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A. Appendix
A.1. Additional numerical results

(a) Independent SGD initialization trials with m = 50 (b) Decision boundaries

Figure 6: Training of a two-layer ReLU network with SGD (10 initialization trials) and proposed convex programs on a
two-dimensional dataset. Optimal and Approximate denote the objective value obtained by the proposed convex program
(8) and its approximation, respectively. Learned decision boundaries are also depicted.

We now present another numerical experiment on a two-dimensional dataset4, where we place a negative sample (y = −1)
near the positive samples (y = +1) to have a more challenging loss landscape. In Figure 6, we observe that all the SGD

4In all the experiments, we use CVX (Grant & Boyd, 2014) and CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018) with the
SDPT3 solver (Tütüncü et al., 2001) to solve convex optimization problems.
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realizations are stuck at local minima, therefore, achieve a significantly higher objective value compared to both Optimal
and Approximate, which are based on convex optimization.

In addition to the classification datasets, we evaluate the performance of the algorithms on three regression datasets, i.e., the
Boston Housing, Kinematics, and Bank datasets (Torgo). In Figure 7, we plot the objective value and the corresponding test
error of 5 independent initialization trials with respect to time in seconds, where we use squared loss and choose n = 400,
d = 13, m = 12, and batch size(bs) 25. Similarly, we plot the objective values and test errors for the Kinematics and Bank
datasets in Figure 8 and 9, where (n, d,m, bs) = (4000, 8, 12, 25) and (n, d,m, bs) = (4000, 32, 12, 25), respectively. We
observe that Alg1 achieves the lowest objective value and test error in both cases.

We also consider the training of a two-layer CNN architecture. In Figure 10, we provide the binary classification performance
of the algorithms on a subset of CIFAR-10, where we use hinge loss and choose (n, d,m, bs) = (195, 3072, 50, 20), filter
size 4 × 4 × 3, and stride 4. This experiment also illustrates that Alg1 achieves lower objective value and higher test
accuracy compared with the other methods including GD. We also emphasize that in this experiment, we use sign patterns
of a clustered subset of patches, specifically 50 clusters, as well as the GD patterns for Alg1. As depicted in Figure 11, the
neurons that correspond to the sign patterns of GD matches with the neurons found by GD. Thus, the performance difference
stems from the additional sign patterns found by clustering the patches.

In order to evaluate the computational complexity of the introduced approaches, in Table 1, we provide the training time
of each algorithm in the main paper. This data clearly shows that the introduced convex programs outperform GD while
requiring significantly less training time.
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Figure 7: Training and test errors of the algorithms on the Boston Housing dataset (n = 400 and d = 13) where we run
SGD independently in 5 initialization trials. For the convex program (8) approximations (Alg1, Alg2 and Alg3), crossed
markers correspond to the total computation time of the convex optimization solver.

Table 1: Training time(in seconds), final objective value and test accuracy(%) of each algorithm in the main paper,where we
use the CVX SDPT3 solver to optimize the convex programs.

Figure 2 Figure 3 Figure 4 Figure 5

SGD Optimal GD Approx. Optimal GD Alg1 Alg2 Alg3 GD L1-Convex

Time(s) 420.663 1.225 890.339 1.498 117.858 624.787 108.065 5.931 12.009 65.365 1.404
Train. Objective 0.001 0.001 0.0032 0.0028 0.0026 0.0042 0.0022 0.0032 0.0032 0.804 0.803
Test Accuracy(%) - - - - - 62.75 66.80 60.15 60.20 - -

A.2. Constructing hyperplane arrangements in polynomial time

We now consider the number of all distinct sign patterns sign(Xz) for all possible choices z ∈ Rd. Note that this number is
the number of regions in a partition of Rd by hyperplanes passing through the origin, and are perpendicular to the rows
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Figure 8: Performance comparison of the algorithms on the Kinematics dataset (n = 4000 and d = 8) where we run SGD
independently in 5 initialization trials. For the convex program (8) approximations (Alg1, Alg2 and Alg3), crossed markers
correspond to the total computation time of the convex optimization solver.
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Figure 9: Performance comparison of the algorithms on the Bank dataset (n = 4000 and d = 32) where we run SGD
independently in 5 initialization trials. For the convex program (8) approximations (Alg1, Alg2 and Alg3), crossed markers
correspond to the total computation time of the convex optimization solver.

