monro, 1951). Starting
from an arbitrary point θ0, at each iteration i+ 1 we get an
unbiased random estimate f ′i+1(θi) of the gradient f ′(θi)
and update the current estimator by moving in the opposite
direction of the stochastic gradient:

θi+1 = θi − γi+1f
′
i+1(θi), (1)

where γi+1 > 0 is the step size, also referred to as learning
rate. We make the following assumptions on the stochastic
gradients and the function f .

Assumption 1 (Unbiased gradient estimates). There ex-
ists a filtration (Fi)i≥0 such that θ0 is F0-measurable, f ′i
is Fi-measurable for all i ∈ N, and for each θ ∈ Rd:
E
[
f ′i+1(θ) | Fi

]
= f ′(θ). In addition (fi)i≥0 are identi-

cally distributed random fields.

Assumption 2 (L-smoothness). For all i ≥ 1, the function
fi is almost surely L-smooth and convex:

∀θ, η ∈ Rd, ‖f ′i(θ)− f ′i(η)‖ ≤ L ‖θ − η‖ .

Assumption 3 (Strong convexity). There exists a finite con-
stant µ > 0 such that for all θ, η ∈ Rd:

f(θ) ≥ f(η) + 〈f ′(η), θ − η〉+
µ

2
‖θ − η‖2 .

For i > 0 and θ ∈ W , we denote by εi(θ) = f ′i(θ)− f ′(θ)
the noise, for which we consider the following assumption:

Assumption 4 (Bounded variance). There exists a constant
σ ≥ 0 such that for any i > 0, E

[
‖εi(θ∗)‖2

]
≤ σ2.

Under Assumptions 1 and 4 we define the noise covariance
as the function C : Rd 7→ Rd×d defined for all θ ∈ Rd by
C(θ) = E

[
ε(θ)ε(θ)T

]
.

In the following section we formally describe the restart
strategy and give a convergence rate in the omniscient set-
ting where all the parameters are known.
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3. Bias-variance decomposition and
stationarity diagnostic

When the step size γ is constant, the sequence of iter-
ates (θn)n≥0 produced by the SGD recursion in eq. (1)
is a homogeneous Markov chain. Under appropriate con-
ditions (Dieuleveut et al., 2017), this Markov chain has
a unique stationary distribution, denoted by πγ , towards
which it converges exponentially fast. This is the transient
phase. The rate of convergence is proportional to γ and
therefore a larger step size leads to a faster convergence.

When the Markov chain has reached its stationary dis-
tribution, i.e. in the stationary phase, the iterates make
negligible progress towards the optimum θ∗ but stay in
a bounded region of size O(

√
γ) around it. More pre-

cisely, Dieuleveut et al. (2017) make explicit the expansion
Eπγ

[
‖θ − θ∗‖2

]
= bγ + O(γ2) where the constant b de-

pends on the function f and on the covariance of the noise
C(θ∗) at the optimum . Hence the smaller the step size and
the closer the iterates (θn)n≥0 get to the optimum θ∗.

Therefore a clear trade-off appears between: (a) using a
large step size with a fast transient phase but a poor approx-
imation of θ∗ and (b) using a small step size with iterates
getting close to the optimum but taking longer to get there.
This bias-variance trade-off is directly transcribed in the
following classical proposition (Needell et al., 2014).
Proposition 5. Consider the recursion in eq. (1) under
Assumptions 1 to 4. Then for any step-size γ ∈ (0, 1/2L)
and n ≥ 0 we have:

E
[
‖θn − θ∗‖2

]
≤ (1− γµ)nE

[
‖θ0 − θ∗‖2

]
+

2γσ2

µ
.

The performance of the algorithm is then determined by the
sum of a bias term – characterizing how fast the initial condi-
tion θ0 is forgotten and which is increasing with ‖θ0 − θ∗‖;
and a variance term – characterizing the effect of the noise
in the gradient estimates and that increases with the variance
of the noise σ2. Here the bias converges exponentially fast
whereas the variance is O(γ). Note that the bias decrease
is of the form (1 − γµ)nδ0, which means that the typical
number of iterations to reach stationarity is Θ(γ−1).

As noted by Bottou et al. (2018), this decomposition natu-
rally leads to the question: which convergence rate can we
hope getting if we keep a large step size as long as progress
is being made but decrease it as soon as the iterates satu-
rate? More explicitly, starting from θ0, one could run SGD
with a constant step size γ0 for ∆n1 steps until progress
stalls. Then for n ≥ ∆n1, a smaller step size γ1 = rγ0

(where r ∈ (0, 1)) is used in order to decrease the vari-
ance and therefore get closer to θ∗ and so on. This simple
strategy is implemented in Algorithm 1. However the cru-
cial difficulty here lies in detecting the saturation. Indeed

Algorithm 1 Convergence-Diagnostic algorithm
Input: Starting point θ0, Step size γ0 > 0, Step-size
decrease r ∈ (0, 1)
Output: θN
γ ← γ0

for n = 1 to N do
θn ← θn−1 − γf ′n(θn−1)
if { Saturation Diagnostic } is True then
γ ← r × γ

end if
end for
Return: θN

Algorithm 2 Oracle diagnostic
Input: γ, δ0, µ, L, σ2, n
Output: Diagnostic boolean
Bias← (1− γµ)nδ0

Variance← 2γσ2

µ

Return: { Bias < Variance }

when running SGD we do not have access to ‖θn − θ∗‖
and we cannot evaluate the successive function values f(θn)
because of their prohibitively expensive cost to estimate.
Hence, we focus on finding a statistical diagnostic which
is computationally cheap and that gives an accurate restart
time corresponding to saturation.

Oracle diagnostic. Following this idea, assume first we
have access to all the parameters of the problem: ‖θ0 − θ∗‖,
µ, L, σ2. Then reaching saturation translates into the bias
term and the variance term from Proposition 5 being of the
same magnitude, i.e.

(1− γ0µ)∆n1 ‖θ0 − θ∗‖2 =
2γ0σ

2

µ
.

This oracle diagnostic is formalized in Algorithm 2. The
following proposition guarantees its performance.

Proposition 6. Under Assumptions 1 to 4, consider Al-
gorithm 1 instantiated with Algorithm 2 and parameter
r ∈ (0, 1) . Let γ0 ∈ (0, 1/2L), δ0 = ‖θ0 − θ∗‖2 and
∆n1 = 1

γ0µ
log( µδ0

2γ0σ2 ). Then, we have for all n ≤ ∆n1:

E
[
‖θn − θ∗‖2

]
≤ (1− γ0µ)nδ0 +

2γ0σ
2

µ
,

and for all n > ∆n1:

E
[
‖θn − θ∗‖2

]
≤ 8σ2

µ2(n−∆n1)(1− r) ln
(2

r

)
.

The proof of this Proposition is given in Appendix B.1. We
make the following observations:
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• The rateO(1/µ2n) is optimal for last-iterate convergence
for strongly-convex problem (Nguyen et al., 2019) and
is also obtained by SGD with decreasing step size γn =
C/µn where C > 2 (Bach & Moulines, 2011). More
generally, the rate O(1/n) is known to be information-
theoretically optimal for strongly-convex stochastic ap-
proximation (Nemirovsky & Yudin, 1983).

• To reach an ε-optimal point, O
(
σ2

µ2ε + L
µ log(µLδ0σ2 )

)
calls

to the gradient oracle are needed. Therefore the bias is
forgotten exponentially fast. This stands in sharp con-
trast to averaged SGD for which there is no exponential
forgetting of initial conditions (Bach & Moulines, 2011).

• We present in Appendix B.2 additional results for weakly
and uniformly convex functions. In this case too, the
oracle diagnostic-based algorithm recovers the optimal
rates of convergence. However these results hold only
for the restart iterations nk, and the behaviour in between
each can be theoretically arbitrarily bad.

• Our algorithm shares key similarities with the algorithm
of Hazan & Kale (2014) which halves the learning rate
every 2k iterations but with the different aim of obtaining
the sharp O(1/n) rate in the non-smooth setting.

This strategy is called oracle since all the parameters must
be known and, in that sense, Algorithm 2 is clearly non prac-
tical. However Proposition 6 shows that Algorithm 1 imple-
mented with a practical and suitable diagnostic is a priori a
good idea since it leads to the optimal rate O(1/µ2n) with-
out having to know the strong convexity parameter µ and the
rate α of decrease of the step-size sequence γn = O(n−α).
The aim of the following sections is to propose a computa-
tionally cheap and efficient statistic that detects the transi-
tion between transience and stationarity.

4. Pflug’s Statistical Test for stationarity
In this section we analyse a statistical diagnostic first
developed by Pflug (1983) which relies on the sign of
the inner product of two consecutive stochastic gradients
〈f ′k+1(θk), f ′k+2(θk+1)〉. Though this procedure was de-
veloped several decades ago, no theoretical analysis had
been proposed yet despite the fact that several papers have
recently showed renewed interest in it (Chee & Toulis, 2018;
Lang et al., 2019; Sordello & Su, 2019). Here we show that
whilst it is true this statistic becomes in expectation negative
at stationarity, it is provably inefficient to properly detect
the restart time – for the particular example of quadratic
functions.

4.1. Control of the expectation of Pflug’s statistic

The general motivation behind Pflug’s statistic is that dur-
ing the transient phase the inner product is in expecta-
tion positive and during the stationary phase, it is in ex-

pectation negative. Indeed, in the transient phase, where
‖θ − θ∗‖ >> √γσ, the effect of the noise is negligible
and the behavior of the iterates is very similar to the one
of noiseless gradient descent (i.e, ε(θ) = 0 for all θ ∈ Rd)
which satisfies:

〈f ′(θ), f ′(θ − γf ′(θ))〉 = ‖f ′(θ)‖2 +O(γ) > 0.

On the other hand, in the stationary phase, we may intu-
itively assume starting from θ0 = θ∗ to obtain

E [〈f ′1(θ0), f ′2(θ1〉]=−E [〈ε1, f
′(θ∗ + γε1)〉]

=−γ Tr f ′′(θ∗)E
[
ε1ε
>
1

]
+O(γ) < 0.

The single values 〈f ′k+1(θk), f ′k+2(θk+1)〉 are too noisy,
which leads (Pflug, 1983) in considering the running aver-
age:

Sn =
1

n

n−1∑
k=0

〈f ′k+1(θk), f ′k+2(θk+1)〉.

This average can easily be computed online with negligi-
ble extra computational and memory costs. Pflug (1983)
then advocates to decrease the step size when the statistic
becomes negative, as explained in Algorithm 1. A burn-in
delay nb can also be waited to avoid the first noisy values.

Algorithm 3 Pflug’s diagnostic
Input: (f ′k(θk−1))0≤k≤n, nb > 0
Output: Diagnostic boolean
S ← 0
for k = 2 to n do
S ← S + 〈f ′k(θk−1), f ′k−1(θk−2)〉

end for
Return : {S < 0} AND {n > nb}

For quadratic functions, Pflug (1988a) first shows that, when
θ ∼ πγ at stationarity, the inner product of two successive
stochastic gradients is negative in expectation. To extend
this result to the wider class of smooth strongly convex
functions, we make the following technical assumptions.

Assumption 7 (Five-times differentiability of f ). The func-
tion f is five times continuously differentiable with second
to fifth uniformly bounded derivatives.

Assumption 8 (Differentiability of the noise). The noise
covariance function C is three times continuously dif-
ferentiable with locally-Lipschitz derivatives. Moreover
E(‖ε1(θ∗)‖6) is finite.

These assumptions are satisfied in natural settings. The
following proposition addresses the sign of the expectation
of Pflug’s statistic.
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Proposition 9. Under Assumptions 1 to 4, 7 and 8, for
γ ∈ (0, 1/2L) , let πγ be the unique stationary distribution.
Let θ1 = θ0 − γf ′1(θ0). For any starting point θ0, we have

E [〈f ′1(θ0), f ′2(θ1)〉] ≥ (1−γL) ‖f ′(θ0)‖2

−γLTr C(θ0)+O(γ2).

And for θ0 ∼ πγ , we have:

Eπγ [〈f ′1(θ0), f ′2(θ1)〉] =− 1

2
γTr f ′′(θ∗)C(θ∗) +O(γ3/2).

Sketch of Proof. The complete proof is given in Ap-
pendix C.1. The first part relies on a simple Taylor expan-
sion of f ′ around θ0. For the second part, we decompose:

E[〈f ′1(θ0), f ′2(θ1)〉 | θ0] =

E [〈f ′(θ0), f ′(θ1)〉 | θ0]︸ ︷︷ ︸
Sgrad

+E [〈ε1, f
′(θ1) | θ0〉]︸ ︷︷ ︸
Snoise

.

Then, applying successive Taylor expansions of f ′ around
the optimum θ∗ yields for both terms:

Sgrad = Tr f ′′(θ∗)2(θ0 − θ∗)⊗2 +O(γ3/2),

Snoise = −γ Tr f ′′(θ∗)C(θ0) +O(γ3/2).

