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1. Omitted proofs and Additional results
Notations. Let us suppose that (X ,‖.‖) is a normed vector space. B‖.‖(x, ε) = {z ∈ X | ‖x− z‖ ≤ ε} is the
closed ball of center x and radius ε for the norm ‖.‖. Note thatH := {h : x 7→ sgn g(x) | g : X → R continuous},
with sgn the function that outputs 1 if g(x) > 0, −1 if g(x) < 0, and 0 otherwise. Hence for any (x, y) ∼ D, and
h ∈ H one has 1{h(x) 6= y} = 1{g(x)y ≤ 0}. Finally, we denote ν1 and ν-1 respectively the probabilities of
class 1 and -1.

Introducing remarks. Let us first note that in the paper, the penalties are defined with an `2 norm. However,
Lemma 1 and 2 hold as long as X is an Hilbert space with dot product<|> and associated norm ||.|| =

√
< . | . >.

We first demonstrate Lemma 2 with these general notations. Then we present the proof of Lemma 1 that follows
the same schema. Note that, for Lemma 1, we do not even need the norm to be Hilbertian, since the core argument
rely on separation property of the norm, i.e. on the property ‖x− y‖ = 0 ⇐⇒ x = y.

Lemma 2. Let h ∈ H and φ ∈ BRΩnorm(h). Then the following assertion holds:

φ1(x) =

{
π(x) if x ∈ Ph(ε2)
x otherwise.

Where π is the orthogonal projection on (Ph){. φ-1 is characterized symmetrically.

Proof. Let us first simplify the worst case adversarial risk for h. Recall that h = sgn(g) with g continuous. From
the definition of adversarial risk we have:

sup
φ∈(FX|ε2)

2

RΩnorm
adv (h,φ) (1)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {h (φy(X)) 6= y} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(2)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(3)

=
∑
y=±1

νy sup
φy∈FX

E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(4)

Finding φ1 and φ1 are two independent optimization problems, hence, we focus on characterizing φ1 (i.e. y = 1).

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ‖X − φ1(X)‖ −∞1 {‖X − φ1(X)‖ > ε2}

]
(5)

= E
X∼µ1

[
essup

z∈B‖.‖(X,ε2)

1(g(z) ≤ 0)− λ‖X − z‖

]
(6)

=

∫
X

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ dµ1(x). (7)

Let us now consider (Hj)j∈J a partition of X , we can write.

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ‖X − φ1(X)‖ −∞1 {‖X − φ1(X)‖ > ε2}

]
(8)
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=
∑
j∈J

∫
Hj

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ dµ1(x) (9)

In particular, we consider here H0 = P {
h , H1 = Ph \ Ph(ε2), and H2 = Ph(ε2).

For x ∈ H0 = P {
h . Taking z = x we get 1 {g(z) ≤ 0} − λ‖x− z‖ = 1. Since for any z ∈ X we have

1 {g(z) ≤ 0} − λ‖x− z‖ ≤ 1, this strategy is optimal. Furthermore, for any other optimal strategy z′, we would
have ‖x− z′‖ = 0, hence z′ = x, and an optimal attack will never move the points of H0 = P {

h .

For x ∈ H1 = Ph \Ph(ε2). We have B‖.‖(x, ε2) ⊂ Ph by definition of Ph(ε2). Hence, for any z ∈ B‖.‖(x, ε2),
one gets g(z) > 0. Then 1 {g(z) ≤ 0} − λ‖x− z‖ ≤ 0. The only optimal z will thus be z = x, giving value 0.

Let us now consider x ∈ H2 = Ph(ε2) which is the interesting case where an attack is possible. We know
that B‖.‖(x, ε2) ∩ P {

h 6= ∅, and for any z in this intersection, 1(g(z) ≤ 0) = 1. Hence :

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ = max(1− λ essinf
z∈B‖.‖(x,ε2)∩P{

h

‖x− z‖, 0) (10)

= max(1− λπB‖.‖(x,ε2)∩P{
h

(x), 0) (11)

