Supplementary Material for "On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness"

Sebastian Pokutta¹ Mohit Singh² Alfredo Torrico³

A. Appendix

A.1. Remaining Proofs for Submodular Sharpness

Proof of Theorem 3. Let us denote by $S_i := \{e_1, \ldots, e_i\}$ the set we obtain in the *i*-th iteration of Algorithm 1 and $S_0 = \emptyset$. Note that $S^g := S_k$. Since the greedy algorithm chooses the element with the largest marginal in each iteration, then for all $i \in [k]$ we have

$$f(S_i) - f(S_{i-1}) \ge \max_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}(e)}$$

Now, from the submodular sharpness condition we conclude that

$$f(S_i) - f(S_{i-1}) \ge \frac{\left[f(S^*) - f(S_{i-1})\right]^{1-\theta} f(S^*)^{\theta}}{kc}$$

The rest of the proof is the same as the proof of Theorem 1, which gives us the desired result. \Box

Finally, we prove the main result for the concept of dynamic submodular sharpness. This proof is similar to the proof of Theorem 2.

Proof of Theorem 4. For each iteration $i \in [k]$ in the greedy algorithm we have

$$f(S_i) - f(S_{i-1}) \ge \max_{e \in S^* \setminus S_{i-1}} f_{S_{i-1}(e)}$$

Now, from the dynamic submodular sharpness condition we conclude that

$$f(S_i) - f(S_{i-1}) \ge \frac{[f(S^*) - f(S_{i-1})]^{1 - \theta_{i-1}} f(S^*)^{\theta_{i-1}}}{kc_{i-1}},$$

which gives the same recurrence than Theorem 2. The rest of the proof is the same as the proof of Theorem 2. \Box

¹Zuse Institute Berlin (ZIB), TU Berlin ²Georgia Institute of Technology ³CERC Data Science, Polytechnique Montreal. Correspondence to: Alfredo Torrico <alfredo.torricopalacios@polymtl.ca>.

Proceedings of the 37^{th} International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the author(s).

A.2. Remaining Lemmata

Lemma 1. Consider any monotone set function $f: 2^V \rightarrow \mathbb{R}_+$. Then,

- 1. There is always a set of parameters c and θ such that f is (c, θ) -monotonic sharp. In particular, f is always (c, θ) -monotonic sharp when both $c \to 1$ and $\theta \to 0$.
- 2. If f is (c, θ) -monotonic sharp, then for any $c' \ge c$ and $\theta' \le \theta$, f is (c', θ') -monotonic sharp. Therefore, in order to maximize the guarantee of Theorem 1 we look for the smallest feasible c and the largest feasible θ .
- 3. If f is also submodular, then Inequality (3) needs to be checked only for sets of size exactly k.
- *Proof.* 1. Note that $\frac{|S^* \setminus S|}{k} \leq 1$, so $\left(\frac{|S^* \setminus S|}{k \cdot c}\right)^{\frac{1}{\theta}} \leq \left(\frac{1}{c}\right)^{\frac{1}{\theta}}$, which shows that $\left(\frac{|S^* \setminus S|}{k \cdot c}\right)^{\frac{1}{\theta}} \to 0$ when $c \to 1$ and $\theta \to 0$. Therefore, Definition 1 is simply $\sum_{e \in S^* \setminus S} f_S(e) \geq 0$, which is satisfied since from monotonicity we have $f_S(e) \geq 0$.
 - 2. Observe that $\left(\frac{|S^* \setminus S|}{k \cdot c}\right)^{\frac{1}{\theta}}$ as a function of c and θ is increasing in θ and decreasing in c. Therefore, $\left(\frac{|S^* \setminus S|}{k \cdot c}\right)^{\frac{1}{\theta}} \ge \left(\frac{|S^* \setminus S|}{k \cdot c'}\right)^{\frac{1}{\theta'}}$ for $c' \ge c$ and $\theta' \le \theta$.
 - 3. Consider a set S with i elements and such that |S^{*}\S| = ℓ. Let us add k − i elements to S that do not belong to S^{*} and denote this set S'. The new set S' satisfies |S^{*}\S'| = ℓ, |S'| = k and from submodularity we have f_S(e) ≥ f_{S'}(e). This proves that the inequality can be checked only for sets of size k.

