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Abstract
We propose a novel type of hybrid model for
multi-class classification, which utilizes compet-
ing linear models to collaborate with an exist-
ing black-box model, promoting transparency in
the decision-making process. Our proposed hy-
brid model, Model-Agnostic Linear Competitors
(MALC), brings together the interpretable power
of linear models and the good predictive perfor-
mance of the state-of-the-art black-box models.
We formulate the training of a MALC model as
a convex optimization problem, optimizing the
predictive accuracy and transparency (defined as
the percentage of data captured by the linear mod-
els) in the objective function. Experiments show
that MALC offers more model flexibility for users
to balance transparency and accuracy, in contrast
to the currently available choice of either a pure
black-box model or a pure interpretable model.
The human evaluation also shows that more users
are likely to choose MALC for this model flex-
ibility compared with interpretable models and
black-box models.

1. Introduction
There has been an increasing need for modern machine
learning models to provide accurate and interpretable pre-
dictions to assist humans in decision making, especially in
high stakes applications such as healthcare, judiciaries, etc.
(Letham et al., 2015; Yang et al., 2018; Caruana et al., 2015;
Chen et al., 2018). Thus, many state-of-the-art machine
learning models, such as neural networks and ensembles,
stumble in these domains since they are black-box in nature.
Black-box models have an opaque or highly complicated
decision-making process that is hard for a human to un-
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derstand and rationalize. Driven by the practical needs,
researchers have shifted their focus to account for both
transparency and predictive performance of models in re-
cent years.

Due to the extended interest and effort, various forms of
interpretable models have been proposed (Wang et al., 2017;
Zeng et al., 2017; Wei et al., 2019; Richter & Weber, 2016;
Wang, 2018). However, interpretability has multiple goals
that are not always aligned with the production of the most
generalizable model architecture (Lipton, 2018), especially
when users have strict and domain-specific requirements for
interpretability. Thus the performance loss is often prevalent
when dealing with complicated predictive tasks, putting
users in the dilemma of choosing between interpretability
and predictive performance.

In this paper, we propose a new form of a model, Model-
Agnostic Linear Competitors (MALC), for multi-class clas-
sification. MALC utilizes linear models to predict a subset
of data while leaving the remaining possibly harder pre-
dictions to a black-box model. The model combines the
intuitive power of interpretable models and the good pre-
dictive performance of black-box models to reach some
controllable middle ground where both transparency and
good predictive performance is possible.

To build a hybrid model for multi-class classification, we de-
sign a unique mechanism to utilize competition and collab-
oration among the participating models. Given a K−class
classification problem, we design K + 1 models, which we
call competitors. K of the competitors are interpretable,
capturing K classes, respectively. The remaining one is a
pre-trained black-box model, called competitor B. Given
an input x, all of the K interpretable competitors bid to
claim the input by proposing a score. The input is then
assigned to the highest bidder, with a significant margin
over the other competitors’ scores. If there does not exist
a winner (not winning by a large margin), then none of the
K competitors can claim the input, and it is then sent to
competitor B by default. At competitor B, the input will be
classified, and this classification process is unknown to other
competitors the whole time (during training and testing), i.e.,
model-agnostic. The competitor B can be any pre-trained
multi-class classifier with high predictive accuracy. We let
all interpretable competitors be linear models, which are of-
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ten used in high-stakes decision-making scenarios (Aubert
et al., 2010). We call the proposed method Model-Agnostic
Linear Competitors (MALC).

MALC partitions the feature space into K +1 regions, each
claimed by a competitor. Competitor k(1 ≤ k ≤ K) cap-
tures the most representative and confident characteristics
of class k by claiming the most plausible area in the feature
space for class k. Predictions for this area are inherently
interpretable since the competitors are linear models with
regularized numbers of non-zero coefficients. So we define
the percentage of data in this area claimed by the linear
models as transparency of MALC. The unclaimed area rep-
resents the subspace where none of the linear competitors
can “convince” other linear competitors by proposing a high
enough score; thus, it is left to the most competent black-box
competitor B to determine. See Figure 1 for an illustration.
Meanwhile, the coefficients of the K linear models also
show the most distinctive characteristics of each class, pro-
viding an intuitive description of the classes.

To train MALC, we formulate a carefully designed convex
optimization problem that considers the predictive perfor-
mance, interpretability of the linear competitors (coefficients
regularization), and model transparency. Then we use ac-
celerated proximal gradient method (Nesterov, 2013) to
train MALC. By tuning the parameters, MALC can decide
to send more or less area to the linear competitors, at the
possible cost of the predictive performance.

To evaluate the model, we conduct experiments on public
datasets and compare MALC with interpretable baseline
models. In addition, to study whether MALC is likely to be
accepted by users and understand humans’ preferences for
transparency and accuracy, we conduct a human evaluation
on a group of 72 subjects. Results show that most users can
tolerate only up to 5% of accuracy loss if required to use an
interpretable model. In contrast, results on the public data
show that the interpretable models may lose more than 10%
of accuracy. Thus, the majority of users are willing to use
a hybrid model instead, especially when the hybrid model
can effectively trade-off transparency and accuracy.