Where πB‖.‖(x,ε2)∩P{
h

is the projection on the closure of B‖.‖(x, ε2) ∩ P {
h . Note that πB‖.‖(x,ε2)∩P{

h
exists: g is

continuous, so B‖.‖(x, ε2) ∩ P {
h is a closed set, bounded, and thus compact, since we are in finite dimension. The

projection is however not guaranteed to be unique since we have no evidence on the convexity of the set. Finally,
let us remark that, since λ ∈ (0, 1), and ε2 ≤ 1, one has 1− λπB‖.‖(x,ε2)∩P{

h
(x) ≥ 0 for any x ∈ H2. Hence, on

Ph(ε2), the optimal attack projects all the points on the decision boundary. For simplicity, and since there is no
ambiguity, we write the projection π.

Finally. Since H0 ∪H1 ∪H2 = X , Lemma 2 holds. Furthermore, the score for this optimal attack is:

sup
φ∈(FX|ε2)

2

RΩnorm
adv (h, φ) (12)

=
∑
y=±1

νy
∑
j∈J

∫
Hj

essup
z∈B‖.‖(x,ε2)

1 {g(z)y ≤ 0} − λ‖x− z‖ dµy(x) (13)

Since the value is 0 on Ph \ Ph(ε2) (resp. on Nh \Nh(ε2) ) for φ1 (resp. φ-1), one gets:

=ν1

 ∫
Ph(ε2)

(
1− λ‖x− π(x)‖

)
dµ1(x) +

∫
P{
h

1dµ1(x)

+ ν-1

 ∫
Nh(ε2)

(
1− λ‖x− π(x)‖

)
dµ-1(x) +

∫
N{
h

1dµ-1(x)


(14)

=ν1

 ∫
Ph(ε2)

(
1− λ‖x− π(x)‖

)
dµ1(x) + µ1(P {

h )

+ ν-1

 ∫
Nh(ε2)

(
1− λ‖x− π(x)‖

)
dµ-1(x) + µ-1(N{

h)


(15)

=R(h) + ν1

∫
Ph(ε2)

(
1− λ‖x− π(x)‖

)
dµ1(x) + ν-1

∫
Nh(ε2)

(
1− λ‖x− π(x)‖

)
dµ-1(x) (16)

(16) holds sinceR(h) = P(h(X) 6= Y )P(g(X)Y ≤ 0) = ν1µ1(P {
h ) + ν-1µ-1(N{

h). This provides an interesting
decomposition of the adversarial risk into the risk without attack and the loss on the attack zone.
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Lemma 1. Let h ∈ H and φ ∈ BRΩmass(h). Then the following assertion holds:{
φ1(x) ∈ (Ph){ if x ∈ Ph(ε2)
φ1(x) = x otherwise.

Where (Ph){, the complement of Ph in X . φ-1 is characterized symmetrically.

Proof. Following the same proof schema as before the adversarial risk writes as follows:

sup
φ∈(FX|ε2)

2

RΩmass
adv (h, φ) (17)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[1 {h (φy(X)) 6= y} − λ1 {X 6= φy(X)} −∞1 {‖X − φy(X)‖ > ε2}] (18)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[1 {g (φy(X)) y ≤ 0} − λ1 {X 6= φy(X)} −∞1 {‖X − φy(X)‖ > ε2}] (19)

=
∑
y=±1

νy sup
φy∈FX

E
X∼µy

[1 {g (φy(X)) y ≤ 0} − λ1 {X 6= φy(X)} −∞1 {‖X − φy(X)‖ > ε2}] (20)

Finding φ1 and φ1 are two independent optimization problem, hence we focus on characterizing φ1 (i.e. y = 1).

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ1 {X 6= φ1(X)} −∞1 {‖X − φ1(X)‖ > ε2}

]
(21)

= E
X∼µ1

[
essup

z∈B‖.‖(X,ε2)

1 {g(z) ≤ 0} − λ1 {X 6= z}

]
(22)

=

∫
X

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ1 {x 6= z} dµ1(x). (23)

Let us now consider (Hj)j∈J a partition of X , we can write.

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ1 {X 6= φ1(X)} −∞1 {‖X − φ1(X)‖ > ε2}

]
(24)

=
∑
j∈J

∫
Hj

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ1 {x 6= z} dµ1(x) (25)

In particular, we can take H0 = P {
h , H1 = Ph \ Ph(ε2), and H2 = Ph(ε2).