Using results from Dieuleveut et al. (2017) on
Eπγ

[
(θ0 − θ∗)⊗2

]
and Eπγ [C(θ0)] then leads to

Eπγ [Sgrad] =
1

2
γ Tr f ′′(θ∗)C(θ∗) +O(γ3/2),

Eπγ [Snoise] = −γ Tr f ′′(θ∗)C(θ∗) +O(γ3/2).

We note that, counter intuitively, the inner product is not
negative because the iterates bounce around θ∗ (we still have
Sgrad = E [〈f ′(θ1), f ′(θ0)〉] > 0), but because the noise
part Snoise = E [〈ε1, f

′(θ1)〉] is negative and dominates the
gradient part Sgrad.

In the case where f is quadratic we immediately recover
the result of Pflug (1988b). We note that Chee & Toulis
(2018) show a similar result but under far more restrictive
assumptions on the noise distribution and the step size.

Proposition 9 establishes that the sign of the expectation of
the inner product between two consecutive gradients char-
acterizes the transient and stationary regimes: for an iterate
θ0 far away from the optimum, i.e. such that ‖θ0 − θ∗‖ is
large, the expected value of the statistic is positive whereas it
becomes negative when the iterates reach stationarity. This
makes clear the motivation of considering the sign of the
inner products as a convergence diagnostic. Unfortunately
this result does not guarantee the good performance of this
statistic. Even though the inner product is negative, its value
is only O(γ). It is then difficult to distinguish 〈f ′k+1, f

′
k+2〉

from zero for small step size γ. In fact, we now show that
even for simple quadratic functions, the statistical test is
unable to offer an adequate convergence diagnostic.

4.2. Failure of Pflug’s method for Quadratic Functions

In this section we show that Pflug’s diagnostic fails to accu-
rately detect convergence, even in the simple framework of
quadratic objective functions with additive noise. While we
have demonstrated in Proposition 9 that the sign of its ex-
pectation characterizes the transient and stationary regime,
we show that the running average Sn does not concentrate
enough around its mean to result in a valid test. Intuitively,
from a restart when we leave stationarity: (1) the expectation
is positive but smaller than γ , and (2) the standard deviation
of Sn is not decaying with γ, but only with the number of
steps over which we average, as 1/

√
n. As a consequence,

in order to ensure that the sign of Sn is the same as the sign
of its expectation, we would need to average over more than
1/γ2 steps, which is orders of magnitude bigger than the
optimal restart time of Θ(1/γ) (See Section 3). We make
this statement quantitative under simple assumptions on the
noise.
Assumption 10 (Quadratic semi-stochastic setting). There
exists a symmetric positive semi-definite matrix H such that
f(θ) = 1

2θ
THθ. The noise εi(θ) = ξi is independent of θ

and:
(ξi)i≥0 are i.i.d. , E [ξi] = 0, E

[
ξTi ξi

]
= C.

In addition we make a simple assumption on the noise:
Assumption 11 (Noise symmetry and continuity). The func-
tion P

(
ξT1 ξ2 ≥ x

)
is continuous in x = 0 and

P
(
ξT1 ξ2 ≥ x

)
= P

(
ξT1 ξ2 ≤ −x

)
for all x ≥ 0.

This assumption is made for ease of presentation and can
be relaxed. We make use of the following notations. We
assume SGD is run with a constant step size γold until the
stationary distribution πγold is reached. The step size is then
decreased and SGD is run with a smaller step γ=r×γold.
Hence the iterates cease to be at stationarity under πγold and
start a transient phase towards πγ . We denote by Eθ0∼γold
(resp. Pθ0∼γold) the expectation (resp. probability) of a
random variable (resp. event) when the initial θ0 is sampled
from the old distribution πγold and a new step size γ =
r×γold is used. Note that Eθ0∼γold and Eπγ have different
meanings, the latter being the expectation under πγ .

We first split Sn in a γ-dependent and a γ-independent part.
Lemma 12. Under Assumption 10, let θ0 ∼ πγold and
assume we run SGD with a smaller step size γ = r × γold,
r ∈ (0, 1). Then, the statistic Sn can be decomposed as:
Sn = −Rn,γ + χn. The part χn is independent of γ and

Eθ0∼πγold
[
R2
n,γ

]
≤M(

γ

n
+ γ2);

E [χn] = 0 ,Var(χn) =
1

n
Tr (C2) and

Var(χ2
n) =

E
[
(ξT1 ξ2)4

]
− Tr2 C2

n3
,
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where M is independent of γ and n.

Thus the variance of χn does not depend on γ while, from a
restart, the second moment Eθ0∼πγold

[
R2
n,γ

]
is O( γn + γ2).

Therefore the signal to noise ratio is high. This property is
the main idea behind the proof of the following proposition.

Proposition 13. Under Assumptions 10 and 11, let θ0 ∼
πγold and run SGD with γ = r × γold, r ∈ (0, 1). Then for
all 0 ≤ α < 2 , and nγ = O(γ−α) we have:

lim
γ→0

Pθ0∼πγold
(
Snγ ≤ 0

)
=

1

2
.

Sketch of Proof. The complete proofs of Lemma 12
and Proposition 13 are given in Appendix C.2. The main
idea is that the signal to noise ratio is too high. The signal
during the transient phase is positive and O(γ). However
the variance of Sn isO(1/n). Hence Ω(1/γ2) iterations are
typically needed in order to have a clean signal. Before this
threshold, Sn resembles a random walk and its sign gives
no information on whether saturation is reached or not, this
leads to early on restarts.

We make the following observations.

• Note that the typical time to reach saturation with
a constant step size γ is of order 1/γ (see Sec-
tion 3). We should expect Pflug’s statistic to satisfy
limγ→0 Pθ0∼πγold (Snb ≤ 0) = 0 for all constant burn-in
time nb smaller than the typical saturation time O(1/γ) –
since the statistic should not detect saturation before it is
actually reached. Proposition 13 shows that this is not the
case and that the step size is therefore decreased too early.
This phenomenon is clearly seen in Fig. 1 in Section 6.

• We note that Pflug (1988a) describes an opposite result.
We believe this is due to a miscalculation of Var(χn) in
his proof (see detail in Appendix C.3).

• Lang et al. (2019) similarly point out the existence of a
large variance in the diagnostic proposed by Yaida (2018).
They make the strategy more robust by implementing a
formal statistical test, to only reduce the learning rate
when the limit distribution has been reached with high
confidence. Unfortunately, Proposition 13 entails that
more than O(1/γ2) iterations are needed to accurately
detect convergence for Pflug’s statistic, and we thus be-
lieve that Lang’s approach would be too conservative and
would not reduce the learning rate often enough.

Hence Pflug’s diagnostic is inadequate and leads to poor
experimental results (see Section 6). We propose then a
novel simple distance-based diagnostic which enjoys state-
of-the art rates for a variety of classes of convex functions.

5. A new distance-based statistic
We propose here a very simple statistic based on the distance
between the current iterate θn and the iterate from which the
step size has been last decreased. Indeed, we would ideally
like to decrease the step size when ‖ηn‖= ‖θn−θ∗‖ starts
to saturate. Since the optimum θ∗ is not known, we cannot
track the evolution of this criterion. However it has a similar
behaviour as ‖Ωn‖ = ‖θn− θ0‖, which we can compute.
This is seen through the simple equation

‖Ωn‖2 = ‖ηn‖2 + ‖η0‖2 − 2〈ηn, η0〉.

The value ‖ηn‖2 is then expected to saturate roughly at the
same time as ‖Ωn‖2. In addition, ‖θn − θ0‖2 describes a
large range of values which can be easily tracked, starting
at 0 and roughly finishing around ‖θ∗ − θ0‖2 +O(γ) (see
Corollary 15). It is worth noting this would not be the case
if a different referent point, θ̃ 6= θ0, was considered.

To find a heuristic to detect the convergence of ‖θn − θ0‖2,
we consider the particular setting of a quadratic objective
with additive noise stated in Assumption 10. In this frame-
work we can compute the evolution of E

[
‖Ωn‖2

]
in closed-

form .

Proposition 14. Let θ0 ∈ Rd and γ ∈ (0, 1/L). Let Ωn =
θn − θ0. Under Assumption 10 we have that:

E
[
‖Ωn‖2

]
= ηT0 [I − (I − γH)n]2η0

+ γ Tr [I − (I − γH)2n](2I − γH)−1H−1C.

The proof of this result is given in Appendix D. We can
analyse this proposition in two different settings: for small
values of n at the beginning of the process and when the
iterates θn have reached stationarity.

Corollary 15. Let θ0 ∈ Rd and γ ∈ [0, 1/L]. Let Ωn =
θn − θ0. Under Assumption 10 we have that for all n ≥ 0:

Eπγ
[
‖Ωn‖2

]
= ‖η0‖2 + γ Tr H−1C(2I − γH)−1,

E
[
‖Ωn‖2

]
= γ2ηT0 H

2η0 × n2 + γ2 Tr C × n
+ o((nγ)2).

From Corollary 15 we have shown the following asymptotic
behaviours:

• Transient phase. For n � 1/(γL), in a log-log plot
E
[
‖Ωn‖2

]
has a slope bigger than 1.

• Stationary phase. For n � 1/(γµ), E
[
‖Ωn‖2

]
is con-

stant and therefore has a slope of 0 in a log-log plot.

This dichotomy naturally leads to a distance-based conver-
gence diagnostic where the step size is decreased by a factor
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1/r when the slope becomes smaller than a certain threshold
smaller than 2. The slope is computed between iterations of
the form qk and qk+1 for q > 1 and k ≥ k0. The method
is formally described in Algorithm 4. We impose a burn-in
time qk0 in order to avoid unwanted and possibly harmful
restarts during the very first iterations of the SGD recursion,
it is typically worth ∼ 8 (q = 1.5 and k0 = 5) in all our
experiments, see Section 6 and Appendix A.2. Furthermore
note that from Proposition 5, saturation is reached at iter-
ation Θ(γ−1). Therefore when the step-size is decreased
as γ ← r × γ then the duration of the transience phase is
increased by a factor 1/r. This shows that it is sufficient to
run the diagnostic every qk where q is smaller than 1/r.

Algorithm 4 Distance-based diagnostic
Input: θ0, θn, θn/q , n, q > 1, k0 ∈ N∗, thresh ∈ (0, 2]
Output: Diagnostic boolean
if n = qk+1 for a k ≥ k0 in N∗ then

S ← log ‖θn−θ0‖2−log‖θn/q−θ0‖2
logn−logn/q

Return: {S < thresh}
else

Return: False
end if

6. Experiments
In this section, we illustrate our theoretical results with syn-
thetic and real examples. We provide additional experiments
in Appendix A.2.

Least-squares regression. We consider the objective
f(θ) = 1

2E
[
(yi − 〈xi, θ〉)2

]
. The inputs xi are i.i.d. from

N (0, H) where H has random eigenvectors and eigenval-
ues (1/k)1≤k≤d. We note R2 = Tr H . The outputs yi are
generated following yi = 〈xi, θ∗〉 + εi where (εi)1≤i≤n
are i.i.d. from N (0, σ2). We use averaged-SGD with con-
stant step size γ = 1/2R2 as a baseline since it enjoys the
optimal statistical rate O(σ2d/n) (Bach & Moulines, 2013).

Logistic regression setting. We consider the objective
f(θ) = E

[
log(1 + e−yi〈xi, θ〉

]
. The inputs xi are gen-

erated the same way as in the least-square setting. The
outputs yi ∈ {−1, 1} are generated following the logis-
tic probabilistic model. We use averaged-SGD with step-
sizes γn = 1/

√
n as a baseline since it enjoys the optimal

rate O(1/n) (Bach, 2014). We also compare to online-
Newton (Bach & Moulines, 2013) which achieves better
performance in practice.

ResNet18. We train an 18-layer ResNet model (He et al.,
2016) on the CIFAR-10 dataset (Krizhevsky, 2009) using
SGD with a momentum of 0.9, weight decay of 0.0001 and
batch size of 128. To adapt the distance-based step-size
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Figure 1. Least-squares on synthetic data. Left: least-squares re-
gression. Right: Scaled Pflug’s statistic nSn. The dashed vertical
lines correspond to Pflug’s restarts. Note that only the left plot is
in log-log scale.

statistic to this scenario, we use Pytorch’s ReduceLROn-
Plateau() scheduler, created to detect saturation of arbi-
trary quantities. We use it to reduce the learning rate by
a factor r = 0.1 when it detects that ‖θn − θrestart‖2 has
stopped increasing. The parameters of the scheduler are
set to: patience = 1000, threshold = 0.01. Investigating if
this choice of parameters is robust to different problems and
architectures would be a fruitful avenue for future research.
We compare our method to different step-size sequences
where the step size is decreased by a factor r = 0.1 at vari-
ous epoch milestones. Such sequences achieve state-of-the-
art performances when the decay milestones are properly
tuned. All initial step sizes are set to 0.1.

