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A Analysis of spherical caps

In this section, we formulate some technical results on the volumes of spherical caps and their
intersections, which we extensively use in the proofs. Although they are similar to those formulated
in [1], it is crucial for our problem that parameters defining spherical caps depend on d and may tend
to zero (both in dense and sparse regimes), while the results in [1] hold only for fixed parameters.
Also, in Lemma 2, we extend the corresponding result from [1], as discussed further in this section.

A.1 Volumes of spherical caps

Let us denote by µ the Lebesgue measure over Rd+1. By Cx(γ) we denote a spherical cap of height
γ centered at x ∈ Sd, i.e., {y ∈ Sd : 〈x,y〉 ≥ γ}; C(γ) = µ (Cx(γ)) denotes the volume of a
spherical cap of height γ. Recall that throughout the paper for any variable γ, 0 ≤ γ ≤ 1, we let
γ̂ :=

√
1− γ2. We prove the following lemma.

Lemma 1. Let γ = γ(d) be such that 0 ≤ γ ≤ 1. Then

Θ
(
d−1/2

)
γ̂d ≤ C (γ) ≤ Θ

(
d−1/2

)
γ̂d min

{
d1/2,

1

γ

}
.

Proof. In order to have similar reasoning with the proof of Lemma 2, we consider any two-
dimensional plane containing the vector x defining the cap Cx(γ) and let p denote the orthogonal
projection from Sd to this two-dimensional plane.

The first steps of the proof are similar to those in [1] (but note that we analyze Sd instead of
Sd−1, which leads to slightly simpler expressions). Consider any measurable subset U of the
two-dimensional unit ball, then the volume of the preimage p−1(U) (relative to the volume of Sd) is:

I(U) =

∫
r,φ∈U

µ(Sd−2)

µ(Sd)

(√
1− r2

)d−3

r dr dφ .

We define a function g(r) =
∫
φ:(r,φ)∈U dφ, then we can rewrite the integral as

I(U) =
(d− 1)

4π

∫ 1

0

(
1− r2

)(d−3)/2
g(r) dr2 .

Let U = p (Cx(γ)), then, using t =
(
1− r2

)
/γ̂2, where γ̂ =

√
1− γ2, we get

C(γ) =
(d− 1)

4π

∫ 1

γ

(
1− r2

)(d−3)/2
g(r) dr2 =

(d− 1) γ̂d−1

4π

∫ 1

0

g
(√

1− γ̂2t
)
t(d−3)/2 dt .

(1)

Note that from Equation (1) we get thvolume of a hemisphere is C(0) = 1/2, since g(r) = π for all
r in this case and γ̂ = 1.

Now we consider an arbitrary γ ≥ 0 and note that g(r) = 2 arccos(γ/r) (see Figure 1). So, we
obtain
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Figure 1: g(r)

C(γ) =
(d− 1) γ̂d−1

2π

∫ 1

0

arccos

(
γ√

1− γ̂2t

)
t
d−3
2 dt

=
(d− 1) γ̂d−1

2π

∫ 1

0

arcsin

(
γ̂

√
1− t

1− γ̂2t

)
t(d−3)/2 dt .

Now we note that x ≤ arcsin(x) ≤ x · π/2 for 0 ≤ x ≤ 1, so

C(γ) = Θ (d) γ̂d
∫ 1

0

√
1− t

1− γ̂2t
· t(d−3)/2 dt .

Finally, we estimate
√

1− t ≤
√

1− t
1− γ̂2t

≤ min

{
1,

√
1− t

1− γ̂2

}
. (2)

So, the lower bound is

C(γ) ≥ Θ (d) γ̂d B

(
3

2
,
d− 1

2

)
= Θ (d) γ̂d

(
d− 1

2

)−3/2

= Θ
(
d−1/2

)
γ̂d .

The upper bounds are

C(γ) ≤ Θ (d) γ̂d
∫ 1

0

t(d−3)/2 dt = Θ (1) γ̂d ,

C(γ) ≤ Θ (d) γ̂d
∫ 1

0

√
1− t

1− γ̂2
· t(d−3)/2 dt = Θ

(
d−1/2

) γ̂d
γ
.

This completes the proof.

A.2 Volumes of intersections of spherical caps

By Wx,y(α, β) we denote the intersection of two spherical caps centered at x ∈ Sd and y ∈ Sd
with heights α and β, respectively, i.e., Wx,y(α, β) = {z ∈ Sd : 〈z,x〉 ≥ α, 〈z,y〉 ≥ β}. As for
spherical caps, by W (α, β, θ) we denote the volume of such intersection given that the angle between
x and y is θ.

We analyze the volume of the intersection of two spherical caps Cx(α) and Cy(β). In the lemma
below we assume γ ≤ 1. However, it is clear that if γ > 1, then either the caps do not intersect (if
α > β cos θ and β > α cos θ) or the larger cap contains the smaller one.

Lemma 2. Let γ =

√
α2+β2−2αβ cos θ

sin θ and assume that γ ≤ 1, then:

(1) If α ≤ β cos θ, then C(β)/2 < W (α, β, θ) ≤ C(β) and

C(β)−W (α, β, θ) ≤ Cu,β Θ
(
d−1

)
γ̂d min

{
d1/2,

1

γ

}
;
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Figure 2: Intersection of spherical caps

(2) If β ≤ α cos θ, then C(α)/2 < W (α, β, θ) ≤ C(α) and

C(α)−W (α, β, θ) ≤ Cu,α Θ
(
d−1

)
γ̂d min

{
d1/2,

1

γ

}
;

(3) Otherwise,

(Cl,α + Cl,β) Θ
(
d−1

)
γ̂d ≤W (α, β, θ) ≤ (Cu,α + Cu,β) Θ

(
d−1

)
γ̂d min

{
d1/2,

1

γ

}
;

where

Cl,α =
α (α̂ sin θ − |β − α cos θ|)

γ γ̂ sin θ
, Cl,β =

β
(
β̂ sin θ − |α− β cos θ|

)
γ γ̂ sin θ

,

Cu,α =
γ̂ α sin θ

γ|β − α cos θ|
, Cu,β =

γ̂ β sin θ

γ|α− β cos θ|
.

The cases considered in this lemma are illustrated in Figure 2.

This lemma differs from Lemma 2.2 in [1] by, first, allowing the parameters α, β, θ depend on d
and, second, considering the cases (1) and (2), which are essential for the proofs. Namely, we use
the lower bound in (3) to show that with high probability we can make a step of the algorithm since
the intersection of some spherical caps is large enough (Figure 2a); we use the upper bounds in (1)
and (2) to show that at the final step of the algorithm we can find the nearest neighbor with high
probability, since the volume of the intersection of some spherical caps is very close to the volume of
one of them (Figure 2b), see the details further in the proof.

Proof. Consider the plane formed by the the vectors x and y defining the caps and let p denote the
orthogonal projection to this plane. Let U = p(Wx,y(α, β)).

Denote by γ the distance between the origin and the intersection of chords bounding the projections
of spherical caps. One can show that

γ =

√
α2 + β2 − 2αβ cos θ

sin2 θ
.

