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A. Appendix
A.1. Remaining Proofs for Submodular Sharpness

Proof of Theorem 3. Let us denote by Si := {e1, . . . , ei}
the set we obtain in the i-th iteration of Algorithm 1 and
S0 = ∅. Note that Sg := Sk. Since the greedy algorithm
chooses the element with the largest marginal in each itera-
tion, then for all i ∈ [k] we have

f(Si)− f(Si−1) ≥ max
e∈S∗\Si−1

fSi−1(e)

Now, from the submodular sharpness condition we conclude
that

f(Si)− f(Si−1) ≥ [f(S∗)− f(Si−1)]
1−θ

f(S∗)θ

kc
.

The rest of the proof is the same as the proof of Theorem 1,
which gives us the desired result.

Finally, we prove the main result for the concept of dynamic
submodular sharpness. This proof is similar to the proof of
Theorem 2.

Proof of Theorem 4. For each iteration i ∈ [k] in the greedy
algorithm we have

f(Si)− f(Si−1) ≥ max
e∈S∗\Si−1

fSi−1(e)

Now, from the dynamic submodular sharpness condition we
conclude that

f(Si)− f(Si−1) ≥ [f(S∗)− f(Si−1)]
1−θi−1 f(S∗)θi−1

kci−1
,

which gives the same recurrence than Theorem 2. The rest
of the proof is the same as the proof of Theorem 2.
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A.2. Remaining Lemmata

Lemma 1. Consider any monotone set function f : 2V →
R+. Then,

1. There is always a set of parameters c and θ such that
f is (c, θ)-monotonic sharp. In particular, f is always
(c, θ)-monotonic sharp when both c→ 1 and θ → 0.

2. If f is (c, θ)-monotonic sharp, then for any c′ ≥ c and
θ′ ≤ θ, f is (c′, θ′)-monotonic sharp. Therefore, in
order to maximize the guarantee of Theorem 1 we look
for the smallest feasible c and the largest feasible θ.

3. If f is also submodular, then Inequality (3) needs to be
checked only for sets of size exactly k.

Proof. 1. Note that |S
∗\S|
k ≤ 1, so

(
|S∗\S|
k·c

) 1
θ ≤

(
1
c

) 1
θ ,

which shows that
(
|S∗\S|
k·c

) 1
θ → 0 when c → 1

and θ → 0. Therefore, Definition 1 is simply∑
e∈S∗\S fS(e) ≥ 0, which is satisfied since from

monotonicity we have fS(e) ≥ 0.

2. Observe that
(
|S∗\S|
k·c

) 1
θ

as a function of c and θ

is increasing in θ and decreasing in c. Therefore,(
|S∗\S|
k·c

) 1
θ ≥

(
|S∗\S|
k·c′

) 1
θ′ for c′ ≥ c and θ′ ≤ θ.

3. Consider a set S with i elements and such that
|S∗\S| = `. Let us add k − i elements to S that
do not belong to S∗ and denote this set S′. The new
set S′ satisfies |S∗\S′| = `, |S′| = k and from sub-
modularity we have fS(e) ≥ fS′(e). This proves that
the inequality can be checked only for sets of size k.

Lemma 2. Consider any monotone submodular set function
f : 2V → R+. Then,

1. There is always a set of parameters c and θ such that f
is (c, θ)-submodular sharp. In particular, f is always
(c, θ)-submodular sharp when both c→ 1 and θ → 0.
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2. If f is (c, θ)-submodular sharp, then for any c′ ≥ c
and θ′ ≤ θ, f is (c′, θ′)-submodular sharp. Therefore,
in order to maximize the guarantee of Theorem 3 we
look for the smallest feasible c and the largest feasible
θ.

3. Definition 1 implies Definition 3.

Proof. 1. Note that f satisfies the following sequence of
inequalities for any set S:

max
e∈S∗\S

fS(e) ≥
∑
e∈S∗\S fS(e)

|S∗\S|

≥ f(S ∪ S∗)− f(S)

k

≥ f(S∗)− f(S)

k
(11)

where the second inequality is because of submodular-
ity and in the last inequality we applied monotonicity.
Observe that (11) is exactly (4) for c = 1 and θ → 0.

2. Observe that [f(S∗)−f(S)]1−θf(S∗)θ
k·c as a function of c

and θ is increasing in θ and decreasing in c. There-

fore, [f(S∗)−f(S)]1−θf(S∗)θ
k·c ≥ [f(S∗)−f(S)]1−θ

′
f(S∗)θ

′

k·c′
for c′ ≥ c and θ′ ≤ θ.