Inefficiency of Pflug’s statistic. In order to test Pflug’s
diagnostic we consider the least-squares setting with n =
1e6, d = 20, σ2 = 1. Algorithm 3 is implemented with
a conservative burn-in time of nb = 1e4 and Algorithm 1
with a discount factor r = 1/4. We note in Fig. 1 that the
algorithm is restarted too often and abusively. This leads to
small step sizes early on and to insignificant decrease of the
loss afterward. The signal of Pflug’s statistic is very noisy,
and its sign gives no significant information on weather
saturation has been reached or not. As a consequence the
final step-size is very close to 0. We note that its behavior is
alike the one of a random walk. On the contrary, averaged-
SGD exhibits an O(1/n) convergence rate. We provide
further experiments on Pflug’s statistic in Appendix A.1,
showing its systematic failure for several values of the decay
parameter r, the seed and the burn-in.

Efficiency of the distance-based diagnostic. In order to
illustrate the benefit of the distance-based diagnostic, we per-
formed extensive experiments in several settings, more pre-
cisely: (1) Least Squares regression on a synthetic dataset,
(2) Logistic regression on both synthetic and real data, (3)
Uniformly convex functions, (4) SVM, (5) Lasso. In all
these settings, without any tuning, we achieve the same per-
formance as the best suited method for the problem. These
experiments are detailed in Appendix A.2. We hereafter
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Figure 2. Logistic regression on synthetic dataset. ‖θn − θ∗‖2
(dotted) and ‖θn − θ0‖2 (plain) for 2 different step sizes.

present results for Logistic Regression.

First, we consider the logistic regression setting with n =
1e5, d = 20. In Fig. 2, we compare the behaviour of
‖θn − θ0‖2 and ‖θn − θ∗‖2 for two different step sizes
1/2R2 and 1/20R2. We first note that these two quan-
tities have the same general behavior: ‖θn − θ0‖2 stops
increasing when ‖θn − θ∗‖2 starts to saturate, and that this
observation is consistent for the two step sizes. We addition-
ally note that the average slope of ‖θn − θ0‖2 is of value
2 during the transient phase and of value 0 when stationar-
ity has been reached. This demonstrates that, even if this
diagnostic is inspired by the quadratic case, the main con-
clusions of Corollary 15 still hold for convex non-quadratic
function and the distance-based diagnostic in Algorithm 4
should be more generally valid. We also notice that the
two oracle restart times are spaced by log(20/2) = 1 which
confirms that the transient phase lasts Θ(1/γ).

We further investigate the performance of the distance-based
diagnostic on real-world datasets: the Covertype dataset and
the MNIST dataset1. Each dataset is divided in two equal
parts, one for training and one for testing. We then sample
without replacement and perform a total of one pass over all
the training samples. The loss is computed on the test set.
This procedure is replicated 10 times and the results are aver-
aged. For MNIST the task consists in classifying the parity
of the labels which are {0, . . . , 9}. We compare our algo-
rithm to: online-Newton (γ = 1/10R2 for the Covertype
dataset and γ = 1/R2 for MNIST) and averaged-SGD with
step sizes γn = 1/2R2

√
n (the value suggested by theory)

and γn = C/
√
n (where the parameterC is tuned to achieve

the best testing error). In Fig. 3, we present the results. Top
row corresponds to the Covertype dataset for two different
values of the decrease coefficient r = 1/2 and r = 1/4,

1Covertype dataset available at
archive.ics.uci.edu/ml/datasets/covertype and MNIST at
yann.lecun.com/exdb/mnist.
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Figure 3. Top: Covertype dataset. Two different values of r are
used: 1/2, 1/4. Bottom: MNIST dataset. Two different values
of thresh are used: 0.6, 0.8. Left: Logistic regression. Right:
distance-based statistics ‖θn − θrestart‖2.

the other parameters are set to (tresh, q, k0) = (0.6, 1.5, 5),
left are shown the convergence rates for the different algo-
rithms and parameters, right are plotted the evolution of
the distance-based statistic ‖θn − θ0‖2. Bottom row cor-
responds to the MNIST dataset for two different values
of the threshold thresh = 0.6 and thresh = 0.8, the
other parameters are set to (r, q, k0) = (1/2, 1.5, 5), left are
shown the convergence rates for the different algorithms and
parameters, right are plotted the evolution of the distance-
based statistic ‖θn − θ0‖2. The initial step size for our
distance-based algorithm was set to 4/R2. Our adaptive al-
gorithm obtains comparable performance as online-Newton
and optimally-tuned averaged SGD, enjoying a convergence
rate O(1/n), and better performance than theoretically-
tuned averaged-SGD. Moreover we note that the conver-
gence of the distance-based algorithm is the fastest early
stage. Thus this algorithm seems to benefit from the same
exponential-forgetting of initial conditions as the oracle di-
agnostic (see Proposition 6). We point out that our algorithm
is relatively independent of the choice of r and thresh. We
also note (red and green curves) that the theoretically opti-
mal step size is outperformed by the hand-tuned one with
the same decay, which only confirms the need for adaptive
methods. On the right is plotted the statistic during the
SGD procedure. Unlike Pflug’s one, the signal is very clean,
which is mostly due to the large range of values that are
taken.

Application to deep learning. We conclude by testing
the distance-based statistic on a deep-learning problem in

https://archive.ics.uci.edu/ml/datasets/covertype
http://yann.lecun.com/exdb/mnist/
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Figure 4. ResNet18 trained on Cifar10. Left: test accuracies.
Right: distance-based statistic ‖θn − θrestart‖2.

Fig. 4. In practice, the learning rate is decreased when the
accuracy has stopped increasing for a certain number of
epochs. In red is plotted the accuracy curve obtained when
the learning rate is decreased by a factor r = 0.1 at epochs
150 and 250. These specific epochs have been manually
tuned to obtain state of the art performance.

Looking at the red accuracy curve, it seems natural to de-
crease the learning rate earlier around epoch 50 when the
test accuracy has stopped increasing. However doing so
leads to a lower final accuracy (orange curve). On the other
hand, decreasing the learning rate later, at epoch 250, leads
to a good final accuracy but takes longer to reach it. If
instead of paying attention to the test accuracy we focus
on the metric ‖θn − θrestart‖2 we notice that it still no-
tably increases after epoch 50 and until epoch 150. This
phenomenon manifests that this statistic contains informa-
tion that cannot be simply obtained from the test accuracy
curve. Hence when the ReduceLROnPlateau scheduler is
implemented using the distance-based strategy, the learn-
ing rate is automatically decreased around epoch 140 and
kept constant beyond (blue curve) which leads to a final
state-of-the-art accuracy.

Therefore our distance-based statistic seems also to be a
promising tool to adaptively set the step size for deep learn-
ing applications. We hope this will inspire further research.

Conclusion
In this paper we studied convergence-diagnostic step-sizes.
We first showed that such step-sizes make sense in the
smooth and strongly convex framework since they recover
the optimal O(1/n) rate with in addition an exponential
decrease of the initial conditions. Two different conver-
gence diagnostics are then analysed. First, we theoretically
prove that Pflug’s diagnostic leads to abusive restarts in the
quadratic case. We then propose a novel diagnostic which
relies on the distance of the final iterate to the restart point.
We provide a simple restart criterion and theoretically mo-
tivate it in the quadratic case. The experimental results on
synthetic and real world datasets show that our simple diag-

nostic leads to very satisfying convergence rates in a variety
of frameworks.

An interesting future direction to our work would be to
theoretically prove that our diagnostic leads to adequate
restarts, as seen experimentally. It would also be interesting
to explore more in depth the applications of our diagnostic
in the non-convex framework.
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Figure 5. Least-squares on synthetic data (n = 1e6, d = 20, σ2 = 1). Left: least-squares regression. Right: Scaled Pflug statistic nSn.
The dashed vertical lines correspond to Pflug’s restarts. Note that the x-axis of the bottom right plot is not in log scale. Top parameters:
r = 1/10, nb = 104. Bottom parameters: r = 1/4, nb = 102. Initial learning rates set to 1/2R2.

Organization of the Appendix
In the appendix, we provide additional experiments and detailed proofs to all the results presented in the main paper.

1. In Appendix A we provide additional experiments. In Appendix A.1 we show that Pflug’s diagnostic fails for different
values of decrease factor r and burn-in time nb; together with a simple experimental illustration of Proposition 13. Then
in Appendix A.2 we investigate the performance of the distance-based statistic in different settings and for different
values of r and of the threshold value thresh. These settings are: Least-squares, Logistic regression, SVM, Lasso
regression, and the Uniformly convex setting.

2. In Appendix B we prove Proposition 6 as well as a similar result for uniformly convex functions.

3. In Appendix C we prove Proposition 9 and Proposition 13 .

4. Finally in Appendix D we prove Proposition 14 and Corollary 15.

A. Supplementary experiments
Here we provide additional experiments for the Pflug diagnostic and the distance-based statistic in different settings.
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Figure 6. Least-squares on synthetic data (n = 1e5, d = 20, σ2 = 1). Parameters: γold = 1/5R2, r = 1/10, nrep = 103. Left:
least-squares regression averaged over all nrep samples. Middle: average of Pflug’s statistic over all nrep samples. Right: fraction of runs
where the statistic is negative at iteration n. The two dotted lines roughly correspond to the 95% confidence intervals.

A.1. Supplementary experiments on Pflug’s diagnostic

We test Pflug’s diagnostic in the least-squares setting with n = 1e6, d = 20, σ2 = 1, γ0 = 1/2R2. Notice that as in Fig. 1,
Plug’s diagnostic fails for different values of the algorithm’s parameters. Indeed parameters (r, nb) = (1/4, 102) (Fig. 5 top
row) and (r, nb) = (1/10, 104) (Fig. 5 bottom row) both lead to abusive restarts (dotted vertical lines) that do not correspond
to iterate saturation. These restarts lead to small step size too early and insignificant progress of the loss afterwards. Notice
that in both cases the behaviour of the rescaled statistic nSn is similar to a random walk. On the contrary, as the theory
suggests (Bach & Moulines, 2013) averaged-SGD exhibits a O(1/n) convergence rate.

In order to illustrate Proposition 13 in the least-squares framework, we repeat nrep times the same experiment which consists
in running constant step-size SGD from an initial point θ0 ∼ πγold with a smaller step-size γ = r × γold. The starting point
θ0 ∼ πγold is obtained by running for a sufficiently long time SGD with constant step size γold. In Fig. 6 we implement these
multiple experiments with n = 1e5, d = 20, σ2 = 1. In the left plot notice the two characteristic phases: the exponential
decrease of ‖θn − θ∗‖ followed by the saturation of the iterates, the good restart time corresponding to this transition is
indicated by the black dotted vertical line. Consistent with Proposition 9, we see in the middle plot that in expectation
Pflug’s statistic is positive then negative (the curve disappears as soon as its value is negative due to the plot in log-log scale).
This change of sign occurs roughly at the same time as when the iterates saturate. However, in the right graph we plot for
each iteration k the fraction of runs for which the statistic Sk is negative. We see that this fraction is close to 0.5 for all k
smaller than the good restart time. Since for nrep big enough 1

nrep

∑nrep
i=1 1{S(i)

k < 0} ∼ P(S
(i)
k < 0), this is an illustration

of Proposition 13. Hence whatever the burn-in nb fixed by Pflug’s algorithm, there is a chance out of two of restarting too
early.

A.2. Supplementary experiments on the distance-based diagnostic

In this section we test our distance-based diagnostic in several settings.

Least-squares regression. We consider the objective f(θ) = 1
2E
[
(y − 〈x, θ〉)2

]
. The inputs xi are i.i.d. from N (0, H)

where H has random eigenvectors and eigenvalues (1/k)1≤k≤d. We note R2 = Tr H . The outputs yi are generated
following the generative model yi = 〈xi, θ∗〉+ εi where (εi)1≤i≤n are i.i.d. from N (0, σ2). We test the distance-based
strategy with different values of the threshold thresh ∈ {0.4, 0.6, 1} and of the decrease factor r ∈ {1/2, 1/4, 1/8}. We use
averaged-SGD with constant step size γ = 1/2R2 as a baseline since it enjoys the optimal statistical rate O(σ2d/n) (Bach
& Moulines, 2013), we also plot SGD with step size γn = 1/µn which achieves a rate of 1/µn.