If α ≤ β cos θ, it is easy to see that W (α, β, θ) > 1
2C(β), since more than a half of Cy(β) is covered

by the intersection (see Figure 2b). Similarly, if β ≤ α cos θ, then W (α, β, θ) > 1
2C(α). Now we

move to the proof of (3) and will return to (1) and (2) after that.

If cos θ < α
β and cos θ < β

α , then we are in the situation shown on Figure 2a and the distance
between the intersection of spherical caps and the origin is γ. As in the proof of Lemma 1, denote
g(r) =

∫
φ:(r,φ)∈U dφ, then the relative volume of p−1(U) is (see Equation (1)):

W (α, β, θ) =
(d− 1) γ̂d−1

4π

∫ 1

0

g
(√

1− γ̂2t
)
t
d−3
2 dt .
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Figure 3: gα(r) and gβ(r)

The function g(r) can be written as gα(r) + gβ(r), where (see Figure 3a)

gα(r) = arccos
(α
r

)
− arccos

(
α

γ

)
,

gβ(r) = arccos

(
β

r

)
− arccos

(
β

γ

)
.

Accordingly, we can write W (α, β, θ) = Wα(α, β, θ) +Wβ(α, β, θ).

Let us estimate gα
(√

1− γ̂2t
)

:

gα

(√
1− γ̂2t

)
= arcsin

(√
1− α2

1− γ̂2t

)
− arcsin

(√
1− α2

γ2

)

= arcsin

(√(
1− α2

1− γ̂2t

)
α2

γ2

√(
1− α2

γ2

)
α2

1− γ̂2t

)

= Θ

(
α
√
γ2 − α2

γ
√

1− γ̂2t

)(√
1 +

γ̂2(1− t)
γ2 − α2

− 1

)
.

Note that(√
1 +

γ̂2

γ2 − α2
− 1

)
(1− t) ≤

√
1 +

γ̂2(1− t)
γ2 − α2

− 1 ≤ γ̂2

2 (γ2 − α2)
(1− t) .

Now, we can write the lower bound for Wα(α, β, θ). Let

Cl,α =

(√
1 +

γ̂2

γ2 − α2
− 1

)
α
√
γ2 − α2

γ γ̂
=
α (α̂ sin θ − |β − α cos θ|)

γ γ̂ sin θ
,

Cl,β can be obtained by swapping α and β.

Then the lower bound is

W (α, β, θ) ≥ Θ(d) γ̂d (Cl,α + Cl,β)

∫ 1

0

1− t√
1− γ̂2t

t(d−3)/2 dt

≥ Θ(d) γ̂d (Cl,α + Cl,β)

∫ 1

0

(1− t) t(d−3)/2 dt = Θ(d−1) γ̂d (Cl,α + Cl,β) .

Now we define Cu,α (and, similarly, Cu,β) as

Cu,α =
γ̂

(γ2 − α2)
· α
√
γ2 − α2

γ
=

γ̂ α sin θ

γ |β − α cos θ|
.
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Then

W (α, β, θ) ≤ Θ(d) γ̂d (Cu,α + Cu,β) ·
∫ 1

0

1− t√
1− γ̂2t

t(d−3)/2 dt .

We use the upper bound
1− t√
1− γ̂2t

≤ min

{√
1− t, 1− t

γ

}
and obtain

W (α, β, θ) ≤ Θ(d−1) γ̂d (Cu,α + Cu,β) min

{
d

1
2 ,

1

γ

}
,

which completes the proof of (3).

Now, let us finish the proof for (1) and (2). If α ≤ β cos θ, then we are in a situation shown on
Figure 2b. In this case, the bounds on W (α, β, θ) are obvious. To estimate C(β)−W (α, β, θ), we
can directly follow the above proof for (3) and the only difference would be that g(r) = gβ(r)−gα(r)
instead of g(r) = gα(r) + gβ(r). Note that we need only the upper bound and we simply say that
g(r) ≤ gβ(r). The proof for (2) is similar with g(r) = gα(r)− gβ(r).

B Greedy search on plain NN graphs

B.1 Proof overview

Let αM denote the height of a spherical cap defining G(M). By f = f(n) = (n − 1)C(αM )
we denote the expected number of neighbors of a given node in G(M). Then, it is clear that the
complexity of one step of graph-based search is Θ (f · d) (with high probability), so for making k
steps we need Θ (k · f · d) computations (see Section B.2.1). The number of edges in the graph is
Θ (f · n), so the space complexity is Θ (f · n · log n) (see Section B.2.2).

To prove that the algorithm succeeds, we have to show that it does not get stuck in a local optimum
until we are sufficiently close to q. If we take some point x with 〈x, q〉 = αs, then the probability
of making a step towards q is determined by W (αM , αs, arccosαs). In all further proofs we obtain
lower bounds for this value of the form 1

ng(n) with 1� g(n)� n. From this, we easily get that the
probability of making a step is at least 1− (1− g(n)/n)

n−1
= 1− e−g(n)(1+o(1)).

A fact that will be useful in the proofs is that the value W (αM , αs, arccosαs) is a monotone function
of αs (see Section B.2.3). I.e., if we have a lower bound for some αs, then for all smaller values we
have this bound automatically.

By estimating the value W (αM , αs, arccosαs), we obtain (in further sections) that with probability
1 − o(1) we reach some point at distance at most arccosαs from q. Then, to achieve success, we
may either jump directly to x̄ at the next step or to already have arccosαs ≤ cR if we are solving
c,R-ANN.

To limit the number of steps, we additionally show that with a sufficiently large probability at each
step we become “ε closer” to q. In the dense regime, it means that the sine of the angle between the
current position and q becomes smaller by at least some fixed value.

Let us emphasize that several consecutive steps of the algorithm cannot be analyzed independently.
Indeed, if at some step we moved from x to y, then there were no points in Cx(αM ) closer to
q than y by the definition of the algorithm. Consequently, the intersection of Cx(αM ), Cy(αM )
and Cq (〈q,y〉) contains no elements of the dataset. The closer y to x the larger this intersection.
However, the fact that at each step we become at least “ε closer” to q allows us to bound the volume
of this intersection and to prove that it can be neglected.

This is worth noting that in the proofs below we assume that the elements are distributed according
to the Poisson point process on Sd with n being the expected number of elements. This makes the
proofs more concise without changing the results since the distributions are asymptotically equivalent.
Indeed, conditioning on the number of nodes in the Poisson process, we get the uniform distribution,
and the number of nodes in the Poisson process is Θ(n) with high probability.
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B.2 Auxiliary results

B.2.1 Time complexity

Let v be an arbitrary node of G and let N(v) denote the number of its neighbors in G. Recall that
f = (n− 1)C(αM ).
Lemma 3. With probability at lest 1− 4

f we have 1
2f ≤ N(v) ≤ 3

2f .

Proof. The number of neighborsN(v) of a node v follows Binomial distribution Bin(n−1, C(αM )),
so EN(v) = f . From Chebyshev’s inequality we get

P

(
|N(v)− f | > f

2

)
≤ 4 Var(N(v))

f2
≤ 4

f
,

which completes the proof.