of X . We now show that the dimension d can be replaced with rank(X) without loss of generality. Suppose that the data
matrix X has rank r. We may express X = UΣV T using its Singular Value Decomposition in compact form, where
U ∈ Rn×r,Σ ∈ Rr×r, V T ∈ Rr×d. For any vector z ∈ Rd we have Xz = UΣV T z = Uz′ for some z′ ∈ Rr. Therefore,
the number of distinct sign patterns sign(Xz) for all possible z ∈ Rd is equal to the number of distinct sign patterns
sign(Uz′) for all possible z′ ∈ Rr.

Consider an arrangement of n hyperplanes ∈ Rr, where n ≥ r. Let us denote the number of regions in this arrangement by
Pn,r. In (Ojha, 2000; Cover, 1965) it’s shown that this number satisfies

Pn,r ≤ 2

r−1∑
k=0

(
n− 1

k

)
.

For hyperplanes in general position, the above inequality is in fact an equality. In (Edelsbrunner et al., 1986), the authors
present an algorithm that enumerates all possible hyperplane arrangements O(nr) time, which can be used to construct the
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Figure 10: Performance of the algorithms for two-layer CNN training on a subset of CIFAR-10 (n = 195 and filter size
4× 4× 3) where we run SGD independently in 5 initialization trials. For the convex program (8) approximations (Alg1,
Alg2 and Alg3), crossed markers correspond to the total computation time of the convex optimization solver.
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Figure 11: Visualization of the distance (using the Euclidean norm of the difference) between the neurons found by GD
and our convex program in Figure 10. The ijth entries of the distance plots are

∥∥∥ wi

‖wi‖2 −
uj

‖uj‖2

∥∥∥
2

and
∥∥∥ w′i
‖w′i‖2

− uj

‖uj‖2

∥∥∥
2
,

respectively.

data for the convex program (8).

A.3. Equivalence of the `1 penalized neural network training cost

In this section, we prove the equivalence between (2) and (3).

Lemma 2 ((Neyshabur et al., 2014; Savarese et al., 2019; Ergen & Pilanci, 2020b;c;d)). The following two problems are
equivalent:

min
{uj ,αj}mj=1

1

2

∥∥∥∥∥∥
m∑
j=1

(Xuj)+αj − y

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) = min

‖uj‖2≤1
min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | .

[Proof of Lemma 2] We can rescale the parameters as ūj = γjuj and ᾱj = αj/γj , for any γj > 0. Then, the output
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becomes
m∑
j=1

(Xūj)+ᾱj =

m∑
j=1

(Xujγj)+
αj
γj

=

m∑
j=1

(Xuj)+αj ,

which proves that the scaling does not change the network output. In addition to this, we have the following basic inequality

1

2

m∑
j=1

(α2
j + ‖uj‖22) ≥

m∑
j=1

(|αj | ‖uj‖2),

where the equality is achieved with the scaling choice γj =
( |αj |
‖uj‖2

) 1
2 is used. Since the scaling operation does not change

the right-hand side of the inequality, we can set ‖uj‖2 = 1,∀j. Therefore, the right-hand side becomes ‖α‖1.

Now, let us consider a modified version of the problem, where the unit norm equality constraint is relaxed as ‖uj‖2 ≤ 1. Let
us also assume that for a certain index j, we obtain ‖uj‖2 < 1 with αj 6= 0 as an optimal solution. This shows that the unit
norm inequality constraint is not active for uj , and hence removing the constraint for uj will not change the optimal solution.
However, when we remove the constraint, ‖uj‖2 →∞ reduces the objective value since it yields αj = 0. Therefore, we
have a contradiction, which proves that all the constraints that correspond to a nonzero αj must be active for an optimal
solution. This also shows that replacing ‖uj‖2 = 1 with ‖uj‖2 ≤ 1 does not change the solution to the problem.