We observe in Fig. 7 that the distance-based strategy achieves similar performances as 1/µn step sizes without knowing
µ. Furthermore the performance does not heavily depend on the values of r and thresh used. In the middle plot of Fig. 7
notice how the distance-based step-sizes mimic the 1/µn sequence. We point out that the performance of constant-step-size
averaged SGD and 1/µn-step-size SGD are comparable since the problem is fairly well conditioned (µ = 1/20).
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Figure 7. Least-squares on synthetic data (n = 1e5, d = 20, σ2 = 1). All initial step sizes of 1/2R2. Top distanced-based parameters:
(r, q, k0) = (1/2, 0.5, 5). Bottom distanced-based parameters: (thresh, q, k0) = (0.6, 1.5, 5). The losses on the left plot are averaged
over 10 replications.
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Figure 8. Logistic regression on synthetic data (n = 1e5, d = 20). Distanced-based parameters: (r, q, k0) = (1/2, 1.5, 5) and
γ0 = 4/R2. The losses on the left plot are averaged over 10 replications.

Logistic regression. We consider the objective f(θ) = E
[
log(1 + e−y〈x, θ〉)

]
. The inputs xi are generated the same

way as in the least-square setting. The outputs yi are generated following the logistic probabilistic model yi ∼ B((1 +
exp(−〈xi, θ∗〉)−1). We use averaged-SGD with step-sizes γn = 1/

√
n as a baseline since it enjoys the optimal rate

O(1/n) (Bach, 2014). We also compare to online-Newton (Bach & Moulines, 2013) which achieves better performance in
practice and to averaged-SGD with step-sizes γn = C/

√
n where parameter C is tuned in order to achieve best performance.

In Fig. 8 notice how averaged-SGD with the theoretical step size γn = 1/
√
n performs poorly. However once the parameter

C in γn = C/
√
n is tuned properly averaged-SGD and online Newton perform similarly. Note that our distance-based

strategy with r = 1/2 achieves similar performances which do not heavily depend on the value of the threshold thresh.
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Figure 9. SVM on synthetic data (n = 1e5, d = 20, λ = 0.1, η2 = 25 and σ = 1). Distanced-based parameters: (r, q, k0) =
(1/2, 1.5, 5) and γ0 = 4/R2. The losses on the left plot are averaged over 10 replications.
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Figure 10. Lasso regression on synthetic data (number of iterations = 1e5, n = 80, d = 100, s = 60, σ = 0.1, λ = 10−4). Initial
step-sizes of 1/2R2 (except for the tuned C/

√
n). Distanced-based parameters: (r, q, k0) = (1/2, 1.5, 5). The losses on the left plot are

averaged over 10 replications.

SVM. We consider the objective f(θ) = E [max(0, 1− y〈x, θ〉)] + λ
2 ‖θ‖

2 where λ > 0. Note that f is strongly-convex
with parameter λ and non-smooth. The inputs xi are generated i.i.d. from N (0, η2Id). The outputs yi are generated
as yi = sgn(xi(1) + zi) where zi ∼ N (0, σ2). We generate n = 1e5 points in dimension d = 20. We compare our
distance-based strategy with different values of the threshold thresh ∈ {0.6, 0.8, 1} to averaged-SGD with step sizes
γn = 1/µn which achieves the rate of log n/µn (Lacoste-Julien et al., 2012) and averaged-SGD with step sizes γn = C/

√
n

where C is tuned in order to achieve best performance.

In Fig. 9 note that averaged-SGD with γn = 1/µn exhibits a O(1/n) rate but the initial values are bad. On the other hand,
once properly tuned, averaged SGD with γn = C/

√
n performs very well, similarly as in the smooth setting. Note that our

distance-based strategy with r = 1/2 achieves similar performances which do not depend on the value of the threshold
thresh.

Lasso Regression. We consider the objective f(θ) = 1
n

∑n
i=1(yi − 〈xi, θ〉)2 + λ ‖θ‖1. The inputs xi are i.i.d. from

N (0, H) where H has random eigenvectors and eigenvalues (1/k3)1≤k≤d. We choose n = 80, d = 100. We note
R2 = Tr H . The outputs yi are generated following yi = 〈xi, θ̃〉+ εi where (εi)1≤i≤n are i.i.d. from N (0, σ2) and θ̃ is
an s-sparse vector. Note that f is non-smooth and the smallest eigenvalue of H is 1/106, hence for the number of iterations
we run SGD f cannot be considered as strongly convex. We compare the distance-based strategy with different values of the
threshold thresh ∈ {0.4, 0.6, 1} to SGD with step-size sequence γn = 1/

√
n which achieves a rate of log n/

√
n (Shamir

& Zhang, 2013) and to step-size sequence γn = C/
√
n where C is tuned to achieve best performance. Let us point out that

the purpose of this experiment is to investigate the performance of the distance-based statistic on non-smooth problems and
therefore we use as baseline generic algorithms for non-smooth optimization – even though, in the special case of the Lasso
regression, there exists first-order proximal algorithms which are able to leverage the special structure of the problem and
obtain the same performance as for smooth optimization (Beck & Teboulle, 2009).
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Figure 11. Uniformly convex function f(θ) = 1
ρ
‖θ‖ρ2 (n = 1e5, d = 200, ρ = 2.5). Initial step size of γ0 = 1/4L for all step-size

sequences. Distance-based parameters (thresh, q, k0) = (1, 1.5, 5). The losses on the left plot correspond to only one replication.

In Fig. 10 note that SGD with the theoretical step-size sequence γn = 1/
√
n performs poorly. Tuning the parameter C in

γn = C/
√
n improves the performance. However our distance-based strategy with r = 1/2 performs better for several

different values of thresh.

Uniformly convex f . We consider the objective f(θ) = 1
ρ ‖θ‖

ρ
2 where ρ = 2.5. Notice that f is not strongly convex

but is uniformly convex with parameter ρ (see Assumption 16). We generate the noise on the gradients ξi as i.i.d from
N (0, Id). We compare the distance-based strategy with different values of the decrease factor r ∈ {1/2, 1/4, 1/8} to SGD
with step-size sequence γn = 1/

√
n which achieves a rate of log n/

√
n (Shamir & Zhang, 2013) and to SGD with step size

γn = n−1/(τ+1) (τ = 1− 2/ρ) which we expect to achieve a rate of O(n−1/(τ+1) log n) (see remark after Corollary 19).
Notice in Fig. 11 how the distance-based strategy achieves the same rate as SGD with step-sizes γn = n−1/(τ+1) without
knowing parameter τ . Furthermore the performance does not depend on the value of r used. In the middle plot of Fig. 7
notice how the distance-based step sizes mimic the n−1/(τ+1) sequence.

Therefore the distance-based diagnostic works in a variety of settings where it automatically adapts to the problem difficulty
without having to know the specific parameters (such as strong-convexity or uniform-convexity parameters).

B. Performance of the oracle diagnostic
In this section, we prove the performance of the oracle diagnostic in the strongly-convex setting and consider its extension to
the uniformly-convex setting.

B.1. Proof of Proposition 6

We first introduce some notations which are useful in the following analysis.

Notation. For k ≥ 1, let nk+1 be the number of iterations until the (k+1)th restart and ∆nk+1 be the number of iterations
between the restart k and restart (k + 1) during which step size γk is used. Therefore we have that nk =

∑k
k′=1 ∆nk′ . We

also denote by δn = E
[
‖θn − θ∗‖2

]
.

Notice that for n ≥ 1 and |x| ≤ n it holds that (1− x)n ≤ exp(−nx). Hence Proposition 5 leads to:

E
[
‖θn − θ∗‖2

]
≤ (1− γµ)nδ0 +

2σ2

µ
γ (2)

≤ exp(−nγµ)δ0 +
2σ2

µ
γ. (3)

In order to simplify the computations, we analyse Algorithm 2 with the bias-variance trade-off stated in eq. (3) instead of
the one of eq. (2). Note however that it does not change the result. We prove separately the results obtained before and after
the first restart ∆n1.
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Before the first restart. Let θ0 ∈ Rd. For n ≤ ∆n1 = n1 (first restart time) we have that:

E
[
‖θn − θ∗‖2

]
≤ exp(−nγ0µ)δ0 +

2σ2

µ
γ0. (4)

Following the oracle strategy, the restart time ∆n1 corresponds to exp(−∆n1γ0µ)δ0 = 2σ2

µ γ0. Hence ∆n1 =

1
γ0µ

ln
(

µδ0
2γ0σ2

)
and δn1

≤ exp(−∆n1γ0µ)δ0 + 2σ2

µ γ0 = 4σ2

µ γ0.

After the first restart. Let k ≥ 1 and nk ≤ n ≤ nk+1. We obtain from eq. (3):

E
[
‖θn − θ∗‖2

]
≤ exp(−(n− nk)γkµ)E

[
‖θnk − θ∗‖2

]
+

2σ2

µ
γk.

The oracle construction of the restart time leads to:

exp(−∆nk+1γkµ)δnk =
2σ2

µ
γk.

Which yields

∆nk+1 =
1

γkµ
ln

µδnk
2σ2γk

.

However we know by construction that for k ≥ 1, δnk ≤ exp(−∆nkγk−1µ)δnk−1
+ 2σ2

µ γk−1 = 4σ2

µ γk−1. Hence:

∆nk+1 ≤
1

γkµ
ln 2

γk−1

γk
.

Considering that γk = rkγ0,

∆nk+1 ≤
1

rkγ0µ
ln

2

r
.

Since nk = ∆n1 +
∑k
k′=2 ∆nk′ we have that

nk −∆n1 =

k∑
k′=2

∆nk′ ≤
1

µγ0
ln

(
2

r

) k∑
k′=2

1

rk′−1

≤ 1

µγ0
ln

(
2

r

) k∑
k′=1

1

rk′−1

≤ 1

µγ0(1− r) ln

(
2

r

)
1

rk−1

=
1

µ(1− r)γk−1
ln

(
2

r

)
.

Therefore since δnk ≤ 4σ2

µ γk−1 we get:

δnk ≤
4σ2

(nk −∆n1)µ2(1− r) ln
(2

r

)
. (5)

We now want a result for any n and not only for restart times. For n ≤ n1 = ∆n1 we are done using eq. (4). For k ≥ 1, let
nk ≤ n ≤ nk+1, from Proposition 5 and eq. (5) we have that:

δn ≤ exp(−(n− nk)γkµ)δnk +
2γkσ

2

µ

≤ exp(−(n− nk)γkµ)
A

nk −∆n1
+

2γkσ
2

µ
,
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where A = 4σ2

µ2(1−r) ln
(

2
r

)
. Let g(n) = exp(−(n− nk)γkµ) A

nk−∆n1
+ 2γkσ

2

µ and h(n) = A
n−∆n1

+ 2γkσ
2

µ for n > ∆n1.
Note that g is exponential, h is an inverse function and that g(nk) = h(nk). This implies that that for n ≥ nk, g(n) ≤ h(n).
Hence for n ≥ nk:

δn ≤
A

n−∆n1
+

2γkσ
2

µ

≤ A

n−∆n1
+

4γkσ
2

µ
.

By construction, 4σ2

µ γk ≤ A
nk+1−∆n1

. However since A
nk+1−∆n1

≤ A
n−∆n1

for n ≤ nk+1 we get that 4σ2

µ γk ≤ A
n−∆n1

for
n ≤ nk+1. Hence for nk ≤ n ≤ nk+1 and therefore for all n > ∆n1:

δn ≤
2A

n−∆n1

≤ 8σ2

µ2(n−∆n1)(1− r) ln
(2

r

)
.

This concludes the proof. Note that this upper bound diverges for r → 0 or 1 and could be minimized over the value of r.

B.2. Uniformly convex setting

The previous result holds for smooth strongly-convex functions. Here we extend this result to a more generic setting where
f is not supposed strongly convex but uniformly convex.
Assumption 16 (Uniform convexity). There exists finite constants µ > 0, ρ > 2 such that for all θ, η ∈ Rd and any
subgradient f ′(η) of f at η:

f(θ) ≥ f(η) + 〈f ′(η), θ − η〉+
µ

ρ
‖θ − η‖ρ .

This assumption implies the convexity of the function f and the definition of strong convexity is recovered for ρ→ 2. It also
recovers the definition of weak-convexity around θ∗ when ρ→ +∞ since limρ→+∞

µ
ρ ‖θ − θ∗‖

ρ
= 0 for ‖θ − θ∗‖ ≤ 1.

To simplify our presentation and as is often done in the literature we restrict the analysis to the constrained optimization
problem:

min
θ∈W

f(θ),

where W is a compact convex set and we assume f attains its minimum on W at a certain θ∗ ∈ Rd. We consider the
projected SGD recursion:

θi+1 = ΠW
[
θi − γi+1f

′
i+1(θi)

]
. (6)

We also make the following assumption (which does not contradict Assumption 16 in the constrained setting).
Assumption 17 (Bounded gradients). There exists a finite constant G > 0 such that

E
[
‖f ′i(θ)‖

2
]
≤ G2

for all i ≥ 0 and θ ∈ W .

In order to obtain a result similar to Proposition 6 but for uniformly convex functions, we first need to analyse the behaviour
of constant step-size SGD in this new framework and obtain a classical bias-variance trade off similar to Proposition 5.