To obtain the final time complexity of graph-based NN search, we have to sum up the complexities of
all steps of the algorithm. We obtain the following result.

Lemma 4. If we made k steps of the graph-based NNS, then with probability 1 − O
(

1
k f

)
the

obtained time complexity is Θ (kfd).

Proof. Although the nodes encountered in one iteration are not independent, the fact that we do
not need to measure the distance from any point to q more than once allows us to upper bound the
complexity by the random variable distributed according to Bin(k(n− 1), C(αM )). Then, we can
follow the proof of Lemma 3 and note that one distance computation takes Θ(d).

To see that the lower bound is also Θ (kfd), we note that more than a constant number of steps
are needed only for the dense regime. For this regime, we may follow the reasoning of Lemma 10
to show that the volume of the intersection of two consecutive balls is negligible compared to the
volume of each of them.

B.2.2 Space complexity

Lemma 5. With probability 1−O
(

1
f n

)
we have 1

4 f n ≤ E(G) ≤ 3
4 f n.

Proof. The proof is straightforward.1 For each pair of nodes, the probability that there is an edge
between them equals C (αM ). Therefore, the expected number of edges is

E(E(G)) =

(
n

2

)
C (αM ) .

It remains to prove that E(G) is tightly concentrated near its expectation. For this, we apply
Chebyshev’s inequality, so we have to estimate the variance Var(E(G)). One can easily see that if
we are given two pairs of nodes e1 and e2, then, if they are not the same (while one coincident node
is allowed), then P(e1, e2 ∈ E(G)) = C(αM )2. Therefore,

Var(E(G)) =
∑

e1,e2∈(D2)

P(e1, e2 ∈ E(G)) − (EE(G))
2

=
∑

e1,e2∈(D2)
e1 6=e2

P(e1, e2 ∈ E(G)) + EE(G)− (EE(G))
2

=

(
n

2

)
C (αM ) (1− C (αM )) .

Applying Chebyshev’s inequality, we get

P

(
|E(G)− E(E(G))| > E(G)

2

)
≤ 4 Var(E(G))

E(G)2
=

4 (1− C(α))

E(G)
. (3)

From this, the lemma follows.
1Similar proof appeared in, e.g., [4].
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Figure 4: Monotonicity of W (αM , αs, arccosαs)

It remains to note that if we store a graph as the adjacency lists, then the space complexity is
Θ (E(G) · log n).

B.2.3 Monotonicity of W (αM , αs, arccosαs)

Lemma 6. W (αM , αs, arccosαs) is a non-increasing function of αs.

Proof. We refer to Figure 4, where two spherical caps of height αM are centered at x and y,
respectively, and note that we have to compare “curved triangles”4xx1 x2 and4y y1 y2. Obvi-
ously, ρ(x,x2) = ρ(y,y2), ∠xx2 x1 = ∠y y2 y1, but ∠xx1 x2 < ∠y y1 y2. From this and the
spherical symmetry of µ(p−1(·)) (p was defined in the proof of Lemma 2) the result follows.

B.3 Proof of Theorem 1 (greedy search in dense regime)

Recall that for dense datasets (d = log n/ω), it is convenient to operate with radii of spherical caps (if
α is a height of a spherical cap, then we say that α̂ is its radius). Let α̂1 be the radius of a cap centered
at a given point and covering its nearest neighbor, then we have C(α1) ∼ 1

n , i.e., α̂1 ∼ n−
1
d = 2−ω .

We further let δ := 2−ω .

We construct a graph G(M) using spherical caps with radius α̂M = M δ. Then, from Lemma 1,
we get f = Θ

(
nd−1/2Mdδd

)
= Θ

(
d−1/2Md

)
. So, the number of edges in G(M) is

Θ
(
d−1/2 ·Md · n

)
and the space complexity is Θ

(
d−1/2 ·Md · n · log n

)
(see Section B.2.2).

Let us now analyze the distance arccosαs up to which we can make steps towards the query q (with
sufficiently large probability). This is stated in Lemma 9, but before that let us prove some auxiliary
results.

First, let us analyze the behavior of the main term γ̂d in W (x, y, arccos z) when x̂, ŷ, ẑ = o(1),
which is the case for the considered situations in the dense regime.
Lemma 7. If x̂, ŷ, ẑ = o(1), then γ̂ defined in Lemma 2 for W (x, y, arccos z) is

γ̂ ∼
√

2 (x̂2ŷ2 + ŷ2ẑ2 + x̂2ẑ2)− (x̂4 + ŷ4 + ẑ4)

2ẑ
.

Proof. By the definition, γ =
√

x2+y2−2xyz
1−z2 . Then

γ̂2 = 1− γ2 =
x̂2 + ŷ2 + ẑ2 − 2 + 2

√
(1− x̂2) (1− ŷ2) (1− ẑ2)

ẑ2

∼
2
(
x̂2ŷ2 + ŷ2ẑ2 + x̂2ẑ2

)
−
(
x̂4 + ŷ4 + ẑ4

)
4ẑ2

.

Now, we analyze W (αM , αs, arccosαs) and we need only the lower bound. Recall that we use the
notation δ = 2−ω .
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Lemma 8. Assume that α̂s = s δ and α̂M = M δ.

• If M ≥
√

2s, then W (αM , αs, arccosαs) ≥ 1
n · s

d+o(d).

• If M <
√

2s, then W (αM , αs, arccosαs) ≥ 1
n ·
(
M2 − M4

4s2

)d/2+o(d)

.

Proof. First, assume that M ≥
√

2s. In this case we have αM < α2
s , so we are under the conditions

(1)-(2) of Lemma 2 (see Figure 2b) and, using Lemma 1, we getW (αM , αs, arccosαs) >
1
2C(αs) =

Θ
(
d−1/2sdδd

)
= 1

ns
d+o(d).

If M <
√

2s, then, asymptotically, we have αM > α2
s, so the case (3) of Lemma 2 can be applied.

Let us use Lemma 7 to estimate γ̂:

γ̂2 = δ2

(
M2 − M4

4s2

)
(1 + o(1)) .

And now from Lemma 2 we get

W (αM , αs, arccosαs) ≥ Cl Θ
(
d−1

)
γ̂d ,

where Cl corresponds to the sum of Cl,α and Cl,β in Lemma 2. So, it remains to estimate Cl:

Cl =
αM (α̂M α̂s + αMαs − αs) + αs

(
α̂2
s + α2

s − αM
)

γ γ̂ α̂s

= Θ

(
Msδ2 +

√
(1−M2δ2)(1− s2δ2)−

√
1− s2δ2 + s2δ2 + 1− s2δ2 −

√
1−M2δ2

δ2

)

= Θ(1) ·
M(s−M/2)δ2 + 1

2M
2δ2

δ2
= Θ(1) .

Therefore,

W (αM , αs, arccosαs) ≥
1

n
·
(
M2 − M4

4s2

)d/2+o(d)

.

From Lemma 8, we can find the conditions for M and s to guarantee (with sufficiently large
probability) making steps until we are in the cap of radius sδ centered at q. The following lemma
gives such conditions and also guarantees that at each step we can reach a cap of a radius at least εδ
smaller for some constant ε > 0.