For x ∈ H0 = P {
h or x ∈ H1 = Ph \ Ph(ε2). With the same reasoning as before, any optimal attack will

choose φ1(x) = x.

Let x ∈ H2 = Ph(ε2). We know that B‖.‖(x, ε2) ∩ P {
h 6= ∅, and for any z in this intersection, one has

g(z) ≤ 0 and z 6= x. Hence essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ1 {z 6= x} = max(1 − λ, 0). Since λ ∈ (0, 1) one

has 1 {g(z) ≤ 0} − λ1 {z 6= x} = 1− λ for any z ∈ B‖.‖(x, ε2) ∩ P {
h . Then any function that given a x ∈ X

outputs φ1(x) ∈ B‖.‖(x, ε2) ∩ P {
h is optimal on H2.

Finally. Since H0 ∪H1 ∪H2 = X , Lemma 1 holds.

Lemma 3. Let us consider φ ∈
(
FX|ε2

)2
. If we take h ∈ BR(φ), then for y = 1 (resp. y = -1), and for any

B ⊂ Ph (resp. B ⊂ Nh) one has

P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ Y , X|(Y = y) ∼ φy#µy .
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Proof. We reason ad absurdum. Let us consider y = 1, the proof for y = −1 is symmetrical. Let us suppose that
there exists C ⊂ Ph such that ν-1φ-1#µ-1(C) > ν1φ1#µ1(C). We can then construct h1 as follows:

h1(x) =

{
h(x) if x /∈ C
−1 otherwise.

Since h and h1 are identical outside C, the difference between the adversarial risks of h and h1 writes as follows:

RΩmass
adv (h, φ)−RΩmass

adv (h1, φ) (26)

=
∑
y=±1

νy

∫
C

(
1 {h(x) 6= y} − 1 {h1(x) 6= y}

)
d(φy#µy)(x) (27)

=ν−11 {h(x) = 1}φ−1#µ-1(C)− ν11 {h1(x) 6= 1}φ1#µ1(C) (28)
=ν−1φ−1#µ-1(C)− ν1φ1#µ1(C) (29)

Since by hypothesis ν−1φ−1#µ-1(C) > ν1φ1#µ1(C) the difference between the adversarial risks of h and h1

is strictly positive. This means that h1 gives strictly better adversarial risk than the best response h. Since, by
definition h is supposed to be optimal, this leads to a contradiction. Hence Lemma 3 holds.

Additional Result. Let us assume that there is a probability measure ζ that dominates both φ1#µ1 and φ-1#µ-1.
Let us consider φ ∈

(
FX|ε2

)2
. If we take h ∈ BR(φ), then h is the Bayes Optimal Classifier for the distribution

characterized by (ν, φ1#µ1, φ-1#µ-1).

Proof. For simplicity, we denote f1 = (dφ1#µ1)
dζ and f−1 = d(φ−1#µ-1)

dζ the Radon-Nikodym derivatives of
φ1#µ1 and φ−1#µ-1 w.r.t. ζ. The best response h minimizes adversarial risk under attack φ. This minimal risk
writes:

inf
h∈H
RΩmass

adv (h, φ) (30)

= inf
h∈H

∑
y=±1

νy E
x∼µy

[1 {h(φy(x)) 6= y}]− λΩ (φ) . (31)

Since the the penalty function does not depend on h, it suffices to seek
inf
h∈H

∑
y=±1

νy
∫
X
1 {h(x) 6= y} d(φy#µy)(x). Moreover thanks to the transfer theorem, one gets the

following:

inf
h∈H

∑
y=±1

νy

∫
X

1 {h(x) 6= y} d(φy#µy)(x) (32)

= inf
h∈H

∑
y=±1

νy

∫
X

1 {h(x) 6= y} fy(x) dζ(x) (33)

= inf
h∈H

∫
X

∑
y=±1

νy1 {h(x) 6= y} fy(x) dζ(x). (34)

Finally, since the integral is bounded we get:

inf
h∈H

∫
X

∑
y=±1

νy1 {h(x) 6= y} fy(x) dζ(x) (35)

=

∫
X

[
inf
h∈H

∑
y=±1

νy1 {h(x) 6= y} fy(x)

]
dζ(x). (36)
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Hence, the best response h is such that for every x ∈ X , and y ∈ Y , one has h(x) = y if and only if
fy(x) ≤ f−y(x). Thus, h is the optimal Bayes classifier for the distribution (ν, φ1#µ1, φ-1#µ-1). Furthermore,
for y = 1 (resp. y = -1), and for any B ⊂ Ph (resp. B ⊂ Nh) one has:

P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ Y , X|(Y = y) ∼ φy#µy .