Lemma 2. Consider any monotone submodular set function $f: 2^V \to \mathbb{R}_+$. Then,

1. There is always a set of parameters c and θ such that f is (c, θ) -submodular sharp. In particular, f is always (c, θ) -submodular sharp when both $c \to 1$ and $\theta \to 0$.

- 2. If f is (c, θ) -submodular sharp, then for any $c' \ge c$ and $\theta' \le \theta$, f is (c', θ') -submodular sharp. Therefore, in order to maximize the guarantee of Theorem 3 we look for the smallest feasible c and the largest feasible θ .
- 3. Definition 1 implies Definition 3.
- *Proof.* 1. Note that f satisfies the following sequence of inequalities for any set S:

$$\max_{e \in S^* \setminus S} f_S(e) \ge \frac{\sum_{e \in S^* \setminus S} f_S(e)}{|S^* \setminus S|}$$
$$\ge \frac{f(S \cup S^*) - f(S)}{k}$$
$$\ge \frac{f(S^*) - f(S)}{k} \tag{11}$$

where the second inequality is because of submodularity and in the last inequality we applied monotonicity. Observe that (11) is exactly (4) for c = 1 and $\theta \rightarrow 0$.

- 2. Observe that $\frac{[f(S^*)-f(S)]^{1-\theta}f(S^*)^{\theta}}{k \cdot c}$ as a function of c and θ is increasing in θ and decreasing in c. Therefore, $\frac{[f(S^*)-f(S)]^{1-\theta}f(S^*)^{\theta}}{k \cdot c} \ge \frac{[f(S^*)-f(S)]^{1-\theta'}f(S^*)^{\theta'}}{k \cdot c'}$ for $c' \ge c$ and $\theta' \le \theta$.
- 3. Definition 1 implies that

$$\frac{\sum_{e \in S^* \setminus S} f_S(e)}{|S^* \setminus S|} \ge \frac{\left[\sum_{e \in S^* \setminus S} f_S(e)\right]^{1-\theta} f(S^*)^{\theta}}{kc}.$$
(12)

On the other hand, by using submodularity and monotonicity we get

$$\sum_{e \in S^* \setminus S} f_S(e) \ge f(S^* \cup S) - f(S) \ge f(S^*) - f(S).$$

Therefore, by using (12) we obtain

$$\max_{e \in S^* \setminus S} f_S(e) \ge \frac{\sum_{e \in S^* \setminus S} f_S(e)}{|S^* \setminus S|} \ge \frac{[f(S^*) - f(S)]^{1-\theta} f(S^*)^{\theta}}{kc},$$

which proves the desired result.

A.3. Analysis of Monotonic Sharpness for Specific Classes of Functions

Let us denote by S(f) the sharpness feasible region for f, i.e., f is (c, θ) -monotonic sharp if, and only, if $(c, \theta) \in S(f)$. We focus now on obtaining the best approximation guarantee for a monotone submodular function with sharpness region S(f).

Proposition 1. Given a non-negative monotone submodular function $f : 2^V \to \mathbb{R}_+$ with sharpness region S(f), then the highest approximation guarantee $1 - (1 - \frac{\theta}{c})^{\frac{1}{\theta}}$ for Problem (P₁) is given by a pair of parameters that lies on the boundary of S(f).