Lemma 9. Assume that s > 1. If M >
√

2s or M2− M4

4s2 > 1, then there exists such constant ε > 0

that W (αM , αs, arcsin (α̂s + εδ)) ≥ 1
nS

d(1+o(1)) for some constant S > 1.

Proof. First, let us take ε = 0. Then, the result directly follows from Lemma 8. We note that a value
M satisfying M2 − M4

4s2 > 1 exists only if s > 1.

Now, let us demonstrate that we can take some ε > 0. The two cases discussed in Lemma 8 now
correspond to M2 ≥ s2 + (s+ ε)2 and M2 < s2 + (s+ ε)2, respectively. If M >

√
2s, then we can

choose a sufficiently small ε thatM2 ≥ s2 +(s+ε)2. Then, the result follows from Lemma 8 and the
fact that s > 1. Otherwise, we have M2 < s2 + (s+ ε)2 and instead of the condition M2 − M4

4s2 > 1
we get (using Lemma 7)

2
(
M2s2 + s2(s+ ε)2 +M2(s+ ε)2

)
−
(
M4 + s4 + (s+ ε)4

)
4(s+ ε)2

> 1.

As this holds for ε = 0, we can choose a small enough ε > 0 that the condition is still satisfied.
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Figure 5: Dependence of consecutive steps

This lemma implies that if we are given M and s satisfying the above conditions, then we can make
a step towards q since the expected number of nodes in the intersection of spherical caps is much
larger than 1. Formally, we can estimate from below the values g(n) for all steps of the algorithm
by gmin(n) = Sd(1+o(1)). So, according to Section B.1, we can make each step with probability
1 − O

(
e−S

d(1+o(1))
)

. Moreover, each step reduces the radius of a spherical cap centered at q and
containing the current position by at least εδ. As a result, the number of steps (until we reach some
distance arccosαs) is O

(
δ−1
)

= O (2ω).

To estimate the overall success probability, we have to take into account that the consecutive steps of
the algorithm are dependent. In Section B.1, it is explained how the previous steps of the algorithm
may affect the current one: the fact that at some step we moved from y to x implies that there were
no elements closer to q than x in a spherical cap centered at y. However, we can show that this
dependence can be neglected.
Lemma 10. The dependence of the consecutive steps can be neglected and does not affect the
analysis.

Proof. The main idea is illustrated on Figure 5. Assume that we are currently at a point x with
ρ(x, q) = arcsin (α̂s + εδ). Then, as in the proof of Lemma 9, we are interested in the volume
W (αM , αs, arcsin (α̂s + εδ)), which corresponds to W1 + W2 on Figure 5. Assume that at the
previous step we were at some point y. Given that all steps are “longer than ε”, the largest effect of
the previous step is reached when y is as close to x as possible and x lies on the geodesic between y
and q. Therefore, the largest possible volume is W (αM , αs, arcsin(α̂s + 2εδ)), which corresponds
to W1 on Figure 5. It remains to show that W1 is negligible compared with W1 +W2.

If M <
√

2s, then the main term of W (αM , αs, arcsin (α̂s + εδ)) is γ̂d with

γ̂2 =
2
(
M2s2 + s2(s+ ε)2 +M2(s+ ε)2

)
−
(
M4 + s4 + (s+ ε)4

)
4(s+ ε)2

=
M2 + s2

2
−
(
M2 − s2

)2
4(s+ ε)2

− (s+ ε)2

4
.

The main term of W (αM , αs, arcsin(α̂s + 2εδ)) is γ̂d1 with

γ̂2
1 =

M2 + s2

2
−
(
M2 − s2

)2
4(s+ 2ε)2

− (s+ 2ε)2

4
.

It is easy to see that M <
√

2s implies that γ̂2
1 < γ̂2. As a result, W (αM , αs, arcsin(α̂s + 2εδ)) =

o (W (αM , αs, arcsin(α̂s + εδ))) (similarly to the other proofs, it is easy to show that the effect of
the other terms in Lemma 2 is negligible compared to (γ̂1/γ̂)

d). Moreover, since at each step we
reduce the radius of a spherical cap centered at q by at least εδ, any cap encountered in one iteration
intersects with only a constant number of other caps, so their overall effect is negligible, which
completes the proof.

Finally, let us note that as soon as we have M >
√

2s (with s > 1), with probability 1 − o(1) we
find the nearest neighbor in one step.

9



Having this result on “almost independence” of the consecutive steps, we can say that the overall
success probability is 1−O

(
2ωe−S

d+o(1)
)

. Assuming d� log log n, we getO
(

2ωe−S
d(1+o(1))

)
=

O
(

2
logn
d e− logn

)
= o(1). This concludes the proof for the success probability 1 − o(1) up to

choosing suitable values for s and M .

Let us discuss the time complexity. With probability 1− o(1) the number of steps is Θ
(
δ−1
)
: the

upper bound was already discussed; the lower bound follows from the fact that Mδ is the radius of a
spherical cap, so we cannot make steps longer than arcsin(Mδ), and with probability 1− o(1) we
start from a constant distance from q. The complexity of each step is Θ (f · d) = Θ

(
d1/2 ·Md

)
, so

overall we get Θ
(
d1/2 · 2ω ·Md

)
.

It remains to find suitable values for s and M . Before we continue, let us analyze the conditions
under which we find exactly the nearest neighbor at the next step of the algorithm. Assume that
the radius of a cap centered at q and covering the currently considered element is α̂s and α̂s = s δ,
α̂M = Mδ. Further assume that the radius of a spherical cap covering points at distance at most R
from q is α̂r = rδ = sinR for some r < 1. The following lemma gives the conditions for M and s
such that at the next step of the algorithm we find the nearest neighbor x̄ with probability 1− o(1)
given that x̄ is uniformly distributed within a distance R from q.
Lemma 11. If for constant M, s, r we have M2 > s2 + r2, then

C(αr)−W (αM , αr, arccosαs) ≤ C(αr)β
d

with some β < 1.

Proof. First, recall the lower bound for C(αr): C(αr) ≥ Θ
(
d−1/2

)
δdrd.

Since we have M2 > s2 + r2, then asymptotically we have αM < αsαr, so the cases (1)-(2) of
Lemma 2 should be applied (see Figure 2b). Let us estimate γ̂2 (Lemma 7):

γ̂2 ∼ δ2 ·
2
(
M2s2 +M2r2 + s2r2

)
−
(
M4 + r4 + s4

)
4 s2

= δ2 ·
−
(
M2 − s2 − r2

)2
+ 4 s2r2

4 s2
= δ2r2 (1−Θ(1)) .

Therefore γ̂d ≤ δdrdβd with some β < 1.

It only remains to estimate the other terms in the upper bound from Lemma 2:

γ̂ αr α̂s
γ|αM − αr αs|

Θ
(
d−1

)
min

{
d1/2,

1

γ

}
= O

(
d−1

)
,

from which the lemma follows.