Theorem 1 (Non-existence of a pure Nash equilibrium). In our zero-sum game with λ ∈ (0, 1) and penalty
Ω ∈ {Ωmass,Ωnorm}, there is no Pure Nash Equilibrium.

Proof. Let h be a classifier, φ ∈ BRΩ(h) an optimal attack against h. We will show that h /∈ BR(φ), i.e. that h
does not satisfy the condition from Lemma 3. This suffices for Theorem 1 to hold since it implies that there is no
(h,φ) ∈ H ×

(
FX|ε2

)2
such that h ∈ BR(φ) and φ ∈ BRΩ(h).

According to Lemmas 1 and 2, whatever penalty we use, there exists δ > 0 such that φ1#µ1 (Ph(δ)) = 0 or
φ−1#µ-1 (Nh(δ)) = 0. Both cases are symmetrical, so let us assume that Ph(δ) is of null measure for the
transported distribution conditioned by y = 1. Furthermore we have φ−1#µ-1 (Ph(δ)) = µ-1 (Ph(δ)) > 0 since
φ−1 is the identity function on Ph(δ), and since µ-1 is of full support on X . Hence we get the following:

φ−1#µ-1 (Ph(δ)) > φ1#µ1 (Ph(δ)) . (37)

Since the right side of the inequality is null, we also get:

φ−1#µ-1 (Ph(δ)) ν-1 > φ1#µ1 (Ph(δ)) ν1. (38)

This inequality is incompatible with the characterization of best response for the Defender of Lemma 3. Hence
h /∈ BR(φ).

Theorem 2. (Randomization matters) Let us consider h1 ∈ H, λ ∈ (0, 1), Ω = Ωmass, φ ∈ BRΩ(h1) and
h2 ∈ BR(φ). Then for any α ∈ (max(λ, 1− λ), 1) and for any φ′ ∈ BRΩ(mq

h) one has

RΩmass
adv (mq

h,φ
′) < RΩmass

adv (h1,φ).

Where h = (h1, h2), q = (α, 1− α), and mq
h is the mixture of h by q.

Figure 1. Illustration of the notations U , U+, and U− for proof of Theorem 2.
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Proof. To demonstrate Theorem 2, let us denote U = Ph1
(ε2) and define the ε2-dilation of U as U ⊕ ε2 :={

u+ v | (u, v) ∈ U ×X and ‖v‖p ≤ ε2
}
. We can construct h2 as follows

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.

This means that h2 changes the class of all points in U , and do not change the rest, compared to h1. Then taking
α ∈ (0, 1), we can define mqh, and φ′ ∈ BRΩ(mqh). We aim to find a condition on α so that the score of mqh is
lower than the score of h1. Finally, let us recall that

RΩmass
adv (mqh,φ

′)

= ν1

∫
X

essup
z∈B‖.‖(x,ε2)

α1 {h1(z) = -1}+ (1− α)1 {h2(z) = -1} − λ1 {x 6= z} dµ1(x)

+ ν-1

∫
X

essup
z∈B‖.‖(x,ε2)

α1 {h1(z) = 10}+ (1− α)1 {h2(z) = 1} − λ1 {x 6= z} dµ-1(x).

The only terms that may vary between the score of h1 and the score of mqh are the integrals on U , U ⊕ ε2 ∩ Ph1

and φ−1
-1 (U) – inverse image of U by φ-1. These sets represent respectively the points we mix on, the points that

may become attacked – when changing from h1 to mqh – by moving them on U , and the ones that were – for h1 –
attacked before by moving them on U . Hence, for simplicity, we only write those terms. Furthermore, we denote

U+ := U ⊕ ε2 ∩ Ph1
\ U, U− := φ−1

-1 (U) and recall U := Ph1
(ε2).