A.4. Dual problem for (3)

The following lemma proves the dual form of (3).

Lemma 3. The dual form of the following primal problem

min
‖uj‖2≤1

min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | ,

is given by the following

min
‖uj‖2≤1

max
v∈Rn s.t.

|vT (Xuj)+|≤β

−1

2
‖y − v‖22 +

1

2
‖y‖22 .

[Proof of Lemma 3] Let us first reparametrize the primal problem as follows

min
‖uj‖2≤1

min
r,{αj}mj=1

1

2
‖r‖22 + β

m∑
j=1

|αj | s.t. r =

m∑
j=1

(Xuj)+αj − y,

which has the following Lagrangian

L(v, r, uj , αj) =
1

2
‖r‖22 + β

m∑
j=1

|αj |+ vT r + vT y − vT
m∑
j=1

(Xuj)+αj .

Then, minimizing over r and α yields the proposed dual form.

A.5. Dual problem for (11)

Let us first reparameterize the primal problem as follows

max
M,v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. σmax (M) ≤ β, M = [XT

1 v ...X
T
Kv].

Then the Lagrangian is as follows

L(λ, Z,M, v) = −1

2
‖v − y‖22 +

1

2
‖y‖22 + λ (β − σmax (M)) + trace(ZTM)− trace(ZT [XT

1 v ...X
T
Kv])
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= −1

2
‖v − y‖22 +

1

2
‖y‖22 + λ (β − σmax (M)) + trace(ZTM)− vT

K∑
k=1

Xkzk,

where λ ≥ 0. Then maximizing over M and v yields the following dual form

min
zk∈Rd,∀k∈[K]

1

2

∥∥∥ K∑
k=1

Xkzk − y
∥∥∥2
2

+ β
∥∥∥[z1, ..., zK ]

∥∥∥
∗
,

where
∥∥∥[z1, ..., zK ]

∥∥∥
∗

= ‖Z‖∗ =
∑
i σi(Z) is the `1 norm of singular values, i.e., nuclear norm (Recht et al., 2010).

A.6. Dual problem for (13)

Let us denote the eigenvalue decomposition of Uj as Uj = FDjF
H , where F ∈ Cd×d is the Discrete Fourier Transform

matrix and Dj ∈ Cd×d is a diagonal matrix. Then, applying the scaling in Lemma 2 and then taking the dual as in Lemma 3
yields

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vTXFDFH‖2 ≤ β, ∀D : ‖D‖2F ≤ d,

which can be equivalently written as

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vT X̃D‖2 ≤ β, ∀D : ‖D‖2F ≤ d.

Since D is diagonal, ‖D‖2F ≤ d is equivalent to
∑d
i=1D

2
ii ≤ 1. Therefore, the problem above can be further simplified as

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vT X̃‖∞ ≤

β√
d
.

Then, taking the dual of this problem gives the following

min
z∈Cd

1

2

∥∥∥X̃z − y∥∥∥2
2

+
β√
d
‖z‖1.

A.7. Dual problem for vector output two-layer linear convolutional networks

Vector version of the two-layer linear convolutional network training problem has the following dual

max
V

traceV TY s.t. max
‖u‖2≤1

∑
k

‖V TXku‖22 ≤ 1.

Similarly, extreme points are the maximal eigenvectors of
∑
kX

T
k V V

TXk When V = Y , and one-hot encoding is used,
these are the right singular vectors of the matrix [XT

1,cX
T
2,c ... X

T
K,c]

T whose rows contain all the patch vectors for class c.

A.8. Semi-infinite strong duality

Note that the semi-infinite problem (4) is convex. We first show that the optimal value is finite. For β > 0, it is clear that
v = 0 is strictly feasible, and achieves 0 objective value. Note that the optimal value p∗ satisfies p∗ ≤ ‖y‖22 since this value
is achieved when all the parameters are zero. Consequently, Theorem 2.2 of (Shapiro, 2009) implies that strong duality
holds, i.e., p∗ = d∗∞, if the solution set of the semi-infinite problem in (4) is nonempty and bounded. Next, we note that the
solution set of (4) is the Euclidean projection of y onto the polar set (QX ∪ −QX)◦ which is a convex, closed and bounded
set since

(
Xu
)
+

can be expressed as the union of finitely many convex closed and bounded sets.