Now we are ready to finalize the proof. We solve c,R-ANN if either we have arcsin(sδ) ≤ cR or
we are sufficiently close to q to find the exact nearest neighbor x̄ in the next step of the algorithm.
Let us analyze the first possibility. Let sinR = rδ, then we need s < c r. According to Lemma 9, it
is sufficient to have r c > 1 and either M ≥

√
2 rc or M2 − M4

4r2c2 > 1. Alternatively, according to
Lemma 11, to find the exact nearest neighbor with probability 1− o(1), it is sufficient to reach such
s that M2 > s2 + r2. For this, according to Lemma 9, it is sufficient to have s > 1, M2 > s2 + r2,
and either M ≥

√
2s or M2 − M4

4s2 > 1.

One can show that if the following conditions on M and r are satisfied, then we can choose an
appropriate s for the two cases discussed above:

(a) r c > 1 and M2 > 2 r2 c2
(

1−
√

1− 1
r2c2

)
;

(b) M2 > 2
3

(
r2 + 1 +

√
r4 − r2 + 1

)
.

To succeed, we need either (a) or (b) to be satisfied. The bound in (a) decreases with r (r > 1/c)
and for r = 1

c it equals
√

2. The bound in (b) increases with r and for r = 1 it equals
√

2. To find a

10



general bound holding for all r, we take the “hardest” r ∈ ( 1
c , 1), where the bounds in (a) and (b) are

equal to each other. This value is r =
√

4c2

(c2+1)(3c2−1) and it gives the bound M >
√

4c2

3c2−1 stated
in the theorem.

B.4 Larger neighborhood in dense regime

As discussed in the main text, it could potentially be possible that taking M = M(n)� 1 improves
the query time. The following theorem shows that this is not the case.
Theorem 1. Let M = M(n) � 1. Then, with probability 1 − o(1), graph-based NNS finds the
exact nearest neighbor in one iteration; time complexity is Ω

(
d1/2 · 2ω ·Md−1

)
; space complexity

is Θ
(
n · d−1/2 ·Md · log n

)
.

As a result, when M → ∞, both time and space complexities become larger compared with
constant M (see Theorem 1 from the main text).

Proof. When M grows with n, it follows from the previous reasoning that the algorithm succeeds
with probability 1− o(1). The analysis of the space complexity is the same as for constant M , so
we get Θ

(
d−1/2 ·Md · n · log n

)
. When analyzing the time complexity, we note that the one-step

complexity is Θ
(
d−1/2 ·Md

)
. It is easy to see that we cannot make steps longer than O (M · 2−ω).

This leads to the time complexity Ω
(
d1/2 ·Md−1 · 2ω

)
.

B.5 Proof of Theorem 2 (greedy search in sparse regime)

For sparse datasets, instead of radii, we operate with heights of spherical caps. In this case, we have
C(α1) ∼ 1

n , i.e., α2
1 ∼ 1− n− 2

d = 1− 2−
2
ω ∼ 2 ln 2

ω . We further denote 2 ln 2
ω by δ.

We construct G(M) using spherical caps with height αM , α2
M = M δ, where M is some

constant. Then, from Lemma 1, we get that the expected number of neighbors of a node is
f = Θ

(
ndO(1)(1−Mδ)d/2

)
= n1−M+o(1). From this and Section B.2.2 the stated space complex-

ity follows. The one-step time complexity n1−M+o(1) follows from Section B.2.1.

Our aim is to solve c,R-ANN with some c > 1, R > 0. If R ≥ π/2c, then we can easily find the
required near neighbor within a distance π/2, since we start G(M)-based NNS from such point. Let
us consider any R < π

2c . It is clear that in this case we have to find the nearest neighbor itself, since
Rc is smaller than the distance to the (non-planted) nearest neighbor with probability 1 + o(1). Note
that αc = cos π

2c < αR := cosR.

Lemma 12. Assume that α2
M = Mδ, α2

s = sδ, α2
ε = εδ, M, s > 0 are constants, and ε ≥ 0 is

bounded by a constant. If s+M < 1, then

W (αM , αs, arccosαε) ≥
1

n
· nΩ(1) .

Proof. Asymptotically, we have αM > αsαε and αs > αMαε, so we are under the condition (3) in
Lemma 2. First, consider the main term of W (αM , αs, arccosαε):

γ̂d =

(
1− Mδ + sδ − 2

√
Msε δ δ

1− εδ

)d/2
= e−

d
2 δ(M+s+O(

√
δ)) = n−(M+s+O(

√
δ)) =

1

n
· nΩ(1).

It remains to multiply this by Θ
(
d−1

)
and Cl = Cl,α + Cl,β (see Lemma 2). It is easy to see that

Cl = Ω(1) in this case, so both terms can be included to nΩ(1), which concludes the proof.

It follows from Lemma 12 that ifM+s < 1, then we can reach a spherical cap with height αs =
√
sδ

centered at q in just one step (starting from a distance at most π/2). And we get g(n) = nΩ(1).

Recall that M <
α2
c

α2
c+1 and let us take s = 1

α2
c+1 , then we have M + s < 1. The following lemma

discusses the conditions for M and s such that at the next step of the algorithm we find x̄ with
probability 1− o(1).

11



Lemma 13. If for constant M and s we have M < sα2
R, then

C(αR)−W (αM , αR, arccosαs) = C(αR)n−Ω(1) .

Proof. First, recall the lower bound for C(αR): C(αR) ≥ Θ
(
d−1/2

)
(1− α2

R)d/2.

Note that since we have M < sα2
R, then the cases (1)-(2) of Lemma 2 should be applied (see

Figure 2b). Let us estimate γ:

γ2 =
Mδ + α2

R − 2
√
MsαRδ

1− sδ
= α2

R + δ
(
M − 2

√
MsαR + sα2

R

)
+O

(
δ2
)

= α2
R + δ

(√
M −

√
sαR

)2

+O
(
δ2
)

= α2
R + Θ(δ) .

Therefore,

γ̂d =
(
1− α2

R

)d/2
(1−Θ(δ))

d/2
=
(
1− α2

R

)d/2
n−Ω(1) .

It only remains to estimate the other terms in the upper bound from Lemma 2:

γ̂ αR α̂s
γ|αM − αR αs|

Θ
(
d−1

)
min

{
d1/2,

1

γ

}
= O

(
δ−1d−1

)
,

from which the lemma follows.

Note that in our case we have M <
α2
c

α2
c+1 <

α2
R

α2
c+1 = sα2

R. From this Theorem 2 follows.

C Long-range links

C.1 Random edges

The simplest way to obtain a graph with a small diameter from a given graph is to connect each
node to a few random neighbors. This idea is proposed in [8] and gives O (log n) diameter for the
so-called “small-world model”. It was later confirmed that adding a little randomness to a connected
graph makes the diameter small [2]. However, we emphasize that having a logarithmic diameter
does not guarantee a logarithmic number of steps in graph-based NNS, since these steps, while being
greedy in the underlying metric space, may not be optimal on a graph.

To demonstrate the effect of long edges, assume that there is a graphG′, where each node is connected
to several random neighbors by directed edges. For simplicity or reasonings, assume that we first
perform NNS on G′ and then continue on the standard NN graph G. It is easy to see that during
NNS on G′, the neighbors considered at each step are just randomly sampled nodes, we choose
the one closest to q and continue the process, and all such steps are independent. Therefore, the
overall procedure is basically equivalent to a random sampling of a certain number of nodes and then
choosing the one closest to q (from which we then start the standard NNS on G).