One can refer to Figure 1 for visual interpretation of this sets. We can now evaluate the worst case adversarial
score for h1 restricted to the above sets. Thanks to Lemma 1 that characterizes φ, we can write

RΩmass
adv (h1,φ)|U, U+, U−

= (1− λ)× ν1µ1 (U) + ν-1µ-1(U)

+ 0× ν1µ1

(
U+
)

+ ν-1µ-1
(
U+
)

+ ν1µ1

(
U−
)

+ (1− λ)× ν-1µ-1
(
U−
)
.

Similarly, we can write the worst case adversarial score of the mixture on the sets we consider. Note that the
max operator comes from the fact that the adversary has to make a choice between attacking the zone or just take
advantage of the error due to randomization.

RΩmass
adv (mqh,φ

′)|U, U+, U−

= max (1− α, 1− λ)× ν1µ1 (U) + max (α, 1− λ)× ν-1µ-1(U)

+ max (0, 1− α− λ)× ν1µ1

(
U+
)

+ ν-1µ-1
(
U+
)

+ ν1µ1

(
U−
)

+ max (0, α− λ)× ν-1µ-1
(
U−
)
.

Computing the difference between these two terms, we get the following

RΩmass
adv (h1,φ)−RΩmass

adv (mqh,φ
′) (39)

= (1− λ−max (1− α, 1− λ))× ν1µ1 (U) (40)

+ (1−max (α, 1− λ))× ν-1µ-1 (U) (41)

− max (0, 1− α− λ)× ν1µ1

(
U+
)

(42)

+ (1− λ−max (0, α− λ))× ν-1µ-1
(
U−
)

(43)

Let us now simplify Equation (39) using additional assumptions.
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• First, we have that Equation (41) is equal to

min (1− α, λ)µ-1(U)ν-1 > 0.

Thus, a sufficient condition for the difference between the adversarial scores to be positive is to have the
other terms greater or equal to 0.

• To have Equation (40) ≥ 0 we can always set max (1− α, 1− λ) = 1− λ. This gives us α ≥ λ.

• Also note that to get (42) ≥ 0, we can force max (1− α− λ, 0) = 0. This gives us α ≥ 1− λ.

• Finally, since α ≥ λ, we have that 1− λ−max (0, α− λ) = 1− α thus Equations (43) > 0.

With the above simplifications, we have (39) > 0 for any α > max(λ, 1− λ) which concludes the proof.

Theorem 3. (Randomization matters) Let us consider h1 ∈ H, λ ∈ (0, 1), Ω = Ωnorm, φ ∈ BRΩ(h1) and
h2 ∈ BR(φ). Let us take δ ∈ (0, ε2), then for any α ∈ (max(1−λδ, λ(ε2− δ)), 1) and for any φ′ ∈ BRΩ(mq

h)
one has

RΩnorm
adv (mq

h,φ
′) < RΩnorm

adv (h1,φ).

Where h = (h1, h2), q = (α, 1− α), and mq
h is the mixture of h by q.

Figure 2. Illustration of the notations U , U+, U− and δ for proof of Theorem 3.

Proof. Let us take U ⊂ Ph1(ε2) such that

min
x∈U
‖x− πPh\Ph(ε2)(x)‖ = δ ∈ (0, ε2)

. We construct h2 as follows.

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.

This means that h2 changes the class of all points in U , and do not change the rest. Let α ∈ (0, 1), the
corresponding mixture mqh, and φ′ ∈ BRΩ(mqh). We will find a condition on α so that the score of mqh is lower
than the score of h1. Recall that

RΩnorm
adv (mqh,φ

′)

= ν1

∫
X

essup
z∈B‖.‖(x,ε2)

α1 {h1(z) = -1}+ (1− α)1 {h2(z) = -1} − λ‖x− z‖ dµ1(x)

+ ν-1

∫
X

essup
z∈B‖.‖(x,ε2)

α1 {h1(z) = 1}+ (1− α)1 {h2(z) = 1} − λ‖x− z‖ dµ-1(x).
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As we discussed in proof of Theorem 2, the only terms that may vary between the score of h1 and the score of mqh
are the integrals on U , U ⊕ ε2 ∩ Ph1 and φ−1

-1 (U). Hence, for simplicity, we only write those terms. Furthermore,
we denote

U+ := U ⊕ ε2 ∩ Ph1
\ U, U− := φ−1

-1 (U) and Pε2 := Ph1
(ε2).