The rest of the paper is organized as follows. We review
related work in Section 2. The MALC model is presented in
Section 3, where we formulate the model and describe the
training algorithm. We conduct an experimental evaluation
in Section 4 on public datasets and compare them with in-
terpretable baselines. We also present the human evaluation
and discuss the findings.

2. Related Work
We have found a few works in the literature on the combina-
tion of multiple models (Kohavi, 1996; Towell & Shavlik,
1994). For example, (Kohavi, 1996) combined a decision

Figure 1. The decision-making process of MALC.

tree with a Naive Bayes model, (Shin et al., 2000) pro-
posed a system combining neural network and memory-
based learning, (Hua & Zhang, 2006) combined SVM and
logistic regression, etc. A recent work (Wang et al., 2015)
divides feature spaces into regions with sparse oblique tree
splitting and assign local sparse additive experts to individ-
ual regions. Besides these more isolated efforts, there has
been a large body of continuous work on neural-symbolic or
neural-expert systems (Garcez et al., 2015) pursued by a rel-
atively small research community over the last two decades
and has yielded several significant results (McGarry et al.,
1999; Garcez et al., 2012; Taha & Ghosh, 1999; Towell &
Shavlik, 1994). This line of research has been carried on
to combine deep neural networks with expert systems to
improve predictive performance (Hu et al., 2016).

Compared to the models discussed above, our method is
distinct in that it is model-agnostic and can work with any
black-box classifier. The black-box can be a carefully cali-
brated, advanced model using confidential features or tech-
niques. Our hybrid model only needs predictions from the
black-box model and does not need to alter it during train-
ing or know any other information from it. This minimal
requirement of information from the black-box collabora-
tor renders much more flexibility in creating collaboration
between different models, mainly preserving confidential
information from the more advanced partner.

The idea of a hybrid model is also discussed in (Wang,
2019), which proposes a hybrid rule set (HyRS) to combine
decision rules with a black-box model for binary classifica-
tion. An input goes through a positive rule set, a negative
rule set, and a black-box model sequentially until it is clas-
sified by the first model that captures it. MALC uses linear
models instead, enriching users’ choice of models, as some
models are more popular than others in different domains.
Also, MALC is designed to work with multi-class classifica-
tion. The K interpretable competitors compete for an input
simultaneously in a fair mechanism.
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Distinctions from Black-box Explainers We make a clear
distinction of our model from black-box explainers (Ribeiro
et al., 2018; Lundberg & Lee, 2017). The main ideas of
explainers include using simple models like linear mod-
els to approximate the predictions of black-box models, or
attributing contributions to features and providing feature
importance analysis (Lundberg & Lee, 2017), etc. Since
the first paper of LIME (Ribeiro et al., 2016), a local linear
explainer of any black-box model, various explainer mod-
els have been proposed (Ribeiro et al., 2018; Lundberg &
Lee, 2017). However, some concerns have been brought
up (Rudin, 2019; Aı̈vodji et al., 2019; Thibault et al., 2019;
Slack et al., 2020) on potential issues of black-box explain-
ers. For example, there exists ambiguity and inconsistency
(Ross et al., 2017; Lissack, 2016) in the explanations of
black-box explainers since there could be different expla-
nations for the same prediction generated by different ex-
plainers, or by the same explainer with different parameters.
(Alvarez-Melis & Jaakkola, 2018) showed LIME’s expla-
nation of two close points (similar instances) could vary
greatly. This instability in the explanation demands a cau-
tious and critical use of this type of explainer. Also, recent
work demonstrates that explanations can sometimes be de-
ceptive (Aı̈vodji et al., 2019). (Slack et al., 2020) shows that
it is easily possible to fool post hoc explainers like LIME
and SHAP (Lundberg & Lee, 2017), which rely on input
perturbations, through an adversarial attack. (Slack et al.,
2020) proposes a technique to effectively hide the biases
of the given classifier and get an arbitrarily desired expla-
nation from LIME and SHAP for that classifier. All of the
issues with post hoc explainers result from the fact that the
explainers only approximate in a post hoc way. They are
not the decision-making process themselves.

We emphasize here that MALC is not a black-box explainer.
MALC does not explain or approximate the behavior of a
black-box model, but instead, collaborates with the black-
box model and shares the prediction task. It is a predictive
model, a decision-maker itself.