B.2.1. CONSTANT STEP-SIZE SGD FOR UNIFORMLY CONVEX FUNCTIONS

The following proposition exhibits the bias-variance trade off obtained for the function values when constant step-size SGD
is used on uniformly convex functions.
Proposition 18. Consider the recursion in eq. (6) under Assumptions 1, 16 and 17. Let τ = 1− 2

ρ ∈ (0, 1), q = ( 1
τ − 1)−1,

µ̃ = 4µρ and δ0 = E
[
‖θ0 − θ∗‖2

]
. Then for any step-size γ > 0 and time n ≥ 0 we have:

E [f(θn)]− f(θ∗) ≤ δ0

γn (1 + nqγµ̃δq0)
1
q

+ γG2(1 + log n).
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Note that the bias term decreases at a rate n−1/τ which is an interpolation of the rate obtained when f is strongly convex
(τ → 0, exponential decrease of bias) and when f is simply convex (τ = 1, bias decrease rate of n−1). This bias-variance
trade off directly implies the following rate in the finite horizon setting.
Corollary 19. Consider the recursion in eq. (6) under Assumptions 1, 16 and 17. Then for a finite time horizon N ≥ 0 and
constant step size γ = N−

1
τ+1 we have:

E [f(θN )]− f(θ∗) = O
(
N−

1
1+τ logN

)
.

Remarks. When the total number of iterations N is fixed, Juditsky & Nesterov (2014) find a similar result as Corollary 19
for minimizing uniformly convex functions. However their algorithm uses averaging and multiple restarts. In the deter-
ministic framework, using a weaker but similar assumption as uniform convexity, Roulet & d’Aspremont (2017) obtain
a similar O(N−

1
τ ) convergence rate for gradient descent for smooth uniformly convex functions. This is coherent with

the bias variance trade off we get and Corollary 19 extends their result to the stochastic framework. We also note that the
result in Corollary 19 holds only in the fixed horizon framework, however we believe that this rate still holds when using a
decreasing step size γn = n−

1
τ+1 . The analysis is however much harder since it requires analysing the recursion stated in

eq. (12) with a decreasing step-size sequence.

Hence Corollary 19 shows that an accelerated rate of O
(

log(n)n−
1

1+τ

)
is obtained with appropriate step sizes. However in

practice the parameter ρ is unknown and this step size sequence cannot be implemented. In Appendix B.2.3 we show that
we can bypass ρ by using the oracle restart strategy. In the following subsection Appendix B.2.2 we prove Proposition 18
and Corollary 19.

B.2.2. PROOF OF PROPOSITION 18 AND COROLLARY 19

We start by stating the following lemma directly inspired by Shamir & Zhang (2013).
Lemma 20. Under Assumptions 1 and 17. Consider projected SGD in eq. (6) with constant step size γ > 0. Let 1 ≤ p ≤ n
and denote Sp = 1

p+1

∑n
i=n−p f(θi), then:

E [f(θn)] ≤ E [Sp] +
γ

2
G2(log(p) + 1).

Proof. We follow the proof technique of Shamir & Zhang (2013). The goal is to link the value of the final iterate with the
averaged last p iterates. For any θ ∈ W and γ > 0:

θi+1 − θ = ΠW
[
θi − γf ′i+1(θi)

]
− θ.

By convexity ofW we have the following:

‖θi+1 − θ‖2 ≤
∥∥θi − γf ′i+1(θi)− θ

∥∥2

= ‖θi − θ‖2 − 2γ〈f ′i+1(θi), θi − θ〉+ γ2
∥∥f ′i+1(θi)

∥∥2
. (7)

Rearranging we get

〈f ′i+1(θi), θi − θ〉 ≤
1

2γ

[
‖θi − θ‖2 − ‖θi+1 − θ‖2

]
+
γ

2

∥∥f ′i+1(θi)
∥∥2
. (8)

Let k be an integer smaller than n. Summing eq. (8) from i = n− k to i = n we get
n∑

i=n−k

〈f ′i+1(θi), θi − θ〉 ≤
1

2γ

[
‖θn−k − θ‖2 − ‖θn+1 − θ‖2

]
+
γ

2

n∑
i=n−k

∥∥f ′i+1(θi)
∥∥2
.

Taking the expectation and using the bounded gradients hypothesis:
n∑

i=n−k

E [〈f ′(θi), θi − θ〉] ≤
1

2γ
E
[
‖θn−k − θ‖2 − ‖θn+1 − θ‖2

]
+
γ

2

n∑
i=n−k

E
[∥∥f ′i+1(θi)

∥∥2
]

≤ 1

2γ
E
[
‖θn−k − θ‖2 − ‖θn+1 − θ‖2

]
+
γ

2
(k + 1)G2.
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The function f being convex we have that f(θi)− f(θ) ≤ 〈f ′(θi), θi − θ〉. Therefore:

1

k + 1

n∑
i=n−k

E [f(θi)− f(θ)] ≤ 1

2γ(k + 1)
E
[
‖θn−k − θ‖2 − ‖θn+1 − θ‖2

]
+
γ

2
G2

≤ 1

2γ(k + 1)
E
[
‖θn−k − θ‖2

]
+
γ

2
G2.

Let Sk = 1
k+1

∑n
i=n−k f(θi). Rearranging the previous inequality we get

E [Sk]− f(θ) ≤ 1

2γ(k + 1)
E
[
‖θn−k − θ‖2

]
+
γ

2
G2

≤ 1

2γk
E
[
‖θn−k − θ‖2

]
+
γ

2
G2. (9)

Plugging θ = θn−k in eq. (9) we get
−E [f(θn−k)] ≤ −E [Sk] +

γ

2
G2.

However, notice that kE [Sk−1] = (k + 1)E [Sk]− E [f(θn−k)]. Therefore:

kE [Sk−1] ≤ (k + 1)E [Sk]− E [Sk] +
γ

2
G2

= kE [Sk] +
γ

2
G2.

Summing the inequality E [Sk−1] ≤ E [Sk] + γ
2kG

2 from k = 1 to some p ≤ n we get E [S0] ≤ E [Sp] + γ
2G

2
∑p
k=1

1
k .

Since S0 = f(θn) we have the following inequality that links the final iterate and the averaged last p iterates:

E [f(θn)] ≤ E [Sp] +
γ

2
G2(log(p) + 1). (10)

The inequality (10) shows that upper bounding E [Sp] immediately gives us an upper bound on E [f(θn)]. This is useful
because it is often simpler to upper bound the average of the function values E [Sp] than directly E [f(θn)]. Therefore to
prove Proposition 18 we now just have to suitably upper bound E [Sp].

Proof of Proposition 18. The function f is uniformly convex with parameters µ > 0 and ρ > 2 which means that for all
θ, η ∈ W and any subgradient f ′(η) of f at η it holds that f(θ) ≥ f(η) + 〈f ′(η), θ − η〉 + µ

ρ ‖θ − η‖
ρ. Adding this

inequality written in (θ, η) and in (η, θ) we get:

2µ

ρ
‖θ − η‖ρ ≤ 〈f ′(θ)− f ′(η), θ − η〉. (11)

Using inequality (7) with θ = θ∗ and taking its expectation we get that

δn+1 ≤ δn − 2γE [〈f ′(θn), θn − θ〉] + γ2G2.

Therefore using inequality from eq. (11) with η = θ∗:

δn+1 ≤ δn − 4γ
µ

ρ
E [‖θn − θ∗‖ρ] + γ2G2.

Since ρ > 2 we use Jensen’s inequality to get E [‖θn − θ∗‖ρ] ≥ E
[
‖θn − θ∗‖2

]ρ/2
. Let µ̃ = 4µρ , then:

δn+1 ≤ δn − 4γ
µ

ρ
δ
ρ
2
n + γ2G2

= δn − γµ̃δ
ρ
2
n + γ2G2. (12)
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Let g̃ : x ∈ R+ 7→ x−γµ̃xρ/2. The function g̃ is strictly increasing on [0, xc] where xc =
(

2
ργµ̃

)2/(ρ−2)

. Let δ∞ = (γG
2

µ̃ )
2
ρ

such that g̃(δ∞) + γ2G2 = δ∞. We assume that γ is small enough so that δ∞ < xc. Therefore if δ0 ≤ xc then δn ≤ xc for
all n. By recursion we now show that:

δn ≤ g̃n(δ0) + nγ2G2. (13)

Inequality (13) is true for n = 0. Now assume inequality (13) is true for some n ≥ 0. According to eq. (12), δn+1 ≤
g̃(δn) + γ2G2. If g̃n(δ0) + nγ2G2 > xc then we immediately get δn+1 ≤ xc < g̃n(δ0) + (n+ 1)γ2G2 and recurrence is
over. Otherwise, since g̃ is increasing on [0, xc] we have that g̃(δn) ≤ g̃(g̃n(δ0) + nγ2G2) and:

δn+1 ≤ g̃(g̃n(δ0) + nγ2G2) + γ2G2

=
[
g̃n(δ0) + nγ2G2

]
− γµ̃

[
g̃n(δ0) + nγ2G2

]ρ/2
+ γ2G2

≤ g̃n(δ0)− γµ̃ [g̃n(δ0)]
ρ/2

+ (n+ 1)γ2G2

= g̃n+1(δ0) + (n+ 1)γ2G2.

Hence eq. (13) is true for all n ≥ 0. Now we analyse the sequence (g̃n(δ0))n≥0. Let δ̃n = g̃n(δ0). Then 0 ≤ δ̃n+1 =

δ̃n − γµ̃δ̃q+1
n ≤ δ̃n where q = ρ/2− 1 > 0. Therefore δ̃n is decreasing, lower bounded by zero, hence it convergences to a

limit which in our case can only be 0. Note that (1− x)−q ≥ 1 + qx for q > 0 and x < 1. Therefore:(
δ̃n+1

)−q
= (δ̃n − γµ̃δ̃q+1

n )−q

= δ̃−qn (1− γµ̃δ̃qn)−q

≥ δ̃−qn (1 + qγµ̃δ̃qn)

= δ̃−qn + qγµ̃.

Summing this last inequality we obtain: δ̃−qn ≥ δ̃−q0 + nqγµ̃ which leads to

δ̃n ≤ (δ̃−q0 + nqγµ̃)−1/q

= (δ−q0 + nqγµ̃)−1/q.

Therefore:

δn ≤ δ0 (1 + nqγµ̃δq0)
− 1
q + nγ2G2

=
δ0

(1 + nqγµ̃δq0)
1
q

+ nγ2G2

≤ O
(

1

γn

2
ρ−2

)
+ nγ2G2.

Plugging this in eq. (9) with k = n/2 and θ = θ∗ we get:

E
[
Sn/2

]
− f(θ∗) ≤ 1

γn
δn/2 +

γ

2
G2

≤ 1

γn

(
δ0

(
1 +

n

2
qγµ̃δq0

)− 1
q

+
n

2
γ2G2

)
+
γ

2
G2

=
δ0

γn
(
1 + 1

2nqγµ̃δ
q
0

) 1
q

+ γG2

≤ O
(

1

(γn)
1
τ

)
+ γG2,
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where τ = 1− 2
ρ ∈ [0, 1]. Re-injecting this inequality in eq. (10) with p = n/2 we get:

E [f(θn)]− f(θ∗) ≤ δ0

γn (1 + nqγµ̃δq0)
1
q

+ γG2 +
γG2

2

(
log(

n

2
) + 1

)
≤ δ0

γn (1 + nqγµ̃δq0)
1
q

+ γG2 + γG2 log(n) for n ≥ 2

≤ O
(

1

(γn)
1
τ

)
+ γG2(1 + log(n)).

The proof of Corollary 19 follows easily from Proposition 18.

Proof of Corollary 19. In the finite horizon framework, by choosing γ = 1

N
1
τ+1

we get that:

E [f(θN )]− f(θ∗) ≤ O
(

1

N
1
τ+1

)
+G2 1 + log(N)

N
1
τ+1

= O

(
log(N)

N
1

1+τ

)
.

B.2.3. ORACLE RESTART STRATEGY FOR UNIFORMLY CONVEX FUNCTIONS.

As seen at the end of Appendix B.2, appropriate step sizes can lead to accelerated convergence rates for uniformly convex
functions. However in practice these step sizes are not implementable since ρ is unknown. Here we study the oracle restart
strategy which consists in decreasing the step size when the iterates make no more progress. To do so we consider the
following bias trade off inequality which is verified for uniformly convex functions (Proposition 18) and for convex functions
(when τ = 1).

Assumption 21. There is a bias variance trade off on the function values for some τ ∈ (0, 1] of the type:

E [f(θn)]− f(θ∗) ≤ A
(

1

γn

) 1
τ

+Bγ(1 + log(n)).