Theorem 2. Under the conditions of Theorem 1 in the main text, performing a random sampling of
some number of nodes and choosing the one closest to q as a starting point for graph-based NNS
does not allow to get time complexity better than Ω

(
d1/2 · eω(1+o(1)) ·Md

)
.

Proof. Assume that we sample elω nodes with an arbitrary l = l(n). Then, with probability 1− o(1),
the closest one among them lies at a distance Θ

(
e−

lω
d

)
. As a result, the overall time complexity

becomes Θ
(
e−

lω
d · d1/2 · eω ·Md + d · elω

)
. If l = Ω(d), then the term d · elω = d · eΩ(d)ω

dominates d1/2 ·eω ·Md, otherwise we get Θ
(
d1/2 · eω(1+o(1)) ·Md

)
, which proves Theorem 2.
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C.2 Proof of Theorem 3 (effect of proper long edges)

Recall that we assume the following probability distribution:

P(edge from u to v) =
ρ(u, v)−d∑

w 6=u ρ(u,w)−d
. (4)

First, we estimate the denominator. In the lemma below we consider only the elements w with
ρ(u,w) > n−

1
d . However, it easily follows from the proof that adding only edges with ρ(u, v) > n−

1
d

does not affect the reasoning.

From Theorem 1 in the main text, we know that without long edges we need O(n
1
d ) steps, which is

less than log2 n for d > logn
2 log logn . So, in this case Theorem 3 follows from Theorem 2. Hence, in the

lemma below we can assume that d < logn
2 log logn .

Lemma 14. If d < logn
2 log logn , then

E
(
ρ(u,w)−d

)
= Θ

(
log n√
d

)
.

Proof. Note that E
(
ρ(u,w)−d

)
= Eρ−d(1, w), where 1 = (1, 0, . . . , 0). So, similarly to Lemma 1,

E
(
ρ(1, w)−d

)
=
µ(Sd−1)

µ(Sd)

cos(n−
1
d )∫

−1

(
1− x2

) d−2
2 (arccosx)−ddx .

From Stirling’s approximation, we have µ(Sd−1)
µ(Sd)

= Θ(
√
d). After replacing y = arccosx, the

integral becomes
π∫

n−
1
d

y−d sind−1(y)dy =

π∫
n−

1
d

1

y

(
sin(y)

y

)d−1

dy <

π∫
n−

1
d

1

y
dy = Θ

(
lnn

d

)
.

On the other hand, for d < logn
2 log logn :

E
(
ρ(1, w)−d

)
= Θ(

√
d)

π∫
n−

1
d

1

y

(
sin(y)

y

)d−1

dy > Θ(
√
d)

1√
d∫

n−
1
d

1

y

(
sin(y)

y

)d−1

dy.

Since on this interval we have
(

sin(y)
y

)d−1

= Θ(1), we can continue:

E
(
ρ(1, w)−d

)
> Θ(

√
d)

1√
d∫

n−
1
d

1

y
dy = Θ(

√
d)

(
lnn

d
− 1

2
ln d

)
= Θ

(
lnn√
d

)
.

As a result, we get Eρ(1, w)−d = Θ
(

logn√
d

)
.

Also, from the proof above it follows that Eρ(u,w)−2d < Θ(
√
d)

π∫
n−

1
d

1
yd+1 dy = O( n√

d
) . Let

Den =
∑

w:ρ(u,w)>n−
1
d

ρ(u,w)−d,
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so EDen = Θ
(
n logn√

d

)
and

EDen2 = nEρ(u,w)−2d + n(n− 1)
(
Eρ(u,w)−d

)2
= O

(
n2

√
d

+
n2 ln2 n

d
− n ln2 n

d

)
.

Finally, from Chebyshev’s inequality, we get

P

(
|Den− EDen| > EDen

2

)
≤ 4 Var(Den)

(EDen)2
= O

( √
d

log2 n

)
= o(1).

So, we may further replace the denominator of Equation (4) by O
(
n logn√

d

)
.2

We are ready to prove the theorem. We split the search process on a sphere into log n phases and
show that each phase requires O(log n) steps. Phase j consists of the following nodes: {u : tj+1 <

ρ(u, q) ≤ tj}, where tj = π
2 t

j = π
2

(
1− 1

d

)j
.

We start at a distance at most π2 , this corresponds to j = 0. Recall that the nearest neighbor (in the
dense regime) is at a distance about 2−

logn
d . Then, the number of phases needed to reach the nearest

neighbor is

k ∼ − 1

log
(
1− 1

d

) · log n

d
∼ log n .

Suppose we are at some node belonging to a phase j. Let us prove the following inequality for the
probability of making a step to a phase with a larger number:

P(make a step to a closer phase) >
Θ(1)

log n
.

In the polar coordinates, we can express this probability as

P(make a step to a closer phase) =
(d− 1)

√
d

2π log n

∫ 1

cos ti+1

∫ arccos
cos(ti+1)

r

− arccos
cos(ti+1)

r

(√
1− r2

)d−3

· (arccos(sin(ti)r sin(φ) + cos(ti)r cos(φ)))−dr dφ dr

=
Θ(d

3
2 )

log n

∫ 1

cos ti+1

∫ arccos
cos(ti+1)

r

− arccos
cos(ti+1)

r

(√
1− r2

)d−3

(arccos(r cos(ti − φ)))−dr dφ dr.

Let r = cos(ψ) and φ = tj − φ, then the integral becomes

tj+1∫
0

cosψ (sinψ)
d−2

tj+arccos
cos(tj+1)

cosψ∫
tj−arccos

cos(tj+1)

cosψ

(arccos(cosψ cos(φ))−ddφdψ .

From convexity of log cos
√
x, it follows that ∀ψ, φ ∈ [0, π2 ] we have

arccos(cosψ cosφ) ≤
√
ψ2 + φ2 ,

arccos
cos(tj+1)

cosψ
≥
√
t2j+1 − ψ2 ,

sin(ψ) ≥ ψ − ψ3

6
.

2More formally, our analysis below is conditioned on the fact that the denominator is less than C n logn√
d

for
some constant C > 0. The probability that it does not hold is o(1) and for such nodes we can just assume that
we do not use long edges.
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We use these bounds since we need a lower bound for the integral. Also, we replace the upper limit
of the inner integral with tj and consider ψ = tjψ and φ = tjφ:

t∫
0

F (tj , ψ)ψd−2

1∫
1−
√
t2−ψ2

(
√
ψ2 + φ2)−d dφ dψ ,

where F (tj , ψ) = cos(tj ψ)
(

1− t2jψ
2

6

)d−2

.

Consider the inner integral:

1∫
1−
√
t2−ψ2

(
√
ψ2 + φ2)−d

1

2φ
dφ2 >

1

2

1∫
1−2
√
t2−ψ2+t2−ψ2

(ψ2 + x)−
d
2 dx

=
1

d− 2

(
(1− 2

√
t2 − ψ2 + t2)−

d−2
2 − (1 + ψ2)−

d−2
2

)
.