One can refer to Figure 2 for a visual interpretation of this ensembles. We can now evaluate the worst case
adversarial score for h1 restricted to the above sets. Thanks to Lemma 2 that characterizes φ, we can write

RΩnorm
adv (h1,φ)

= ν1

∫
U

(
1− λ‖x− πP{

h1

(x)‖
)
dµ1(x) + ν-1µ-1(U)

+ ν1

∫
U+\Pε2

0 dµ1(x) + ν-1µ-1
(
U+ \ Pε2

)
+ ν1

∫
U+∩Pε2

(
1− λ‖x− πP{

h1

(x)‖
)
dµ1(x) + ν-1µ-1

(
U+ ∩ Pε2

)
+ ν1µ1

(
U−
)

+ ν-1

∫
U−

(
1− λ‖x− πU (x)‖

)
dµ-1(x).

Similarly we can evaluate the worst case adversarial score for the mixture,

RΩnorm
adv (mqh,φ

′)

= ν1

∫
U

max
(

1− α, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x)

+ ν-1

∫
U

max (α, 1− λ‖x− πU+(x)‖) dµ-1(x)

+ ν1

∫
U+\Pε2

max (0, 1− α− λ‖x− πU (x)‖) dµ1(x) + ν-1µ-1
(
U+ \ Pε2

)
+ ν1

∫
U+∩Pε2

max
(

1− α− λ‖x− πU (x)‖, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x)

+ ν-1µ-1
(
U+ ∩ Pε2

)
+ ν1µ1

(
U−
)

+ ν-1

∫
U−

max
(

0, 1− λ‖x− πN{
h1
\U (x)‖, α− λ‖x− πU (x)‖

)
dµ-1(x).

Note that we need to take into account the special case of the points in the dilation that were already in the attacked
zone before, and that can now be attacked in two ways, either by projecting on U – but that works with probability
α, since the classification on U is now randomized – or by projecting on P {

h1
, which works with probability 1 but

may use more distance and so pay more penalty. We can now compute the difference between both scores.

RΩnorm
adv (h1,φ)−RΩnorm

adv (mqh,φ
′) (44)

= ν1

∫
U

1− λ‖x− πP{
h1

(x)‖ −max
(

1− α, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x) (45)

+ ν-1

∫
U

1−max (α, 1− λ‖x− πU+(x)‖) dµ-1(x) (46)

− ν1

∫
U+\Pε2

max (1− α− λ‖x− πU (x)‖, 0) dµ1(x) (47)
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+ ν1

∫
U+∩Pε2

1− λ‖x− πP{
h1

(x)‖

− max
(

1− α− λ‖x− πU (x)‖, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x) (48)

+ ν-1

∫
U−

1− λ‖x− πU (x)‖

− max
(

0, 1− λ‖x− πN{
h1
\U (x)‖, α− λ‖x− πU (x)‖

)
dµ-1(x). (49)

Let us simplify Equation (44) using using additional hypothesis:

• First, note that Equation (46)> 0. Then a sufficient condition for the difference to be strictly positive is to
ensure that other lines are ≥ 0.

• In particular to have (45) ≥ 0 it is sufficient to have for all x ∈ U

max
(

1− α, 1− λ‖x− πP{
h1

(x)‖
)

= 1− λ‖x− πP{
h1

(x)‖.

This gives us α ≥ λ(ε2 − δ) ≥ λmax
x∈U
‖x− πP{

h1

(x)‖.

• Similarly, to have (47) ≥ 0, we should set for all x ∈ U+ \ Pε2
α ≥ 1− λ‖x− πU (x)‖.

Since min
x∈U+\Pε2

‖x− πU (x)‖ = δ, we get the condition α ≥ 1− λδ.