Proof. Fix an optimal solution S^* for Problem (P₁). Note that we can compute the best pair (c, θ) for that S^* by solving the following optimization problem

$$\max \quad 1 - \left(1 - \frac{\theta}{c}\right)^{\frac{1}{\theta}}$$
(13)
s.t. $(c, \theta) \in \mathcal{S}(f, S^*),$

where $S(f, S^*)$ corresponds to the sharpness region related to S^* . Observe that function $1 - \left(1 - \frac{\theta}{c}\right)^{\frac{1}{\theta}}$ is continuous and convex in $[1, \infty) \times (0, 1]$. Note that for any $c \ge 1$, if $\theta \to 0$, then $\left(1 - \frac{\theta}{c}\right)^{\frac{1}{\theta}} \to e^{-1/c}$. Also, for any subset S, Inequality (3) is equivalent to

$$\frac{|S^* \setminus S|}{k} \cdot \left(\frac{\sum_{e \in S^* \setminus S} f_S(e)}{\text{OPT}}\right)^{-\theta} - c \le 0$$

where the left-hand side is convex as a function of c and θ , hence $S(f, S^*)$ is a convex region. Therefore, the optimal pair (c^*, θ^*) of Problem (13) lies on the boundary of $S(f, S^*)$. Since we considered an arbitrary optimal set, then the result easily follows.

Let us study S(f) for general monotone submodular functions. If we fix $|S^* \setminus S|$, the right-hand side of (3) does not depend explicitly on S. On the other hand, for a fixed size $|S^* \setminus S|$, there is a subset S^{ℓ} that minimizes the left-hand side of (3), namely

$$\sum_{e \in S^* \setminus S} f_S(e) \ge \sum_{e \in S^* \setminus S^\ell} f_{S^\ell}(e)$$

for all feasible subset S such that $|S^* \setminus S| = \ell$. For each $\ell \in [k]$, let us denote

$$W(\ell) := \sum_{e \in S^* \setminus S^\ell} f_{S^\ell}(e)$$

Therefore, instead of checking Inequality (3) for all feasible subsets, we only need to check k inequalities defined by $W(1), \ldots, W(k)$. In general, computing $W(\ell)$ is difficult since we require access to S^* . However, for very small instances or specific classes of functions, this computation can be done efficiently. In the following, we provide a detailed analysis of the sharpness feasible region for specific classes of functions.

A.3.1. LINEAR FUNCTIONS.

Consider weights $w_e > 0$ for each element $e \in V$ and function $f(S) = \sum_{e \in S} w_e$. Let us order elements by weight as follows $w_1 \ge w_2 \ge \ldots \ge w_n$, where element e_i has weight w_i . We observe that an optimal set S^* for Problem (P₁) is formed by the top-k weighted elements and OPT = $\sum_{i \in [k]} w_i$.

Proposition 2 (Linear functions). Consider weights $w_1 \ge w_2 \ge \ldots \ge w_n > 0$, where element $e_i \in V$ has weight w_i , and denote $W(\ell) := \sum_{i=k-\ell+1}^k w_i$ for each $\ell \in \{1,\ldots,k\}$. Then, the linear function $f(S) = \sum_{i:e_i \in S} w_i$ is (c, θ) -monotonic sharp in

$$\begin{cases} (c,\theta) \in [1,\infty) \times [0,1] :\\ c \ge \frac{\ell}{k} \cdot \left(\frac{W(\ell)}{W(k)}\right)^{-\theta}, \quad \forall \ \ell \in [k-1] \end{cases}$$

Moreover, this region has only k - 1 constraints.

Proof. First, observe that W(k) = OPT. Note that for any subset we have $|S^* \setminus S| \in \{1, ..., k\}$ (for $|S^* \setminus S| = 0$ the sharpness inequality is trivially satisfied). Given $\ell \in \{1, ..., k\}$, pick any feasible set such that $|S^* \setminus S| = \ell$, then the sharpness inequality corresponds to

$$\sum_{e \in S^* \setminus S} w_e \ge \left(\frac{\ell}{k \cdot c}\right)^{\frac{1}{\theta}} \cdot W(k), \tag{14}$$

where the left-hand side is due to linearity. Fix $\ell \in \{1, \ldots, k\}$, we observe that the lowest possible value for the left-hand side in (14) is when $S^* \setminus S = \{e_{k-\ell+1}, \ldots, e_k\}$. Therefore, for a linear function, Definition 1 is equivalent to

$$\frac{W(\ell)}{W(k)} \ge \left(\frac{\ell}{k \cdot c}\right)^{\frac{1}{\theta}}, \quad \ell \in \{1, \dots, k\} \quad \Leftrightarrow \\ c \ge \frac{\ell}{k} \cdot \left(\frac{W(\ell)}{W(k)}\right)^{-\theta}, \quad \ell \in \{1, \dots, k\}.$$

Note that $\ell = k$ is redundant with $c \ge 1$. Given this, we have k - 1 curves that define a feasible region in which the linear function is (c, θ) -monotonic sharp. In particular, if we consider c = 1, then we can pick $\theta = \min_{\ell \in [k-1]} \left\{ \frac{\log(k/\ell)}{\log(W(k)/W(\ell))} \right\}$.