Substitute the second term to the original integral and estimate it from above:∫ t

0

F (tj , ψ)ψd−2(1 + ψ2)−
d−2
2 dψ ≤

∫ t

0

(
ψ2

1 + ψ2

) d−2
2

dψ = o

(
1√
d

)
.

Now we estimate from below the second term
t∫

0

(
ψ2

1−2
√
t2−ψ2+t2

) d−2
2

dψ.

Note that if ψ = 2√
d

and t = 1− 1
d , then

(
ψ2

1− 2
√
t2 − ψ2 + t2

) d−2
2

=

 4
d

1− 2
√

1− 2
d + 1

d2 −
4
d + 1− 2

d + 1
d2


d−2
2

>

( 4
d

4
d + 11

d2 + 1
d2

) d−2
2

= e−
3
2 (1 + o(1)) .

Similarly, it can be shown that if ψ = 3√
d

, then

(
ψ2

1− 2
√
t2 − ψ2 + t2

) d−2
2

> Θ(1).

So, for ψ ∈ [ 2√
d
, 3√

d
] this fraction is greater than some constant (as well as F (tj , ψ)) and the

derivative does not change the sign on this segment. As a result,

∫ t

0

F (tj , ψ)

(
ψ2

1− 2
√
t2 − ψ2 + t2

) d−2
2

dψ >
Θ(1)√
d
.

And finally,

P(make a step in to a closer phase) >
Θ(1)

log n
.

To sum up, there are O(log n) phases and the number of steps in each phase is geometrically
distributed with the expected value O(log n). From this the theorem follows.
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C.3 Proof of Corollary 2

We have

P(short-cut step within log n trying) = 1− (1− P )logn =

(
1− 1

e

)
(1− o(1)), (5)

where P is the probability corresponding to one long-range edge, which is estimated in the proof
above.

Also, since d� log log n, we have Md
√
d
> log n, so the step complexity is the same.

It is easy to see that increasing the number of shortcut edges does not improve the asymptotic
complexity, since the probability in (5) is already constant.

C.4 Proof of Lemma 1 (effect of pre-sampling)

For convenience, in this proof we assume that the overall number of elements is n+ 1 instead of n
which does not affect the analysis.

Let v be the k-th neighbor for the source node u. For the initial distribution we have:

P(edge from u to v) ∼ 1

k lnn
.

By pre-sampling of nϕ nodes, we modify this probability to
P(edge from u to v|v is sampled) · P(v is sampled). (6)

The second term above is equal to nϕ

n . Assuming that k = nα > n1−ϕ, we can estimate the
probability above. Below by l we denote the rank of v in the selected subset and obtain:

P(edge from u to v|v is sampled) · P(v is sampled)

=
nϕ

n

min(nα,nϕ)∑
l=1

(
nϕ − 1

l − 1

)(
nα − 1

n− 1

)l−1(
n− nα

n− 1

)nϕ−l
1

l

1

lnnϕ

=
1

ϕ n lnn

min(nα,nϕ)∑
l=1

(
nϕ

l

)(
nα − 1

n− 1

)l−1 (
n− nα

n− 1

)nϕ−l

=
Θ(1)

ϕ nα lnn

min(nα,nϕ)∑
l=1

(
nϕ

l

)(
nα − 1

n− 1

)l (
n− nα

n− 1

)nϕ−l
.

Let us analyze the sum above. First, it is easy to see that it is less than 1. Second, if nϕ ≤ nα, then
the sum is “almost equal” to 1 (without one term corresponding to l = 0, which we analyze below).
Otherwise, we know that for a binomial distribution its median cannot lie too far away from the mean
(see, e.g., [3]). Since α > 1− ϕ, we have

min(nα, nϕ) ≥ nϕ(nα − 1)

n− 1
+ 1 = EBin(nϕ,

nα − 1

n− 1
) + 1 > median(ϕ, α).

Hence,
min(nα,nϕ)∑

l=0

(
nϕ

l

)(
nα − 1

n− 1

)l (
n− nα

n− 1

)nϕ−l
>

1

2
.

Note that we added one term corresponding to l = 0, but it is easy to see that in the worst case it is
about 1

e . Namely, for l = 0:

(
nϕ

0

)(
nα − 1

n− 1

)0 (
n− nα

n− 1

)nϕ−0

=

(
n− nα

n− 1

)nϕ
<

(
1− n1−ϕ − 1

n− 1

)nϕ
=

1

e
(1 + o(1)).
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D Proof of Theorem 4 (effect of beam search)

Let us call a spherical cap of radius Lδ centered at x an L-neighborhood of x. We first show that
the subgraph of G(M) induced by the L-neighborhood contains a path from a given element to the
nearest neighbor of the query with high probability.

For random geometric graphs in d-dimensional Euclidean space (for fixed d) it is known that the
absence of isolated nodes implies connectivity [6, 7]. However, generalizing [6, 7] to our setting is
non-trivial, especially taking into account that the dimension grows as the logarithm of the number of
elements in the L-neighborhood. In our case, it is easy to show that with high probability there are no
isolated nodes. Moreover, the expected degree is about Sd for some S > 1. Hence, it is possible to
prove that the graph is connected. However, for simplicity, we prove a weaker result: for two fixed
points, there is a path between them with high probability.

Let us denote by N the number of nodes in the L-neighborhood. According to Lemma 3, with high
probability, this value is Θ

(
d−1/2Ld

)
. So, we further assume that there are N = Θ

(
d−1/2Ld

)
points uniformly distributed within the L-neighborhood.

Let us make the following observation that simplifies the reasoning. Consider the L-neighborhood
of q. Let us project all N points to the boundary of a neighborhood (moving them along the rays
starting at q) and construct a new graph on these elements using the same M -neighborhoods. It is
easy to see that this operation may only remove some edges and never adds new ones. Therefore, it is
sufficient to prove connectivity assuming that N nodes are uniformly distributed on a boundary of
the L-neighborhood. This allows us to avoid boundary effects and simplify reasoning.

Let p1 be the probability that two random nodes are connected. This probability is the volume of
the M -neighborhood of a node normalized by the volume of the boundary of the L-neighborhood.
Under the conditions on M and L, one can show that p1 is at least

(
S
L

)d
for some constant S > 1.

We fix any pair of nodes u, v and estimate the probability that there is a path of length k between
them. We assume that k → ∞ and k = o(

√
Np1), which is possible to achieve since p1N → ∞.

We show that the probability of not having such a path is o(1).

Let us denote by Pk(u, v) the number of paths of length k between u and v. Then,

EPk(u, v) ∼
(
N − 2

k − 1

)
(k − 1)!pk1 & Nk−1

(
S

L

)dk
=

(
N

Ld

)k
1

N
Sdk .

We have EPk(u, v)→∞ if k →∞.