3. Definition 1 implies that

∑
e∈S∗\S fS(e)

|S∗\S|
≥

[∑
e∈S∗\S fS(e)

]1−θ
f(S∗)θ

kc
.

(12)
On the other hand, by using submodularity and mono-
tonicity we get∑
e∈S∗\S

fS(e) ≥ f(S∗ ∪ S)− f(S) ≥ f(S∗)− f(S).

Therefore, by using (12) we obtain

max
e∈S∗\S

fS(e) ≥
∑
e∈S∗\S fS(e)

|S∗\S|

≥ [f(S∗)− f(S)]
1−θ

f(S∗)θ

kc
,

which proves the desired result.

A.3. Analysis of Monotonic Sharpness for Specific
Classes of Functions

Let us denote by S(f) the sharpness feasible region for f ,
i.e., f is (c, θ)-monotonic sharp if, and only, if (c, θ) ∈
S(f). We focus now on obtaining the best approximation
guarantee for a monotone submodular function with sharp-
ness region S(f).

Proposition 1. Given a non-negative monotone submod-
ular function f : 2V → R+ with sharpness region S(f),

then the highest approximation guarantee 1−
(
1− θ

c

) 1
θ for

Problem (P1) is given by a pair of parameters that lies on
the boundary of S(f).

Proof. Fix an optimal solution S∗ for Problem (P1). Note
that we can compute the best pair (c, θ) for that S∗ by
solving the following optimization problem

max 1−
(

1− θ

c

) 1
θ

(13)

s.t. (c, θ) ∈ S(f, S∗),

where S(f, S∗) corresponds to the sharpness region related

to S∗. Observe that function 1 −
(
1− θ

c

) 1
θ is continuous

and convex in [1,∞) × (0, 1]. Note that for any c ≥ 1, if

θ → 0, then
(
1− θ

c

) 1
θ → e−1/c. Also, for any subset S,

Inequality (3) is equivalent to

|S∗\S|
k

·

(∑
e∈S∗\S fS(e)

OPT

)−θ
− c ≤ 0

where the left-hand side is convex as a function of c and
θ, hence S(f, S∗) is a convex region. Therefore, the opti-
mal pair (c∗, θ∗) of Problem (13) lies on the boundary of
S(f, S∗). Since we considered an arbitrary optimal set, then
the result easily follows.

Let us study S(f) for general monotone submodular func-
tions. If we fix |S∗\S|, the right-hand side of (3) does not
depend explicitly on S. On the other hand, for a fixed size
|S∗\S|, there is a subset S` that minimizes the left-hand
side of (3), namely∑

e∈S∗\S

fS(e) ≥
∑

e∈S∗\S`
fS`(e),

for all feasible subset S such that |S∗\S| = `. For each
` ∈ [k], let us denote

W (`) :=
∑

e∈S∗\S`
fS`(e).

Therefore, instead of checking Inequality (3) for all feasible
subsets, we only need to check k inequalities defined by
W (1), . . . ,W (k). In general, computing W (`) is difficult
since we require access to S∗. However, for very small
instances or specific classes of functions, this computation
can be done efficiently. In the following, we provide a
detailed analysis of the sharpness feasible region for specific
classes of functions.
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A.3.1. LINEAR FUNCTIONS.

Consider weights we > 0 for each element e ∈ V and func-
tion f(S) =

∑
e∈S we. Let us order elements by weight

as follows w1 ≥ w2 ≥ . . . ≥ wn, where element ei has
weight wi. We observe that an optimal set S∗ for Prob-
lem (P1) is formed by the top-k weighted elements and
OPT =

∑
i∈[k] wi.

Proposition 2 (Linear functions). Consider weights w1 ≥
w2 ≥ . . . ≥ wn > 0, where element ei ∈ V has weight
wi, and denote W (`) :=

∑k
i=k−`+1 wi for each ` ∈

{1, . . . , k}. Then, the linear function f(S) =
∑
i:ei∈S wi

is (c, θ)-monotonic sharp in{
(c, θ) ∈ [1,∞)× [0, 1] :

c ≥ `

k
·
(
W (`)

W (k)

)−θ
, ∀ ` ∈ [k − 1]

}
.

Moreover, this region has only k − 1 constraints.