Under Assumption 21, if we assume the constants of the problem A and B are known then we can adapt Algorithm 2 in
the uniformly convex case. From θ0 ∈ W we run the SGD procedure with a constant step size γ0 for ∆n1 steps until the

bias term is dominated by the variance term. This corresponds to A
(

1
γ0∆n1

) 1
τ

= Bγ0. Then for n ≥ ∆n1, we decide to
use a smaller step size γ1 = r × γ0 (where r is some parameter in [0, 1]) and run the SGD procedure for ∆n2 steps until

A
(

1
γ1∆n2

) 1
τ

= Bγ1 and we reiterate the procedure. This mimics dropping the step size each time the final iterate has
reached function value saturation. This procedure is formalized in Algorithm 5.

Algorithm 5 Oracle diagnostic for uniformly convex functions
Input: γ, A, B, τ
Output: Diagnostic boolean

Bias← A
(

1
γn

) 1
τ

Variance← Bγ
Return: { Bias < Variance }

In the following proposition we analyse the performance of the oracle restart strategy for uniformly convex functions. The
result is similar to Proposition 6.
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Proposition 22. Under Assumption 21, consider Algorithm 1 instantiated with Algorithm 5 and parameter r ∈ (0, 1) . Let
γ0 > 0, then for all restart times nk:

E [f(θnk)]− f(θ∗) ≤ O
(

log(nk)n
− 1
τ+1

k

)
. (14)

Hence by using the oracle restart strategy we recover the rate obtained by using the step size γ = n−
1
τ+1 . This suggests that

efficiently detecting stationarity can result in a convergence rate that adapts to parameter ρ which is unknown in practice,
this is illustrated in Fig. 11. However, note that unlike the strongly convex case, eq. (14) is valid only at restart times nk. Our
proof here resembles to the classical doubling trick. However in practice (see Fig. 11), the rate obtained is valid for all n.

Proof. As before, for k ≥ 0, denote by nk+1 the number of iterations until the (k + 1)th restart and ∆nk+1 the number of
iterations between restart k and restart (k+ 1) during which step size γk is used. Therefore we have that nk =

∑k
k′=1 ∆nk′

and γk = rkγ0.

Following the restart strategy :

A

(
1

γk∆nk+1

) 1
τ

= Bγk.

Rearranging this equality we get:

∆nk+1 =
A

B

1

γτ+1
k

=
A

B

1

γτ+1
0

1

rk(τ+1)
.

And,

nk =

k∑
k′=1

∆nk′ =
A

B

1

γτ+1
0

k−1∑
k′=0

1

rk′(τ+1)

≤ A

B

1

γτ+1
0

rτ+1

1− rτ+1

1

rk(τ+1)

≤ A

B

1

γτ+1
0

1

1− rτ+1

1

r(k−1)(τ+1)

=
A

B

1

(γk−1)τ+1

1

1− rτ+1
.

Since E [f(θnk)]− f(θ∗) ≤ Bγk−1(1 + log(∆nk)) we get:

E [f(θnk)]− f(θ∗) ≤ Bγ0r
k−1(1 + log(nk))

≤ B
(
A

B

1

1− rτ+1

) 1
τ+1 1

n
1
τ+1

k

(1 + log(nk))

≤ O

 log(nk)

n
1
τ+1

k

 .

C. Analysis of Pflug’s statistic
In this section we prove Proposition 9 which shows that at stationarity the inner product 〈f ′1(θ0), f ′2(θ1)〉 is negative. We
then prove Proposition 13 which shows that using Pflug’s statistic leads to abusive and undesired restarts.

C.1. Proof of Proposition 9

Let f be an objective function verifying Assumptions 1 to 4, 7 and 8. We first state the following lemma from Dieuleveut
et al. (2017).
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Lemma 23. [Lemma 13 of Dieuleveut et al. (2017)] Under Assumptions 1 to 4, 7 and 8, for γ ≤ 1/2L:

Eπγ
[
‖η‖2p

]
= O(γp).

Therefore by the Cauchy-Schwartz inequality: Eπγ [‖η‖] ≤ Eπγ
[
‖η‖2

]1/2
= O(

√
γ).

In the following proofs we use the Taylor expansions with integral rest of f ′ around θ∗ we also state here:

Taylor expansions of f ′. Let us defineR1 andR2 such that for all θ ∈ Rd:

• f ′(θ) = f ′′(θ∗)(θ − θ∗) +R1(θ) whereR1 : Rd → Rd satisfies sup
θ∈Rd

( ‖R1(θ)‖
‖θ−θ∗‖2

)
= M1 < +∞

• f ′(θ) = f ′′(θ∗)(θ− θ∗) + f (3)(θ∗)(θ− θ∗)⊗2 +R2(θ) whereR2 : Rd → Rd satisfies sup
θ∈Rd

( ‖R2(θ)‖
‖θ−θ∗‖3

)
= M2 < +∞

We also make use of this simple lemma which easily follows from Lemma 23.

Lemma 24. Under Assumptions 1 to 4, 7 and 8, let γ ≤ 1/2L, then Eπγ [‖f ′(θ)‖] = O(
√
γ).

Proof. f ′(θ) = f ′′(θ∗)η +R1(θ) so that Eπγ [‖f ′(θ)‖] ≤ ‖f ′′(θ∗)‖op Eπγ [‖η‖] + M1Eπγ
[
‖η‖2

]
. With Lemma 23 we

then get that Eπγ [‖f ′(θ)‖] = O(
√
γ).

We are now ready to prove Proposition 9.

Proof of Proposition 9. For θ0 ∈ Rd we have that f ′1(θ0) = f ′(θ0) − ε1(θ0), θ1 = θ0 − γf ′1(θ0) and f ′2(θ1) =
f ′(θ1)− ε2(θ1). Hence:

〈f ′1(θ0), f ′2(θ1)〉 = 〈f ′1(θ0), f ′(θ1)− ε2(θ1)〉.

And by Assumption 1,

E [〈f ′1(θ0), f ′2(θ1)〉 | F1] = 〈f ′1(θ0), f ′(θ1)〉
= 〈f ′(θ0)− ε1(θ0), f ′(θ0 − γf ′(θ0) + γε1(θ0))〉
= 〈f ′(θ0), f ′(θ0 − γf ′(θ0) + γε1(θ0))〉︸ ︷︷ ︸

”deterministic”

−〈ε1(θ0), f ′(θ0 − γf ′(θ0) + γε1(θ0))〉︸ ︷︷ ︸
noise

. (15)

First part of the proposition. By a Taylor expansion in γ around θ0:

f ′(θ0 − γf ′(θ0) + γε1(θ0)) = f ′(θ0)− γf ′′(θ0) (f ′(θ0)− ε1(θ0)) +O(γ2).

Hence:

E [〈f ′1(θ0), f ′2(θ1)〉] = ‖f ′(θ0)‖2 − γ〈f ′(θ0), f ′′(θ0)f ′(θ0)〉 − γE [〈ε1(θ0), f ′′(θ0)ε1(θ0)〉] +O(γ2)

≥ (1− γL) ‖f ′(θ0)‖2 − γLTr C(θ0) +O(γ2).

Second part of the proposition. For the second part of the proposition we make use of the Taylor expansions around θ∗.
Equation (15) is the sum of two terms, a ”deterministic” (note that we use brackets since the term is not exactly deterministic)
and a noise term, which we compute separately below. Let η0 = θ0 − θ∗.
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”Deterministic” term. First,

〈f ′(θ0), f ′(θ0 − γf ′(θ0) + γε1(θ0))〉 = 〈f ′(θ0), f ′′(θ∗)η0〉
− γ〈f ′(θ0), f ′′(θ∗)f ′(θ0)〉
+ γ〈f ′(θ0), f ′′(θ∗)ε1(θ0))〉
+ γ〈f ′(θ0), R1(θ0 − γf ′(θ0) + γε1(θ0))〉.

We compute each of the four terms separately, for θ0 ∼ πγ :

a)
Eπγ [〈f ′(θ0), f ′′(θ∗)η0〉] = Eπγ [〈f ′′(θ∗)η0, f

′′(θ∗)η0〉] + Eπγ [〈R1(θ0), f ′′(θ∗)η0〉]
= Eπγ

[
ηT0 f

′′(θ∗)2η0

]
+O(γ3/2).

However

Eπγ [〈R1(θ0), f ′′(θ∗)η0〉] ≤ Eπγ [‖R1(θ0)‖ ‖f ′′(θ∗)η0‖]
≤M1Eπγ

[
‖η0‖2 ‖f ′′(θ∗)η0‖

]
= O(γ3/2) by Lemma 23.

Hence Eπγ [〈f ′(θ0), f ′′(θ∗)η0〉] = Eπγ
[
ηT0 f

′′(θ∗)2η0

]
+O(γ3/2).

b) Using Lemma 24:
γEπγ [〈f ′(θ0), f ′′(θ∗)f ′(θ0)〉] = O(γ2).

c) Using Assumption 1:
Eπγ [〈f ′(θ0), f ′′(θ∗)ε1(θ0)〉] = 0.

d) Using the Cauchy-Schwartz inequality, Lemmas 23 and 24 :

Eπγ [|〈f ′(θ0), R1(θ − γf ′(θ0) + γε1(θ0))〉|] ≤M1Eπγ
[
‖f ′(θ0)‖ ‖η0 − γf ′(θ0) + γε1(θ0)‖2

]
= O(γ3/2).

Noise term. Now we deal with the noise term in eq. (15):

〈ε1(θ0), f ′(θ0 − γf ′(θ0) + γε1(θ0))〉 = 〈ε1(θ0), f ′′(θ∗)(η0 − γf ′(θ0) + γε1(θ0)〉
+ 〈ε1(θ0), f (3)(θ∗)(η0 − γf ′(θ0) + γε1(θ0))⊗2〉
+ 〈ε1(θ0), R2(θ − γf ′(θ0) + γε1(θ0))〉.

We compute each of the three terms separately:

e) Using Assumption 1:

E [〈ε1(θ0), f ′′(θ∗)(η0 − γf ′(θ0) + γε1(θ0)〉 | θ0] = −γ Tr f ′′(θ∗)C(θ0).

f) Using Assumption 1:

E
[
〈ε1(θ0), f (3)(θ∗)(η0 − γf ′(θ0) + γε1(θ0)⊗2〉 | θ0

]
= γ2E

[
〈ε1(θ0), f (3)(θ∗)ε1(θ0)⊗2〉 | θ0

]
+ 2γ Tr f (3)(θ∗)(η0 − γf ′(θ0))⊗ ε1(θ0)⊗2.
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g) Using the Cauchy-Schwartz inequality:

E [〈ε1(θ0), R2(θ0 − γf ′(θ0) + γε1(θ0))〉 | θ0] ≤M2E
[
‖ε1(θ0)‖ ‖η0 − γf ′(θ0) + γε1(θ0))‖3

]
.

Such that, taking the expectation under θ0 ∼ πγ :

e) Eπγ [〈ε1(θ0), f ′′(θ∗)(η0 − γf ′(θ0) + γε1(θ0)〉] = −γ Tr f ′′(θ∗)Eπγ [C(θ0)] .

f) Using the Cauchy-Schwartz inequality, Lemmas 23 and 24: Eπγ
[
〈ε1(θ0), f (3)(θ∗)(η0 − γf ′(θ0) + γε1(θ0))⊗2〉

]
=

O(γ3/2).

g) Using the Cauchy-Schwartz inequality and Eπγ [〈ε1(θ0), R2(θ − γf ′(θ0) + γε1(θ0))〉] = O(γ3/2).

Putting the terms together. Hence gathering a) to g) together:

Eπγ [〈f ′1(θ0), f ′2(θ1)〉] = Tr f ′′(θ∗)2Eπγ
[
η0η

T
0

]
− γ Tr f ′′(θ∗)Eπγ [C(θ0)] +O(γ3/2).

We clearly see that Eπγ [〈f ′1(θ0), f ′2(θ1)〉] is the sum of a positive value coming from the deterministic term and a
negative value due to the noise. We now show that the noise value is typically twice larger than the deterministic value,
hence leading to an overall negative inner product. Indeed from Theorem 4 of Dieuleveut et al. (2017) we have that
Eπγ [C(θ0)] = C(θ∗) +O(γ) and Eπγ

[
η0η

T
0

]
= γ(f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗))−1C(θ∗) +O(γ2). Hence,

Eπγ [〈f ′1(θ0), f ′2(θ1)〉] = γ Tr f ′′(θ∗)2(f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗))−1C(θ∗)
− γ Tr f ′′(θ∗)C(θ∗) +O(γ3/2).

Notice that Tr f ′′(θ∗)2(f ′′(θ∗)⊗ I + I ⊗ f ′′(θ∗))−1C(θ∗) = 1
2 Tr f ′′(θ∗)C(θ∗). We then finally get:

Eπγ [〈f ′1(θ0), f ′2(θ1)〉] = −1

2
γ Tr f ′′(θ∗)C(θ∗) +O(γ3/2).

Proposition 9 establishes that the sign of the expectation of the inner product between two consecutive gradients characterizes
the transient and stationary regimes. However, this result does not guarantee the good performance of Pflug’s statistic. In
fact, as we show in the following section, the statistical test is unable to offer an adequate convergence diagnostic even for
simple quadratic functions.