From Proposition 2 we observe that the sharpness of the function depends exclusively on w_1, \ldots, w_k . Moreover, the weights' magnitude directly affects the sharpness parameters. Let us analyze this: assume without loss of generality that $\frac{w_k}{W(k)} \leq \frac{1}{k}$, and more generally, $\frac{W(\ell)}{W(k)} \leq \frac{\ell}{k}$ for all

 $\ell \in [k-1]$, so we have

$$\left(\frac{\ell}{k \cdot c}\right)^{\frac{1}{\theta}} \le \frac{W(\ell)}{W(k)} \le \frac{\ell}{k}, \quad \ell \in \{1, \dots, k\}$$

This shows that a sharp linear function has more similar weights in its optimal solution, i.e., when the weights in the optimal solution are *balanced*. We have the following facts for $\epsilon \in (0, 1)$:

• If $\frac{w_k}{W(k)} = (1-\epsilon) \cdot \frac{1}{k}$, then $\frac{W(\ell)}{W(k)} \ge (1-\epsilon) \cdot \frac{\ell}{k}$ for every $\ell \in [k-1]$. Observe that $c = \frac{1}{1-\epsilon}$ and $\theta = 1$ satisfy $(1-\epsilon) \cdot \frac{\ell}{k} \ge \left(\frac{\ell}{k \cdot c}\right)^{\frac{1}{\theta}}$ for any $\ell \in [k-1]$, showing that f is $\left(\frac{1}{1-\epsilon}, 1\right)$ -sharp. More importantly, when ϵ is small the function becomes sharper. Also, if we set c = 1, then from the analysis of Proposition 2 we could pick

$$\theta = \min_{\ell \in [k-1]} \left\{ \frac{\log(k/\ell)}{\log(W(k)/W(\ell))} \right\}$$
$$\geq \min_{\ell \in [k-1]} \left\{ \frac{\log \frac{k}{\ell}}{\log \frac{k}{\ell(1-\epsilon)}} \right\} = \frac{\log k}{\log \frac{k}{(1-\epsilon)}},$$

showing that f is $(1, \Omega(\frac{\log k}{\log(k/(1-\epsilon))}))$ -sharp. Again, when $\epsilon \to 0$ the function becomes sharper.

• On the other hand, suppose that $\frac{w_2}{W(k)} = \frac{\epsilon}{k}$, then $\frac{W(\ell)}{W(k)} \leq \epsilon \cdot \frac{\ell}{k}$ for every $\ell \in [k-1]$. Similarly to the previous bullet, by setting c = 1 we can choose

$$\theta = \min_{\ell \in [k-1]} \left\{ \frac{\log(k/\ell)}{\log(W(k)/W(\ell))} \right\}$$
$$\leq \min_{\ell \in [k-1]} \left\{ \frac{\log \frac{k}{\ell}}{\log \frac{k}{\ell_{\epsilon}}} \right\} = \frac{\log k}{\log \frac{k}{\epsilon}},$$

showing that f is $(1, O(\frac{\log k}{\log(k/\epsilon)}))$ -sharp. Observe that when $\epsilon \to 0$ the function becomes less sharp.