Proof. First, observe that W (k) = OPT. Note that for
any subset we have |S∗\S| ∈ {1, . . . , k} (for |S∗\S| = 0
the sharpness inequality is trivially satisfied). Given ` ∈
{1, . . . , k}, pick any feasible set such that |S∗\S| = `, then
the sharpness inequality corresponds to

∑
e∈S∗\S

we ≥
(

`

k · c

) 1
θ

·W (k), (14)

where the left-hand side is due to linearity. Fix ` ∈
{1, . . . , k}, we observe that the lowest possible value for the
left-hand side in (14) is when S∗\S = {ek−`+1, . . . , ek}. .
Therefore, for a linear function, Definition 1 is equivalent to

W (`)

W (k)
≥
(

`

k · c

) 1
θ

, ` ∈ {1, . . . , k} ⇔

c ≥ `

k
·
(
W (`)

W (k)

)−θ
, ` ∈ {1, . . . , k}.

Note that ` = k is redundant with c ≥ 1. Given this,
we have k − 1 curves that define a feasible region in
which the linear function is (c, θ)-monotonic sharp. In
particular, if we consider c = 1, then we can pick θ =

min`∈[k−1]

{
log(k/`)

log(W (k)/W (`))

}
.

From Proposition 2 we observe that the sharpness of the
function depends exclusively on w1, . . . , wk. Moreover, the
weights’ magnitude directly affects the sharpness parame-
ters. Let us analyze this: assume without loss of generality
that wk

W (k) ≤
1
k , and more generally, W (`)

W (k) ≤
`
k for all

` ∈ [k − 1], so we have

(
`

k · c

) 1
θ

≤ W (`)

W (k)
≤ `

k
, ` ∈ {1, . . . , k}

This shows that a sharp linear function has more similar
weights in its optimal solution, i.e., when the weights in the
optimal solution are balanced. We have the following facts
for ε ∈ (0, 1):

• If wk
W (k) = (1−ε) · 1k , then W (`)

W (k) ≥ (1−ε) · `k for every
` ∈ [k − 1]. Observe that c = 1

1−ε and θ = 1 satisfy

(1−ε) · `k ≥
(
`
k·c
) 1
θ for any ` ∈ [k−1], showing that f

is
(

1
1−ε , 1

)
-sharp. More importantly, when ε is small

the function becomes sharper. Also, if we set c = 1,
then from the analysis of Proposition 2 we could pick

θ = min
`∈[k−1]

{
log(k/`)

log(W (k)/W (`))

}
≥ min
`∈[k−1]

{
log k

`

log k
`(1−ε)

}
=

log k

log k
(1−ε)

,

showing that f is (1,Ω( log k
log(k/(1−ε)) ))-sharp. Again,

when ε→ 0 the function becomes sharper.

• On the other hand, suppose that w2

W (k) = ε
k , then

W (`)
W (k) ≤ ε · `k for every ` ∈ [k − 1]. Similarly to
the previous bullet, by setting c = 1 we can choose

θ = min
`∈[k−1]

{
log(k/`)

log(W (k)/W (`))

}
≤ min
`∈[k−1]

{
log k

`

log k
`ε

}
=

log k

log k
ε

,

showing that f is (1, O( log k
log(k/ε) ))-sharp. Observe that

when ε→ 0 the function becomes less sharp.

Observation 1. Given parameters c ≥ 1 and θ ∈ [0, 1],
it is easy to construct a linear function that is (c, θ)-sharp
by using Proposition 2. Without loss of generality assume

W (k) = 1. From constraint ` = 1 choose wk =
(

1
kc

) 1
θ ,

and more generally, from constraint ` ∈ [k − 1] choose

wk−`+1 =
(
`
kc

) 1
θ −

∑k
i=k−`+2 wi. Finally, set w1 = 1 −∑k

i=2 wi.

Observation 2. Given β ∈ [0, 1], there exists a linear func-
tion f and parameters (c, θ) ∈ [1,∞)× [0, 1] such that f

is (c, θ)-sharp and 1−
(
1− θ

c

) 1
θ ≥ 1− β. To obtain this,

we use Observation 1 with c = 1 and any θ ∈ [0, 1] such
that β ≥ (1− θ)1/θ.
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A.3.2. CONCAVE OVER MODULAR FUNCTIONS.

In this section, we will study a generalization of linear func-
tions. Consider weights we > 0 for each element e ∈ V ,
a parameter α ∈ [0, 1] and function f(S) =

(∑
e∈S we

)α
.

Observe that the linear case corresponds to α = 1. Let us
order elements by weight as follows w1 ≥ w2 ≥ . . . ≥ wn,
where element ei has weight wi. Similarly than the lin-
ear case, we note that an optimal set S∗ for Problem (P1)
is formed by the top-k weighted elements and OPT =(∑

i∈[k] wi

)α
.