C.2. Proof of Proposition 13

In this subsection we prove Proposition 13 which shows that in the simple case where f is quadratic and the noise is i.i.d.
Pflug’s diagnostic does not lead to accurate restarts. We start by stating a few lemmas.

Lemma 25. For n ≥ 0 we denote ηn = θn − θ∗. Let η0 ∈ Rd, Γ0 = η0η
T
0 , γ ≤ 1/2L and let P be a polynomial. Under

Assumption 10 we have that:

E [〈ηn, P (H)ηn〉] = ηT0 P (H)(I − γH)2nη0 + γ Tr P (H)C[I − (I − γH)2n]H−1(2I − γH)−1

Therefore when the stationary distribution is reached:

Eπγ [〈η, P (H)η〉] = γ Tr CP (H)H−1(2I − γH)−1

=
1

2
γ Tr CP (H)H−1 + o(γ).

Proof. Under Assumption 10 we have that f ′n(θn−1) = Hηn−1 − ξn where the ξn are i.i.d. . The SGD recursion becomes:
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ηn = (I − γH)ηn−1 + γξn (16)

= (I − γH)nη0 + γ

n∑
k=1

(I − γH)n−kξk. (17)

Since the (ξn)n≥0 are i.i.d. and independent of η0 we have that:

E [〈ηn, P (H)ηn〉] = ηT0 P (H)(I − γH)2nη0 + γ2
n−1∑
k=0

E
[
ξTn−k(I − γH)2kHξn−k

]
= ηT0 P (H)(I − γH)2nη0 + γ2

n−1∑
k=0

Tr (I − γH)2kP (H)E
[
ξn−kξ

T
n−k

]
= ηT0 P (H)(I − γH)2nη0 + γ2 Tr

n−1∑
k=0

(I − γH)2kP (H)C

= ηT0 P (H)(I − γH)2nη0 + γ Tr C[I − (I − γH)2n]P (H)H−1(2I − γH)−1.

Eπγ [〈η, P (H)η〉] is obtained by taking n→ +∞ in the previous equation.

The previous lemma holds for η0 ∈ Rd. We know state the following lemma which assumes that θ0 ∼ πγold .

Lemma 26. Let γold ≤ 1/2L. Assume that θ0 ∼ πγold and that we start our SGD from that point with a smaller step size
γ = r × γold, where r is some parameter in [0, 1]. Let Q be a polynomial. Then:

Eθ0∼πγold [〈ηn, Q(H)ηn〉] =
1

2
rγold

(
1

r
− 1

)
Tr Q(H)H−1(I − rγH)2nC +

1

2
rγold Tr Q(H)H−1C + on(γ)

≤Mγ,

where (γ 7→ supn∈N |on(γ)|) = o(γ) and where M is independent of n.

Proof. For a step size γ we have according to Lemma 25 that:

E [〈ηn, Q(H)ηn〉 | η0] = ηT0 Q(H)(I − γH)2nη0 + γ Tr Q(H)H−1C[I − (I − γH)2n](2I − γH)−1

= ηT0 Q(H)(I − γH)2nη0 +
1

2
γ Tr Q(H)H−1C[I − (I − γH)2n] + õn(γ).

Where õn(γ) = γ Tr Q(H)H−1C[I − (I − γH)2n][(2I − γH)−1 − 1
2I] = o(γ) independently of n ≥ 0. Using the

second part of Lemma 25 with P (H) = Q(H)(I − γH)2n we get:

Eθ0∼πγold [〈ηn, Q(H)ηn〉] = Eθ0∼πγold
[
ηT0 Q(H)(I − γH)2nη0

]
+

1

2
γ Tr Q(H)H−1C[I − (I − γH)2n] + õn(γ)

=
1

2
γold Tr Q(H)H−1C(I − γH)2n +

1

2
γ Tr Q(H)H−1C[I − (I − γH)2n] + o(γ) + õn(γ)

=
1

2
γ(

1

r
− 1) Tr Q(H)H−1(I − rγoldH)2nC +

1

2
γ Tr Q(H)H−1C + on(γ),

where on(γ) = õn(γ) + o(γ). This immediately gives that Eθ0∼πγold [〈ηn, Q(H)ηn〉] ≤Mγ.
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Back to Plug’s statistic. Under Assumption 10, we have that f ′k+1(θk) = Hηk − ξk+1, f ′k+2(θk+1) = Hηk+1 − ξk+2

and ηk+1 = (I − γH)ηk + γξk+1. Thus,

〈f ′k+1(θk), f ′k+2(θk+1)〉 = 〈Hηk − ξk+1, Hηk+1 − ξk+2〉
= 〈Hηk − ξk+1, H(I − γH)ηk + γHξk+1 − ξk+2〉
= Tr

[
H2(I − γH)ηkη

T
k −Hξk+2η

T
k −H(I − 2γH)ξk+1η

T
k

− γHξk+1ξ
T
k+1

]
+ ξk+1ξk+2.

Hence,

Sn =
1

n

n−1∑
k=0

〈f ′k+1, f
′
k+2〉

=
1

n

[
Tr H2(I − γH)

n−1∑
k=0

ηkη
T
k − Tr H

n−1∑
k=0

ξk+2η
T
k − Tr H(I − 2γH)

n−1∑
k=0

ξk+1η
T
k

− γ Tr H

n−1∑
k=0

ξk+1ξ
T
k+1 +

n−1∑
k=0

ξk+1ξk+2

]
. (18)

Let us define

χn =
1

n

n−1∑
k=0

ξTk+1ξk+2, (19)

notice that χn is independent of γ. Let also denote by

R(γ)
n = − 1

n

[
Tr H2(I − γH)

n−1∑
k=0

ηkη
T
k − Tr H

n−1∑
k=0

ξk+2η
T
k

− Tr H(I − 2γH)

n−1∑
k=0

ξk+1η
T
k − γ Tr H

n−1∑
k=0

ξk+1ξ
T
k+1

]
= − 1

n

[
T

(γ)
1,n + T

(γ)
2,n + T

(γ)
3,n + T

(γ)
4,n

]
. (20)

where T (γ)
1,n , T (γ)

2,n , T (γ)
3,n and T (γ)

4,n are defined in the respective order from the previous line. Then eq. (18) can be written as:

Sn = −R(γ)
n +

1

n

n−1∑
k=0

ξk+1ξk+2 = −R(γ)
n + χn.

We now state the following lemma which is crucial in showing Proposition 13. Indeed Lemma 27 shows that though the
signal R(γ)

n is positive after a restart, it is typically of order O(γ).

Lemma 27. Let us consider R(γ)
n defined in eq. (20). Assume that θ0 = θrestart ∼ πγold and that we start our SGD from

that point with a smaller step size γ = r × γold, where r is some parameter in [0, 1]. Then,

Eθ0∼πγold
[
R(γ)
n

2
]
≤M

(γ
n

+ γ2
)
,

where M does not depend neither of γ nor of n.

Proof. In the proof we consider separately T (γ)
1,n , . . . , T

(γ)
4,n and then use the fact that (a+b+c+d)2 ≤ 4(a2 +b2 +c2 +d2).
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• T (γ)
1,n : Let P (H) = H2(I − γH):

Eθ0∼πγold
[
T

(γ)
1,n

2]
=

n−1∑
k,k′=0

Eθ0∼πγold
[
ηTk P (H)ηkη

T
k′P (H)ηk′

]
.

Let η̃k = P (H)1/2ηk, then:

Eθ0∼πγold
[
T

(γ)
1,n

2]
=

n−1∑
k,k′=0

Eθ0∼πγold
[
‖η̃k‖2 ‖η̃k′‖2

]
.

Let Dk = (I − γH)kη0 be the deterministic part and Sk = γ
∑k−1
i=0 (I − γH)iξk−i the stochastic one. From eq. (17):

η̃k = P (H)1/2(Dk + Sk), hence ‖η̃k‖2 ≤ 2
∥∥P (H)1/2

∥∥2

op (‖Dk‖2 + ‖Sk‖2). Let C(0)
1 = 2

∥∥P (H)1/2
∥∥2

op, then:

Eθ0∼πγold
[
T

(γ)
1,n

2]
≤ C(0)

1

n−1∑
k,k′=0

Eθ0∼πγold
[
(‖Dk‖2 + ‖Sk‖2)(‖Dk′‖2 + ‖Sk′‖2)

]

≤ C(0)
1

( n−1∑
k,k′=0

Eθ0∼πγold
[
‖Dk‖2 ‖Dk′‖2

]
+ 2

n−1∑
k,k′=0

Eθ0∼πγold
[
‖Dk‖2 ‖Sk′‖2

]

+

n−1∑
k,k′=0

E
[
‖Sk‖2 ‖Sk′‖2

])
.

However:
n−1∑
k,k′=0

Eθ0∼πγold
[
‖Dk‖2 ‖Dk′‖2

]
≤

n−1∑
k,k′=0

Eθ0∼πγold
[
‖I − γH‖2(k+k′)

op ‖η0‖4
]

≤ n2Eθ0∼πγold
[
‖η0‖4

]
since ‖I − γH‖op ≤ 1

≤ C̃(1)
1 n2γ2 (according to Lemma 23).

Notice that Eθ0∼πγold
[
‖Dk‖2

]
≤ Eθ0∼πγold

[
‖η0‖2

]
= O(γ) (independently of k) according to Lemma 23 and

E
[
‖Sk‖2

]
= O(γ) (independently of k) according to Lemma 25 with η0 = 0 and P = 1. Hence using the fact that

the (ξn)n≥0 are independent of η0:

n−1∑
k,k′=0

Eθ0∼πγold
[
‖Dk‖2 ‖Sk′‖2

]
=

n−1∑
k=0

Eθ0∼πγold
[
‖Dk‖2

] n−1∑
k′=0

E
[
‖Sk′‖2

]
≤ O((nγ)× (nγ))

≤ C̃(2)
1 n2γ2.

Assume w.l.o.g. that k ≤ k′, let ∆k = (k′ − k):

E
[
‖Sk‖2 ‖Sk′‖2

]
= γ4E

 ∑
1≤i,j≤k
1≤l,p≤k′

ξTi (I − γH)2k−(i+j)ξjξ
T
l (I − γH)2k′−(l+p)ξp

 .
To compute the sum over the four indices we distinguish the three cases where the expectation is not equal to 0:
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First case, i = j = l = p:

E

 ∑
1≤i≤k

ξTi (I − γH)2k−2iξiξ
T
i (I − γH)2k−2iξi


=
∑

1≤i≤k

Tr E
[
(I − γH)2(k−i)ξiξ

T
i (I − γH)2(k′−i)ξiξ

T
i

]
= d×

∑
1≤i≤k

∥∥∥E [(I − γH)2(k−i)ξiξ
T
i (I − γH)2(k′−i)ξiξ

T
i

]∥∥∥
op

≤ d×
∑

1≤i≤k

E
[
‖(I − γH)‖2(k−i)

op ‖(I − γH)‖2(k′−i)
op

∥∥ξiξTi ∥∥2

op

]
≤ d× E

[
‖ξ1‖4

]
‖I − γH‖2∆k

op

∑
1≤i≤k

‖I − γH‖2iop

≤ C̃(3)
1

1

1− ‖I − γH‖2op

where C̃(3)
1 = d× E

[
‖ξ1‖4

]
≤ C̃(3)

1

1

1− ‖I − γH‖op

= C̃
(3)
1

1

γµ

≤ C̃(3)
1

1

γ2µ2

= C̃
(4)
1

1

γ2
where C̃(4)

1 = C̃
(3)
1 µ−2.

Second case, i = j, l = p:

E

 ∑
1≤i≤k

1≤l≤k′,i 6=l

ξTi (I − γH)2(k−i)ξiξ
T
l (I − γH)2(k′−l)ξl


≤
∑

1≤i≤k

E
[
ξTi (I − γH)2(k−i)ξi

] ∑
1≤l≤k′

E
[
ξTl (I − γH)2(k′−l)ξl

]
≤
∑

1≤i≤k

Tr (I − γH)2(k−i)C
∑

1≤l≤k′
Tr (I − γH)2(k′−l)C

≤ d2 ‖C‖2op

∑
1≤i≤k

‖(I − γH)‖2(k−i)
op

∑
1≤l≤k′

‖(I − γH)‖2(k′−l)
op

≤ C̃(5)
1

1

γ2
where C̃(5)

1 = d2 ‖C‖2op µ
−2.
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Third case, i = p, j = l:

E

 ∑
1≤i≤k

1≤j≤k,i 6=j

ξTi (I − γH)2k−(i+j)ξjξ
T
j (I − γH)2k′−(i+j)ξi


= Tr E

 ∑
1≤i≤k

1≤j≤k,i 6=j

(I − γH)2k−(i+j)ξjξ
T
j (I − γH)2k′−(i+j)ξiξ

T
i


= Tr

∑
1≤i≤k

1≤j≤k,i 6=j

E
[
(I − γH)2k−(i+j)ξjξ

T
j

]
E
[
(I − γH)2k′−(i+j)ξiξ

T
i

]
= Tr

∑
1≤i≤k

1≤j≤k,i 6=j

(I − γH)2k−(i+j)C(I − γH)2k′−(i+j)C

≤ d×
∑

1≤i≤k
1≤j≤k,i 6=j

‖I − γH‖2[(k+k′)−(i+j)]
op ‖C‖2op

≤ d ‖C‖2op

∑
1≤i≤k

‖I − γH‖2(k−i)
op

∑
1≤j≤k

‖I − γH‖2(k′−j)

≤ d ‖C‖2op

∑
1≤i≤k

‖I − γH‖2(k−i)
op

∑
1≤j≤k

‖I − γH‖2(k−j)

≤ C̃(6)
1

1

γ2
where C̃(6)

1 = d ‖C‖2op µ
−2.