A.9. Semi-infinite strong gauge duality

Now we prove strong duality for (7). We invoke the semi-infinite optimality conditions for the dual (7), in particular we
apply Theorem 7.2 of (Goberna & López-Cerdá, 1998) and use the standard notation therein. We first define the set

K = cone

{(
s
(
Xu
)
+

1

)
, u ∈ B2, s ∈ {−1,+1};

(
0
−1

)}
.
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Note that K is the union of finitely many convex closed sets, since
(
Xu
)
+

can be expressed as the union of finitely many
convex closed sets. Therefore the set K is closed. By Theorem 5.3 (Goberna & López-Cerdá, 1998), this implies that the set
of constraints in (15) forms a Farkas-Minkowski system. By Theorem 8.4 of (Goberna & López-Cerdá, 1998), primal and
dual values are equal, given that the system is consistent. Moreover, the system is discretizable, i.e., there exists a sequence
of problems with finitely many constraints whose optimal values approach to the optimal value of (15).

A.10. Neural Gauge function and equivalence to minimum norm networks

Consider the gauge function

pg = min
r≥0

r s.t. ry ∈ conv(QX ∪ −QX)

and its dual representation in terms of the support function of the polar of conv(QX ∪ −QX)

dg = max
v

vT y s.t. v ∈ (QX ∪ −QX)◦.

Since the set QX ∪ −QX is a closed convex set that contains the origin, we have pg = dg (Rockafellar, 1970) and
(conv(QX ∪ −QX))

◦
= (QX ∪−QX)◦. The result in Section A.8 implies that the above value is equal to the semi-infinite

dual value, i.e., pd = pg∞, where

pg∞ := min
µ
‖µ‖TV s.t.

∫
u∈B2

(Xu)+dµ(u) = y .

By Caratheodory’s theorem, there exists optimal solutions the above problem consisting of m∗ Dirac deltas (Rockafellar,
1970; Rosset et al., 2007), and therefore

pg∞ = min
uj∈B2,j∈[m∗]

m∗∑
j=1

|αj | s.t.
m∗∑
j=1

(Xuj)+dαj = y ,

where we define m∗ as the number of Dirac delta’s in the optimal solution to pg∞. If the optimizer is non-unique, we define
m∗ as the minimum cardinality solution among the set of optimal solutions. Now consider the non-convex problem

min
{uj ,αj}mj=1

‖α‖1 s.t.
m∑
j=1

(Xuj)+αj = y, ‖uj‖2 ≤ 1 .

Using the standard parameterization for `1 norm we get

min
{uj}mj=1,s≥0,t≥0

m∑
j=1

(tj + sj) s.t.
m∑
j=1

(Xuj)+tj − (Xuj)+sj = y, ‖uj‖2 ≤ 1 ,∀j.

Introducing a slack variable r ∈ R+, an equivalent representation can be written as

min
{uj}mj=1,s≥0,t≥0,r≥0

r s.t.
m∑
j=1

(Xuj)+tj − (Xuj)+sj = y,

m∑
j=1

(tj + sj) = r, ‖uj‖2 ≤ 1 ,∀j.

Note that r > 0 as long as y 6= 0. Rescaling variables by letting t′j = tj/r, s′j = sj/r in the above program, we obtain

min
{uj}mj=1,s

′≥0,t′≥0,r≥0
r s.t.

m∑
j=1

(
(Xuj)+t

′
j − (Xuj)+s

′
j

)
= ry,

m∑
j=1

(t′j + s′j) = 1, ‖uj‖2 ≤ 1 ,∀j .

Suppose that m ≥ m∗. It holds that

∃s′, t′ ≥ 0 , {uj}mj=1 s.t.
m∑
j=1

(t′j + s′j) = 1, ‖uj‖2 ≤ 1, ∀j,
m∑
j=1

(Xuj)t
′
j − (Xuj)+s

′
j = ry ⇐⇒ ry ∈ conv(QX ∪ −QX).