• Finally (49) ≥ 0, since by definition of U−, for any x ∈ U− we have

‖x− πN{
h1
\U (x)‖ ≥ ‖x− πU (x)‖.

Finally, by summing all these simplifications, we have (44) > 0. Hence the result hold for any α > max(1 −
λδ, λ(ε2 − δ))

2. Experimental results
In the experimental section, we consider X = [0, 1]3×32×32 to be the set of images, and Y = {1, ..., 10} or
Y = {1, ..., 100} according to the dataset at hand.

2.1. Adversarial attacks

Let (x, y) ∼ D and h ∈ H. We consider the following attacks:

(i) `∞-PGD attack. In this scenario, the Adversary maximizes the loss objective function, under the constraint
that the `∞ norm of the perturbation remains bounded by some value ε∞. To do so, it recursively computes:

xt+1 = ΠB‖.‖(x,ε∞)

[
xt + β sgn

(
∇xL

(
h
(
xt
)
, y
))]

(50)

where L is some differentiable loss (such as the cross-entropy), β is a gradient step size, and ΠS is the projection
operator on S. One can refer to (Madry et al., 2018) for implementation details.

(ii) `2-C&W attack. In this attack, the Adversary optimizes the following objective:

argmin
τ∈X

‖τ‖2 + λ× cost(x+ τ) (51)

where cost(x+τ) < 0 if and only if h(x+τ) 6= y. The authors use a change of variable τ = 1
2 (tanh(w)−x+1) to

ensure that x+ τ ∈ X , a binary search to optimize the constant λ, and Adam or SGD to compute an approximated
solution. One should refer to (Carlini & Wagner, 2017) for implementation details.
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2.2. Experimental setup

Datasets. To illustrate our theoretical results we did experiments on the CIFAR10 and CIFAR100 datasets.
See (Krizhevsky et al., 2009) for more details.

Classifiers. All the classifiers we use are WideResNets (see (Zagoruyko & Komodakis, 2016)) with 28 layers, a
widen factor of 10, a dropout factor of 0.3 and LeakyRelu activations with a 0.1 slope.

Natural Training. To train an undefended classifier we use the following hyperparameters.

• Number of Epochs: 200

• Batch size: 128

• Loss function: Cross Entropy Loss

• Optimizer : SGD algorithm with momentum 0.9, weight decay of 2 × 10−4 and a learning rate that
decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60
0.02 if 60 ≤ epoch < 120
0.004 if 120 ≤ epoch < 160
0.0008 if 160 ≤ epoch < 200

Adversarial Training. To adversarially train a classifier we use the same hyperparameters as above, and
generate adversarial examples using the `∞-PGD attack with 20 iterations. When considering that the input space
is [0, 255]3×32×32, on CIFAR10 and CIFAR100, a perturbation is considered to be imperceptible for ε∞ = 8.
Here, we consider X = [0, 1]3×32×32 which is the normalization of the pixel space [0.255]3×32×32. Hence, we
choose ε2 = 0.031 (≈ 8/255) for each attack. Moreover, the step size we use for `∞-PGD is 0.008 (≈ 2/255),
we use a random initialization for the gradient descent and we repeat the procedure three times to take the best
perturbation over all the iterations i.e the one that maximises the loss. For the `∞-PGD attack against the mixture
mq

h, we use the same parameters as above, but compute the gradient over the loss of the expected logits (as
explained in the main paper).

Evaluation Under Attack. At evaluation time, we use 100 iterations instead of 20 for Adaptive-`∞-PGD,
and the same remaining hyperparameters as before. For the Adaptive-`2-C&W attack, we use 100 iterations, a
learning rate equal to 0.01, 9 binary search steps, and an initial constant of 0.001. We give results for several
different values of the rejection threshold: ε2 ∈ {0.4, 0.6, 0.8}.