Proposition 3 (Concave over modular functions). Consider
weights w1 ≥ w2 ≥ . . . ≥ wn > 0, where element ei ∈ V
has weight wi and parameter α ∈ [0, 1]. Denote

W (`) :=

k∑
i=k−`+1

 k+∑̀
j=k+1

wj +

k−∑̀
j=1

wj + wi

α

−

 k+∑̀
j=k+1

wj +

k−∑̀
j=1

wj

α
for each ` ∈ {1, . . . , k}. Then, the function f(S) =(∑

i:ei∈S wi
)α

is (c, θ)-monotonic sharp in{
(c, θ) ∈ [1,∞)×[0, 1] : c ≥ `

k
·
(
W (`)

OPT

)−θ
, ∀ ` ∈ [k]

}
.

Proof. First, observe that unlike the linear case, W (k) 6=
OPT. Given ` ∈ {1, . . . , k}, pick any feasible set such that
|S∗\S| = `, then the sharpness inequality corresponds to

∑
e∈S∗\S

(∑
e′∈S

we′ + we

)α
−

(∑
e′∈S

we′

)α

≥
(

`

k · c

) 1
θ

·OPT . (15)

Observe that function (x+ y)α − xα is increasing in y and
decreasing in x. Therefore, the lowest possible value for the
left-hand side in (15) is when

∑
e′∈S we′ is maximized and

we is minimized. Given this, for each ` ∈ {1, . . . , k} we
choose S = {e1, . . . , ek−`, ek+1, . . . , ek+`}. In this way,
we get S∗\S = {ek−`+1, . . . , ek}, whose elements have
the lowest weights, and S has the highest weight possible in
V \{ek−`+1, . . . , ek}. Hence, Definition 1 is equivalent to

W (`)

OPT
≥
(

`

k · c

) 1
θ

, ` ∈ [k] ⇔

c ≥ `

k
·
(
W (`)

OPT

)−θ
, ` ∈ [k].

We have k curves that define a feasible region in which
the function is (c, θ)-monotonic sharp with respect to S∗.

In particular, if we consider c = 1, then we can pick θ =

min`∈[k]

{
log(k/`)

log(OPT /W (`))

}
.

A.3.3. COVERAGE FUNCTION, (NEMHAUSER &
WOLSEY, 1978).

Consider the space X = {1, . . . , k}k, sets Ai = {x ∈ X :
xi = 1} for i ∈ [k − 1] and Bi = {x ∈ X : xk = i}
for i ∈ [k], ground set V = {A1, . . . , Ak−1, B1, . . . , Bk},
and function f(S) =

∣∣⋃
U∈S U

∣∣ for S ⊆ V . In this case,
Problem (P1) corresponds to finding a family of k elements
in V that covers X the most. By simply counting, we can
see that the optimal solution for Problem (P1) is S∗ =
{B1, . . . , Bk} and OPT = kk. As shown in (Nemhauser
& Wolsey, 1978), the greedy algorithm achieves the best
possible 1− 1/e guarantee for this problem.

Proposition 4. Consider ground set V =
{A1, . . . , Ak−1, B1, . . . , Bk}. Then, the function
f(S) =

∣∣⋃
U∈S U

∣∣ is (c, θ)-sharp in{
(c, θ) ∈ [1,∞)× [0, 1] :

c ≥ `

k
·

(
`

k
·
(
k − 1

k

)`)−θ
, ∀ ` ∈ [k − 1]

}
.

Proof. First, note that any family of the form
{Ai1 , . . . , Ai` , Bj1 , . . . , Bjk−`} covers the same number
of points for ` ∈ [k − 1]. Second, since there are only
k − 1 sets Ai, then any subset S ⊆ V of size k satisfies
|S∗\S| ≤ k − 1. By simply counting, for ` ∈ [k − 1] and
set S such that |S∗\S| = `, we have

f(S) = kk − `kk−`−1(k − 1)`,

f(S + e) = kk − (`− 1)kk−`−1(k − 1)`.

Then, (3) becomes

`

k
·
(
k − 1

k

)`
≥
(
`

kc

) 1
θ

Observe that f is
(
1, 1k

)
-sharp since ` ≤ k − 1 and(

k−1
k

)` ≥ ( `k)k−1.

Observation 3 (Coverage function, (Nemhauser & Wolsey,

1978).). Note that in order to achieve 1 −
(
1− θ

c

) 1
θ ≥

1 − e−1, we need θ ∈ [0, 1] and 1 ≤ c ≤ θ
1−e−θ . On the

other hand, by taking ` = k − 1 in Proposition 4 we have
c ≥

(
k−1
k

)−kθ+1
, where the right-hand side tends to eθ

when k is sufficiently large. Therefore, for k sufficiently
large we have eθ ≤ c ≤ θ

1−e−θ , whose only feasible point
is c = 1 and θ → 0.