To claim concentration near the expectation, we estimate the variance. Note that Pk(u, v) = E(
∑
i Ii),

where Ii indicates the event that a particular path is present and i indexes all possible paths of length
k. Then, we can estimate

EPk(u, v)2 − (EPk(u, v))2 = E
(∑

i

Ii

)2

− (EPk(u, v))2

=
∑
i

P(Ii = 1)
∑
j

(P(Ij = 1|Ii = 1)− P(Ij = 1))

= EPk(u, v)
∑
j

(P(Ij = 1|Ii = 1)− P(Ij = 1)) .

It is easy to see that
∑
j (P(Ij = 1|Ii = 1)− P(Ij = 1)) = o (EPk(u, v)). Indeed, for most pairs

of paths we have P(Ij = 1|Ii = 1) ∼ P(Ij = 1) ∼ pk1 since they do not share any intermediate
nodes. Let us show that the contribution of the remaining pairs is small. The fraction of pairs of paths
sharing k0 intermediate nodes is O

(
k2k0

Nk0

)
. Then, P(Ij = 1|Ii = 1) ≤ P(Ij = 1)/pk01 , since in the

worst case the paths may share k0 consecutive edges. Since k2 � Np1, the relative contribution is∑
k0≥1O

((
k2

Np1

)k0)
= o(1). Therefore, we get Var(Pk(u, v)) = o

(
(EPk(u, v))

2
)

Finally, it remains to apply Chebyshev’s inequality and get that P(Pk(u, v) < EPk(u, v)/2) = o(1),
so at least one such path exists with high probability.
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Now we are ready to prove the theorem. Let us prove thatG(M)-based NNS succeeds with probability
1− o(1). It follows from Lemma 9 (and the discussion below it) that under the conditions on M and
L, greedy G(M)-based NNS reaches the L-neighborhood of the query with probability 1− o(1).

Thus, with probability 1 − o(1) we reach the L-neighborhood within which there is a path to the
nearest neighbor. Recall that we assume beam search with CLd√

d
candidates. Choosing large enough

C, we can guarantee that the number of candidates is larger than the number of elements in the
L-neighborhood. This implies that all reachable elements inside the L-neighborhood will finally be
covered by the algorithm.

Finally, it remains to analyze the time complexity. To reach the L-neighborhood, we need
Θ
(
d1/2 · log n ·Md

)
operations (recall that the number of steps can be bounded by log n due

to long edges). Then, to fully explore the L-neighborhood, we need O
(
Ld ·Md

)
. For d > log log n

the first term is negligible compared to the second one, so the required complexity follows.

E Comparison with the results of [4]

Here we extend the related work from the main text and discuss in more detail how our research
differs from the results of [4].

Laarhoven [4] analyzes time and space complexity for graph-based NNS in sparse regime when
d � log n. He considers plain NN graphs and allows multiple restarts. In contrast, we consider
both regimes and assume only one iteration of a graph-based search. We do not consider multiple
restarts since it is non-trivial to rigorously prove that restarts can be assumed “almost independent”
(see Section A.3, proof of Lemma 15, [4]). As a result, for sparse datasets, we consider a slightly
weaker setting with only one iteration, but all results are formally proven. Our result for sparse regime
(Theorem 2 in the main text) corresponds to the case ρq = ρs from [4].

Also, in Section A, we state new bounds for the volumes of spherical caps’ intersections, which are
needed for the rigorous analysis in both sparse and dense regimes. We could not use the results of [1]
since parameters defining spherical caps are assumed to be constant there, while they can tend to 0 or
1 in dense and sparse regimes.

We also address the problem of possible dependence between consecutive steps of the algorithm
(Lemma 10). While we prove that it can be neglected, it is important for rigorous analysis.

Most importantly, we analyze the dense regime and additional techniques (shortcuts and beam search),
which are essential for the effective graph-based search. Interestingly, shortcut edges are useful only
in the dense regime.

F Additional experiments

F.1 Dense vs sparse setting

Let us discuss our intuition on why real datasets are “more similar” to dense rather than sparse
synthetic ones.

In the sparse regime, all elements are almost at the same distance from each other, and even in
the moderate regime (d ∝ log(n)), the distance to the nearest neighbor must be close to a certain
constant. In contrast, the dense regime implies high proximity of the nearest objects. While real
datasets are always finite and asymptotic properties cannot be formally verified, we still can compare
the properties of real and synthetic datasets. We plotted the distribution of the distance to the nearest
neighbor (see Figure 6) and see that for the SIFT dataset, the obtained distribution is more similar to
the ones in the dense regime. This is further supported by the literature which estimates the intrinsic
dimension of real data. For example, for the SIFT dataset with 128-dimensional vectors, the estimated
intrinsic dimension is 16 [5]. Thus, we conclude that the analysis of the dense regime is important.

F.2 Parameters of algorithms

In this section, we specify additional hyperparameters used in our experiments.
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Figure 6: The distribution of the distance to the nearest neighbor for the SIFT dataset and synthetic
uniform data for different dimensions and the same size (1M)

0.001 0.010 0.100
Error = 1 - Recall@1

200

300

400

500

600

700

di
st

 c
al

c

d = 4
algorithm
kNN
thrNN
kNN + Kl-dist + llf
kNN + Kl-rank + llf
kNN + Kl-rank sample + llf

0.01 0.10
Error = 1 - Recall@1

200

400

600

800

1000

1200

1400

d = 8
algorithm
kNN
thrNN
kNN + Kl-dist + llf
kNN + Kl-rank + llf
kNN + Kl-rank sample + llf

0.01 0.10
Error = 1 - Recall@1

2000

3000

4000

5000

6000

7000

d = 16
algorithm
kNN
thrNN
kNN + Kl-dist + llf
kNN + Kl-rank + llf
kNN + Kl-rank sample + llf

Figure 7: The effect of KNN and KL approximations

The number of edges used in KL, when is not explicitly specified, is equal to 15, which is close to
lnn.

The number of edges in KNN graphs is dynamic when the beam search is not used. When the beam
search is used, the number of edges for synthetic datasets is 8 for d = 2, 10 for d = 4, 16 for d = 8,
20 for d = 16, and 25 for all real datasets.

The dimension we use for DIM-RED is 64 for GIST, 32 for SIFT, 48 for DEEP, 128 for GloVe.

F.3 Additional experimental results

In Figure 7, we show that several approximations discussed in the main text do not affect the quality
of graph-based NNS significantly (in the uniform case). Namely,

• Connecting a node to other nodes at a distance smaller than some constant (THRNN) and to
the fixed number of nearest neighbors (KNN) lead to graph-based algorithms with similar
performance;

• Pre-sampling of
√
n nodes when adding shortcut edges (SAMPLE) lowers the quality, but

not substantially;

• Rank-based probabilities for shortcut edges (KL-RANK) can lead to even better quality than
distance-based (KL-DIST).

In Figure 8, we illustrate how the number of long-range edges affects the quality of the algorithm.
Let us note that 16 is close to log n discussed in Corollary 2 of the main text. Figure 8 shows that this
value is indeed close to being optimal, especially for the high-accuracy regime, which is a focus of
the current research. However, it also seems that the optimal number of long edges may depend on d:
on Figure 8, the relative performance of graphs with 32 long edges is improving as d grows.
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Figure 8: The effect of the number of long-range edges
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