(17)

We conclude that the optimal value of (17) is identical to the gauge function pg .
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A.11. Alternative proof of the semi-infinite strong duality

It holds that p∗ ≥ d∗ by weak duality in (4). Theorem 1 proves that the objective value of (15) is identical to the value of (2)
as long as m ≥ m∗. Therefore we have p∗ = d∗.

A.12. Finite dimensional strong duality results for Theorem 1

Lemma 4. Suppose D(S), D(Sc) are fixed diagonal matrices as described earlier, and X is a fixed matrices. The dual of
the convex optimization problem

max
u∈Rd

‖u‖2≤1
D(S)Xu≥0
D(Sc)Xu≤0

vTD(S)Xu

is given by

min
α,β∈Rn

α,β≥0

‖XTD(S)
(
v + α+ β

)
−XTβ‖2

and strong duality holds.

Note that the linear inequality constraints specify valid hyperplane arrangements. Then there exists strictly feasible points in
the constraints of the maximization problem. Standard finite second order cone programming duality implies that strong
duality holds (Boyd & Vandenberghe, 2004b) and the dual is as specified.

A.13. General loss functions

In this section, we extend our derivations to arbitrary convex loss functions.

Consider minimizing the sum of the squared loss objective and squared `2-norm of all parameters

p∗ := min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)+αj , y

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) , (18)

where `(·, y) is a convex loss function. Then, consider the following finite dimensional convex optimization problem

min
{vi,wi}Pi=1

`

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

(‖vi‖2 + ‖wi‖2) s.t. (2Di − I)Xvi ≥ 0, (2Di − I)Xwi ≥ 0.∀i ∈ [P ],

(19)

Let us define m∗ =
∑P
i:v∗i 6=0 1 +

∑P
i:w∗i 6=0 1, where {v∗i , w∗i }Pi=1 are optimal in (19).

Theorem 5. The convex program (19) and the non-convex problem (18) where m ≥ m∗ has identical optimal values.
Moreover, an optimal solution to (18) can be constructed from an optimal solution to (19) as follows (8) as follows

(u∗j1i , α
∗
j1i) =

(
v∗i√
‖v∗i ‖2

,
√
‖v∗i ‖2

)
if v∗i 6= 0

(u∗j2i , α
∗
j2i) =

(
w∗i√
‖w∗i ‖2

,−
√
‖w∗i ‖2

)
if w∗i 6= 0 ,

where v∗i , w
∗
i are the optimal solutions to (19).

[Proof of Theorem 5] The proof parallels the proof of the main result section and Theorem 6. We note that dual constraint
set remains the same, and analogous strong duality results apply as we show next.
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We also show that our dual characterization holds for arbitrary convex loss functions.

min
{uj ,αj}mj=1

`

 m∑
j=1

(Xuj)+αj , y

+ β‖α‖1 s.t. ‖uj‖2 ≤ 1, ∀j, (20)

where `(·, y) is a convex loss function.

Theorem 6. The dual of (20) is given by

max
v
−`∗(v) s.t. |vT (Xu)+| ≤ β, ∀u ∈ B2 ,

where `∗ is the Fenchel conjugate function defined as

`∗(v) = max
z
zT v − `(z, y) .

[Proof of Theorem 6] The proof follows from classical Fenchel duality (Boyd & Vandenberghe, 2004b). We first describe
(20) in an equivalent form as follows

min
z,{uj ,αj}mj=1

`(z, y) + β‖α‖1 s.t. z =

m∑
j=1

(Xuj)+αj , ‖uj‖2 ≤ 1,∀j.

Then the dual function is

g(v) = min
z,{uj ,αj}mj=1

`(z, y)− vT z + vT
m∑
j=1

(Xuj)+αj + β‖α‖1 s.t. ‖uj‖2 ≤ 1,∀j.

Therefore, using the classical Fenchel duality (Boyd & Vandenberghe, 2004b) yields the claimed dual form.