Therefore with C̃(7)
1 = C̃

(4)
1 + C̃

(5)
1 + C̃

(6)
1 we get that E

[
‖Sk‖2 ‖Sk′‖2

]
≤ C̃(7)

1 γ4 × 1
γ2 independently of k and

n−1∑
k,k′=0

E
[
‖Sk‖2 ‖Sk′‖2

]
≤ C̃(7)

1 n2γ2.

Finally let C1 = C̃
(0)
1 × (C̃

(1)
1 + C̃

(2)
1 + C̃

(7)
1 ), then,

Eθ0∼πγold
[
T

(γ)
1,n

2]
≤ C1n

2γ2.

• T (γ)
2,n : By independence of the (ξk)k≥0 and by Lemma 26 with Q(H) = HCH:

Eθ0∼πγold
[
T

(γ)
2,n

2]
=

n−1∑
k=0

Eθ0∼πγold
[
(ξTk+2Hηk)2

]
=

n−1∑
k=0

Eθ0∼πγold
[
ηTkHCHηk

]
≤
n−1∑
k=0

C2γ = C2nγ.

• T (γ)
3,n : With the same reasoning as T (γ)

2,n we get:

Eθ0∼πγold
[
T

(γ)
3,n

2]
≤ C3nγ.

• T (γ)
4,n : By independence of the (ξk)k≥0:

Eθ0∼πγold
[
T

(γ)
4,n

2]
= γ2

n−1∑
k=0

Eθ0∼πγold
[
(ξTk+1Hξk+1)2

]
≤ C4nγ

2.

Putting everything together we obtain:

Eθ0∼πγold
[
R(γ)
n

]
≤M

(γ
n

+ γ2
)
.
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Contrary to R(γ)
n we now show that though the noise χn is in expectation equal to 0, it has moments which are independent

of γ.

Lemma 28. Let us consider χn defined in eq. (19). Then we have

Var(χn) =
1

n
Tr (C2) and Var(χ2

n) =
E
[
(ξT1 ξ2)4

]
− Tr2 C2

n3
.

Proof.

Var(χn) =
1

n2

n−1∑
i,j=0

Cov(ξTi+1ξi+2, ξ
T
j+1ξj+2)

=
1

n

n−1∑
i=0

Var(ξTi+1ξi+2)

=
1

n
Tr (C2).

E
[
χ4
n

]
=

1

n4

n−1∑
i,j,k,l=0

E
[
ξTi ξi+1ξ

T
j ξj+1ξ

T
k ξk+1ξ

T
l ξl+1

]

=
1

n4

n−1∑
i=0

E
[
(ξTi ξi+1)4

]
+

n−1∑
i,j=0
i6=j

E
[
(ξTi ξi+1)2(ξTj ξj+1)2

]
=

1

n3
E
[
(ξT1 ξ2)4

]
+
n(n− 1)

n4
E
[
(ξT1 ξ2)2

]2
=

E
[
(ξT1 ξ2)4

]
− Tr2 C2

n3
+

Tr2 C2

n2
.

Therefore:

Var(χ2
n) =

E
[
(ξT1 ξ2)4

]
− Tr2 C2

n3
.

We know show that under the symmetry Assumption 11, we can easily control P (Sn ≤ 0) = P
(
χn ≤ R(γ)

n

)
by probabilities

involving the square of the variables. These probabilities are then be easy to control using the Markov inequality and
Paley-Zigmund’s inequality.

Lemma 29. Let cγ > 0, let χn be a real random variable that verifies ∀x ≥ 0, P (χn ≥ x) = P (χn ≤ −x), let R(γ)
n be a

real random variable. Then:

1

2
P
(
χ2
n ≥ c2γ

)
− P

(
R(γ)
n

2 ≥ c2γ
)
≤ P

(
χn ≤ R(γ)

n

)
≤ 1− 1

2
P
(
χ2
n ≥ c2γ

)
+ P

(
R(γ)
n

2 ≥ c2γ
)
.

Proof. Notice the inclusion {χn ≤ −cγ} ∩
{
|R(γ)
n | ≤ cγ

}
⊂
{
χn ≤ R(γ)

n

}
. Furthermore, for two random events A and

B we have that P (A ∩B) = P (A \Bc) ≥ P (A)− P (Bc). Hence:

P
(
χn ≤ R(γ)

n

)
≥ P

(
χn ≤ −cγ , |R(γ)

n | ≤ cγ
)

≥ P (χn ≤ −cγ)− P
(
|R(γ)
n | > cγ

)
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However the symmetry assumption on χn implies that P (χn ≤ −cγ) = P (χn ≥ cγ) = 1
2P
(
χ2
n ≥ c2γ

)
. Notice also that

P
(
|R(γ)
n | > cγ

)
= P

(
R

(γ)
n

2
> c2γ

)
. Hence:

P
(
χn ≤ R(γ)

n

)
≥ 1

2
P
(
χ2
n ≥ c2γ

)
− P

(
R(γ)
n

2 ≥ c2γ
)

For the upper bound, notice that
{
χn ≤ R(γ)

n

}
⊂ {χn < cγ} ∪

{
|R(γ)
n | ≥ cγ

}
Hence:

P
(
χn ≤ R(γ)

n

)
≤ P (χn < cγ) + P

(
|R(γ)
n | ≥ cγ

)
≤ 1− P (χn ≥ cγ) + P

(
|R(γ)
n | ≥ cγ

)
= 1− 1

2
P
(
χ2
n ≥ c2γ

)
+ P

(
R(γ)
n

2 ≥ c2γ
)
.

We now prove Proposition 13. To do so we distinguish two cases, the first one corresponds to α = 0, the second to
0 < α < 2.

Proof of Proposition 13.

First case: α = 0, nγ = nb. For readability reasons we will note P = Pθ0∼πγold
. Notice that:

P (Snb ≤ 0) = P
(
χnb ≤ R(γ)

nb

)
.

Let cγ = γ1/4. By the continuity assumption from Assumption 4: P
(
χ2
nb
≥ c2γ

)
−→
γ→0

P
(
χ2
nb
≥ 0
)

= 1. On the other hand,

according to Lemma 27, Eθ0∼πγold
[
R

(γ)
nb

2]
= O(γ). Therefore by Markov’s inequality:

Pθ0∼πγold
(
R(γ)
nb

2 ≥ c2γ
)
≤

Eθ0∼πγold
[
R

(γ)
nb

2]
c2γ

= γ−1/2 ×O(γ) −→
γ→0

0.

Finally we get that:
1

2
P
(
χ2
n ≥ c2γ

)
− P

(
R(γ)
n

2 ≥ c2γ
)
−→
γ→0

1

2
.

and

1− 1

2
P
(
χ2
n ≥ c2γ

)
+ P

(
R(γ)
n

2 ≥ c2γ
)
−→
γ→0

1

2
.

By Lemma 29:

Pθ0∼πγold (Snb ≤ 0) −→
γ→0

1

2
.

Second case: 0 < α < 2. For α > 0 we make use of the following lemma (Paley & Zygmund, 1932).

Lemma 30 (Paley-Zigmund inequality). Let Z ≥ 0 be a random variable with finite variance and θ ∈ [0, 1], then:

P (Z > θE [Z]) ≥ (1− θ)2E [Z]
2

Var(Z) + (1− θ)2E [Z]
2 .
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We can now prove Proposition 13 when α 6= 0.

For readability reasons we note P = Pθ0∼πγold
. We follow the same reasoning as in the case α = 0. However in this case we

need to be careful with the fact that n depends on γ.

Notice that:
P
(
Snγ ≤ 0

)
= P

(
χnγ ≤ R(γ)

nγ

)
.

Let cγ = γ(α+1)/3 and let θ(γ)
nγ = (nγ × c2γ)/Tr C2. By Lemma 28, we have that E

[
χ2
n

]
= 1

n Tr C2, therefore:

P
(
χ2
nγ ≥ c2γ

)
= P

(
χ2
nγ ≥ E

[
χ2
nγ

]
× θ(γ)

nγ

)
,

Notice that nγ × c2γ = O(γ(2−α)/3)). Since α < 2, we have that θ(γ)
nγ −→

γ→0
0. Therefore by the Paley-Zigmund inequality

(valid since θ(γ)
nγ < 1 for γ small enough):

P
(
χ2
nγ > E

[
χ2
nγ

]
× θ(γ)

nγ

)
≥

(1− θ(γ)
nγ )E

[
χ2
nγ

]2
Var(χ2

nγ ) + (1− θ(γ)
nγ )E

[
χ2
nγ

]2 .
By Lemma 28, E

[
χ2
n

]
= 1

n Tr C2 and Var(χ2
n) = B/n3, therefore since nγ −→

γ→0
+∞ we get that Var(χ2

nγ ) =
γ→0

o

(
E
[
χ2
nγ

]2)
. Moreover (1− θ(γ)

nγ ) →
γ→0

1. Therefore:

(1− θ(γ)
nγ )E

[
χ2
nγ

]2
Var(χ2

nγ ) + (1− θ(γ)
nγ )E

[
χ2
nγ

]2 −→γ→0
1.

Therefore P
(
χ2
nγ > c2γ

)
−→
γ→0

1. On the other hand, according to Lemma 26:

Eθ0∼πγold
[R(γ)
nγ

2
] ≤M(

γ

nγ
+ γ2) = O(max(γ(1+α), γ2))

Using Markov’s inequality:

Pθ0∼πγold
(
R(γ)
nγ

2 ≥ c2γ
)
≤

Eθ0∼πγold
[
R

(γ)
nγ

2]
c2γ

= O(max(γ(α+1)/3), γ
2
3 (2−α))) −→

γ→0
0

Finally, using the inequalities form Lemma 29 we get:

Pθ0∼πγold
(
Snγ ≤ 0

)
−→
γ→0

1

2
.

Remark: For the case α = 0, if x ∈ R+ 7−→ f(x) = P
(
χ2
nb
≥ x

)
is not continuous in 0 as needed to show the result

we can then follow the exact the same proof as when α > 0 but with α = 0. However we cannot use the fact that
Var(χ2

nb
) =
γ→0

o
(
E
[
χ2
nb

]2)
but we still get by using Paley-Zigmund’s inequality that:

(1− θ(γ)
nb )E

[
χ2
nb

]2
Var(χ2

nb
) + (1− θ(γ)

nb )E
[
χ2
nb

]2 −→γ→0

E
[
χ2
nb

]2
E
[
χ4
nb

] ,
which then leads to:

Pθ0∼πγold
(
S(γ)
nb
≤ 0
)
−→
γ→0

1

2

E
[
χ2
nb

]2
E
[
χ4
nb

] .
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C.3. Problem with the proof by Pflug (1988a).

There is a mistake inequality (21) in the proof of the main result of Pflug (1988a). Indeed they compute Var(Sn) but forget
the terms Var(ξTi ξi+1) which are independent of γ. Hence it is not true that Var(Sn) = O(γ) as they state.

D. Proof for the distance-based statistic
We prove here Proposition 14 and Corollary 15. Since we have from eq. (17):

ηn = (I − γH)nη0 + γ

n∑
k=1

(I − γH)n−kξk,

it immediately implies that

Ωn = ηn − η0 = [(I − γH)n − I]η0 + γ

n∑
k=1

(I − γH)n−kξk.

Taking the expectation of the square norm and using the fact that (ξi)i≥0 are i.i.d. and independent of θ0 we get:

E
[
‖Ωn‖2

]
= ηT0 [I − (I − γH)n]2η0 + γ Tr [I − (I − γH)2n](2I − γH)−1H−1C.

Hence by taking n to infinity:

Eπγ
[
‖Ωn‖2

]
= ‖η0‖2 + γ Tr H−1C(2I − γH)−1.

and by a Taylor expansion for (nγ) small:

E
[
‖Ωn‖2

]
= γ2ηT0 H

2η0 × n2 + γ2 Tr C × n+ o((nγ)2).

These two last equalities conclude the proof.