Observation 1. Given parameters $c \ge 1$ and $\theta \in [0, 1]$, it is easy to construct a linear function that is (c, θ) -sharp by using Proposition 2. Without loss of generality assume W(k) = 1. From constraint $\ell = 1$ choose $w_k = \left(\frac{1}{kc}\right)^{\frac{1}{\theta}}$, and more generally, from constraint $\ell \in [k-1]$ choose $w_{k-\ell+1} = \left(\frac{\ell}{kc}\right)^{\frac{1}{\theta}} - \sum_{i=k-\ell+2}^{k} w_i$. Finally, set $w_1 = 1 - \sum_{i=2}^{k} w_i$.

Observation 2. Given $\beta \in [0, 1]$, there exists a linear function f and parameters $(c, \theta) \in [1, \infty) \times [0, 1]$ such that fis (c, θ) -sharp and $1 - (1 - \frac{\theta}{c})^{\frac{1}{\theta}} \ge 1 - \beta$. To obtain this, we use Observation 1 with c = 1 and any $\theta \in [0, 1]$ such that $\beta \ge (1 - \theta)^{1/\theta}$.

A.3.2. CONCAVE OVER MODULAR FUNCTIONS.

In this section, we will study a generalization of linear functions. Consider weights $w_e > 0$ for each element $e \in V$, a parameter $\alpha \in [0, 1]$ and function $f(S) = \left(\sum_{e \in S} w_e\right)^{\alpha}$. Observe that the linear case corresponds to $\alpha = 1$. Let us order elements by weight as follows $w_1 \ge w_2 \ge \ldots \ge w_n$, where element e_i has weight w_i . Similarly than the linear case, we note that an optimal set S^* for Problem (P₁) is formed by the top-k weighted elements and OPT = $\left(\sum_{i \in [k]} w_i\right)^{\alpha}$.

Proposition 3 (Concave over modular functions). *Consider* weights $w_1 \ge w_2 \ge ... \ge w_n > 0$, where element $e_i \in V$ has weight w_i and parameter $\alpha \in [0, 1]$. Denote

$$W(\ell) := \sum_{i=k-\ell+1}^{k} \left[\left(\sum_{j=k+1}^{k+\ell} w_j + \sum_{j=1}^{k-\ell} w_j + w_i \right)^{\alpha} - \left(\sum_{j=k+1}^{k+\ell} w_j + \sum_{j=1}^{k-\ell} w_j \right)^{\alpha} \right]$$

for each $\ell \in \{1, ..., k\}$. Then, the function $f(S) = (\sum_{i:e_i \in S} w_i)^{\alpha}$ is (c, θ) -monotonic sharp in

$$\left\{ (c,\theta) \in [1,\infty) \times [0,1] : c \ge \frac{\ell}{k} \cdot \left(\frac{W(\ell)}{\text{OPT}}\right)^{-\theta}, \, \forall \, \ell \in [k] \right\}$$

Proof. First, observe that unlike the linear case, $W(k) \neq$ OPT. Given $\ell \in \{1, ..., k\}$, pick any feasible set such that $|S^* \setminus S| = \ell$, then the sharpness inequality corresponds to

$$\sum_{e \in S^* \setminus S} \left(\sum_{e' \in S} w_{e'} + w_e \right)^{\alpha} - \left(\sum_{e' \in S} w_{e'} \right)^{\alpha} \\ \ge \left(\frac{\ell}{k \cdot c} \right)^{\frac{1}{\theta}} \cdot \text{OPT.} \quad (15)$$

Observe that function $(x + y)^{\alpha} - x^{\alpha}$ is increasing in y and decreasing in x. Therefore, the lowest possible value for the left-hand side in (15) is when $\sum_{e' \in S} w_{e'}$ is maximized and w_e is minimized. Given this, for each $\ell \in \{1, \ldots, k\}$ we choose $S = \{e_1, \ldots, e_{k-\ell}, e_{k+1}, \ldots, e_{k+\ell}\}$. In this way, we get $S^* \setminus S = \{e_{k-\ell+1}, \ldots, e_k\}$, whose elements have the lowest weights, and S has the highest weight possible in $V \setminus \{e_{k-\ell+1}, \ldots, e_k\}$. Hence, Definition 1 is equivalent to

$$\begin{split} \frac{W(\ell)}{\text{OPT}} &\geq \left(\frac{\ell}{k \cdot c}\right)^{\frac{1}{\theta}}, \quad \ell \in [k] \quad \Leftrightarrow \\ c &\geq \frac{\ell}{k} \cdot \left(\frac{W(\ell)}{\text{OPT}}\right)^{-\theta}, \quad \ell \in [k]. \end{split}$$