Computing Adaptive-`2-C&W on a mixture To attack a randomized model, it is advised in the literature
(Tramer et al., 2020) to compute the expected logits returned by this model. However this advice holds for
randomized models that return logits in the same range for a same example (e.g. classifier with noise injection).
Our randomized model is a mixture and returns logits that depend on selected classifier. Hence, for a same
example, the logits can be very different. This phenomenon made us notice that for some example in the dataset,
computing the expected loss over the classifier (instead of the expected logits) performs better to find a good
perturbation (it can be seen as computing the expectation of the logits normalized thanks to the loss). To ensure a
fair evaluation of our model, in addition of using EOT with the expected logits, we compute in parallel EOT with
the expected loss and take the perturbation that maximizes the expected error of the mixture. See the submitted
code for more details.

Library used. We used the Pytorch and Advertorch libraries for all implementations.

Machine used. 6 Tesla V100-SXM2-32GB GPUs
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2.3. Experimental details

Sanity checks for Adaptive attacks In (Tramer et al., 2020), the authors give a lot of sanity checks and good
practices to design an Adaptive attacks. We follow them and here are the information for Adaptive-`∞-PGD :

• We compute the gradient of the loss by doing the expected logits over the mixture.

• The attack is repeated 3 times with random start and we take the best perturbation over all the iterations.

• When adding a constant to the logits, it doesn’t change anything to the attack

• When doing 200 iterations instead of 100 iterations, it doesn’t change the performance of the attack

• When increasing the budget ε∞, the accuracy goes to 0, which ensures that there is no gradient masking.
Here are some values to back this statement:

Epsilon 0.015 0.031 0.125 0.250
Accuracy 0.638 0.546 0.027 0.000

Table 1. Evolution of the accuracy under Adaptive-`∞-PGD attack depending on the budget ε∞

• The loss doesn’t fluctuate at the end of the optimization process.

Selecting the first element of the mixture. Our algorithm creates classifiers in a boosting fashion, starting with
an adversarially trained classifier. There are several ways of selecting this first element of the mixture: use the
classifier with the best accuracy under attack (option 1, called bestAUA), or rather the one with the best natural
accuracy (option 2). Table 2 compares both options.

Beside the fact that any of the two mixtures outperforms the first classifier, we see that the fisrt option always
outperforms the second. In fact, when taking option 1 (bestAUA = True) the accuracy under `∞-PGD attack of
the mixture is 3% better than with option 2 (bestAUA = False). One can also note that both mixtures have the
same natural accuracy (0.80), which makes the choice of option 1 natural.

Training method NA of the 1st clf AUA of the 1st clf NA of the mixture AUA of the mixture

BAT (bestAUA=True) 0.77 0.46 0.80 0.55
BAT (bestAUA=False) 0.83 0.42 0.80 0.52

Table 2. Comparison of the mixture that has as first classifier the best one in term of natural accuracy and the mixture that has
as first classifier the best one in term of Accuracy under attack. The accuracy under attack is computed with the `∞-PGD
attack. NA means matural accuracy, and AUA means accuracy under attack.

2.4. Extension to more than two classifiers

As we mention in the main part of the paper, a mixture of more than two classifiers can be constructed by adding
at each step t a new classifier trained naturally on the dataset D̃ that contains adversarial examples against the
mixture at step t− 1. Since D̃ has to be constructed from a mixture, one would have to use an adaptive attack as
Adaptive-`∞-PGD. Here is the algorithm for the extented version :
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Algorithm 1 Boosted Adversarial Training
Input : n the number of classifiers, D the training data set and α the weight update parameter.

Create and adversarially train h1 on D
h = (h1) ; q = (1)
for i = 2, . . . , n do

Generate the adversarial data set D̃ against mq
h.

Create and naturally train hi on D̃

qk ← (1− α)qk ∀k ∈ [i− 1]
qi ← α

q← (α, . . . , qi)
h← (h1, . . . , hi)

end
return mq

h

Here to find the parameter α, the grid search is more costly. In fact in the two-classifier version we only need to
train the first and second classifier without taking care of α, and then test all the values of α using the same two
classifier we trained. For the extended version, the third classifier (and all the other ones added after) depends on
the first classifier, the second one and their weights 1− α and α. Hence the third classifier for a certain value of α
can’t be use for another one and, to conduct the grid search, one have to retrain all the classifiers from the third
one. Naturally the parameters α depends on the number of classifiers n in the mixtures.