We have k curves that define a feasible region in which the function is (c, θ) -monotonic sharp with respect to S^* . In particular, if we consider c = 1, then we can pick $\theta = \min_{\ell \in [k]} \left\{ \frac{\log(k/\ell)}{\log(\operatorname{OPT}/W(\ell))} \right\}$.

A.3.3. COVERAGE FUNCTION, (NEMHAUSER & WOLSEY, 1978).

Consider the space $\mathcal{X} = \{1, \ldots, k\}^k$, sets $A_i = \{x \in \mathcal{X} : x_i = 1\}$ for $i \in [k-1]$ and $B_i = \{x \in \mathcal{X} : x_k = i\}$ for $i \in [k]$, ground set $V = \{A_1, \ldots, A_{k-1}, B_1, \ldots, B_k\}$, and function $f(S) = |\bigcup_{U \in S} U|$ for $S \subseteq V$. In this case, Problem (P₁) corresponds to finding a family of k elements in V that covers \mathcal{X} the most. By simply counting, we can see that the optimal solution for Problem (P₁) is $S^* = \{B_1, \ldots, B_k\}$ and OPT $= k^k$. As shown in (Nemhauser & Wolsey, 1978), the greedy algorithm achieves the best possible 1 - 1/e guarantee for this problem.

Proposition 4. Consider ground set $V = \{A_1, \ldots, A_{k-1}, B_1, \ldots, B_k\}$. Then, the function $f(S) = |\bigcup_{U \in S} U|$ is (c, θ) -sharp in

$$\begin{cases} (c,\theta) \in [1,\infty) \times [0,1] :\\ c \ge \frac{\ell}{k} \cdot \left(\frac{\ell}{k} \cdot \left(\frac{k-1}{k}\right)^{\ell}\right)^{-\theta}, \quad \forall \, \ell \in [k-1] \end{cases}.$$

Proof. First, note that any family of the form $\{A_{i_1}, \ldots, A_{i_\ell}, B_{j_1}, \ldots, B_{j_{k-\ell}}\}$ covers the same number of points for $\ell \in [k-1]$. Second, since there are only k-1 sets A_i , then any subset $S \subseteq V$ of size k satisfies $|S^* \setminus S| \leq k-1$. By simply counting, for $\ell \in [k-1]$ and set S such that $|S^* \setminus S| = \ell$, we have

$$f(S) = k^k - \ell k^{k-\ell-1} (k-1)^\ell,$$

$$f(S+e) = k^k - (\ell-1)k^{k-\ell-1} (k-1)^\ell.$$

Then, (3) becomes

$$\frac{\ell}{k} \cdot \left(\frac{k-1}{k}\right)^{\ell} \ge \left(\frac{\ell}{kc}\right)^{\frac{1}{\theta}}$$

Observe that f is $(1, \frac{1}{k})$ -sharp since $\ell \leq k - 1$ and $(\frac{k-1}{k})^{\ell} \geq (\frac{\ell}{k})^{k-1}$.

Observation 3 (Coverage function, (Nemhauser & Wolsey, 1978).). Note that in order to achieve $1 - \left(1 - \frac{\theta}{c}\right)^{\frac{1}{\theta}} \ge 1 - e^{-1}$, we need $\theta \in [0, 1]$ and $1 \le c \le \frac{\theta}{1 - e^{-\theta}}$. On the other hand, by taking $\ell = k - 1$ in Proposition 4 we have $c \ge \left(\frac{k-1}{k}\right)^{-k\theta+1}$, where the right-hand side tends to e^{θ} when k is sufficiently large. Therefore, for k sufficiently large we have $e^{\theta} \le c \le \frac{\theta}{1 - e^{-\theta}}$, whose only feasible point is c = 1 and $\theta \to 0$.