3. Model-Agnostic Linear Competitors
In this paper, we focus on the multi-class classification
problem. Suppose there are K distinct classes. We consider
an approach similar to one-vs-all linear classification and
review it here. Given a linear classifier fi(x) = w>i x,
i ∈ [K] := {1, 2, ...,K}, if fi(x)− fj(x) ≥ 0, for every j
other than i, then x belongs to class i. For class i,

Pi(x) =
⋂
j 6=i

{
fi(x)− fj(x) = 0

}
is the decision boundary. Most mistakes made by a linear
model happen around the decision boundary. Therefore,
in a hybrid model, we exploit the high predictive power

of a black-box model and leave this more difficult area to
it while having the linear classifier classify the rest. Then
the linear classifier produces a decision only when it is
confident enough, this time comparing against thresholds
{θi ≥ 0}Ki=1: to predict class i when fi(x) − fj(x) ≥ θi
for every j other than i and unclassified otherwise. Thus
the linear model generates K decision boundaries, creating
a partition of a data space into K + 1 regions, a region
for each of the K classes and an unclassified region. This
unclassified region contains data that the linear model is
not confident to decide so the black-box is activated to
generate predictions on the unclassified region, see Figure 2.
Thus we build K linear competitors, each advocating for a
class, to collaborate with the black-box model. We call this
classification method Model-Agnostic Linear Competitors
(MALC) model.

Figure 2. A simplified depiction of partitioning of the data space
in the case of three classes, by linear and black-box competitors.

The goal of building such a collaborative linear model is to
replace the black-box system with a transparent system on
a subset of data at the minimum loss of predictive accuracy.
Therefore a key determinant in the success of MALC is the
partitioning of the data, which is determined by the coeffi-
cients wi in the linear model and the thresholds θi, i ∈ [K].
In this paper, we formulate a convex optimization problem
to learn the coefficients and thresholds. The objective func-
tion considers the fitness to the training data, captured by a
convex loss function, the regularization term, and the sum
of thresholds. As θi gets close to 0, more data can be de-
cided by the linear model, increasing the transparency of the
decision-making process, but at the cost of possible loss of
predictive performance. Our formulation is compatible with
various forms of the convex loss function and guarantees
global optimality.

We work with a set of training examples D = {(xi, yi)}ni=1

where xi ∈ Rd is a vector of d attributes and yi ∈ [K] :=
{1, 2, ...,K} is the corresponding class label. Let f(x) :
Rd → [K] represent the MALC classification model that is
constructed based on linear models fl,i(x) = w>i x, i ∈ [K]
and a black-box model fb(x) : Rd → [K]. The black-box
model is given, which can be any trained model. We need
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its prediction on the training data D, denoted as {ybi }ni=1

and ybi = fb(xi). Our goal is to learn the coefficients wi

in the linear models fl,i together with thresholds θi ( ≥ 0),
i ∈ [K], in order to form a hybrid decision model f as:

f(x) =
{

k if w>k x−w>j x ≥ θk, ∀ j ∈ [K] \ {k}
fb(x) otherwise. (1)

Note the hybrid model uses K thresholds to partition the
data space into K + 1 regions, a region for each class,
and an undetermined region left to the black-box model.
Data falling into any of the K class’s claimed regions is
considered “transparent” by the linear model, and we refer
to the percentage of this data subset as the transparency of
the model.

3.1. Model Formulation

In this section, we formulate an optimization framework to
build a MALC model. We consider three factors when build-
ing the model: predictive performance, data transparency,
and model regularization. We elaborate each of them below.

The (in-sample) predictive performance characterizes the fit-
ness of the model to the training data. Since fb is pre-given,
the predictive performance is determined by two factors,
the accuracy of fl = [fl,1, fl,2, ... , fl,K ] on instances as
described in (1) and the accuracy of fb on the remaining
examples. We wish to obtain a good partition of data D by
assigning fb and fl to different regions of the data such that
the strength of fb and fl are properly exploited. Second,
we include the sum

∑
θi as a penalty term in the objective

to account for data transparency of the hybrid model. The
smaller sum implies that the linear model classifies more
data. In the most extreme case where

∑
θi = 0, all data is

sent to the linear model, and the MALC model is reduced to
a pure one-vs all linear classifier, i.e., transparency equals
one. Finally, we also need to consider model regularization
in the objective. As the weight for the sparsity enforcing
regularization term increases, the model encourages using a
smaller number of features, increasing the interpretability
of the model and preventing overfitting.

Combining the three factors discussed above, we formulate
the learning objective for MALC as:

min
w,θ≥0

F (w, θ) := L(w, θ;D)+C1

K∑
i=1

θi+C2r(w), (2)

where w = [w1, w2, ... ,wK ], θ = [θi, θ2, ... , θK ],
L(w, θ;D) is the loss function defined on the training set
D associated to the decision rule f in (1),

∑K
i=1 θi is a

penalty term to increase the transparency of f , r is a convex
and closed regularization term (e.g. ‖w‖1, 1

2‖w‖
2
2 or an

indicator function of a constraint set), and C1 and C2 are
non-negative coefficients which balance the importance of
the three components in (2).

Let Ik = {i | yi = k}, which is the index set of all the
data points (x) belonging to class k. Similarly, let I+k =
{i ∈ Ik | yib = yi} and I−k = {i ∈ Ik | yib 6= yi}. The loss
function in (2) over the dataset D is then defined as

L(w, θ;D) = 1

n

K∑
k=1

∑
i∈I+k

K∑
j=1
j 6=k

φ(w>k xi −w>j xi + θj)

+
1

n

K∑
k=1

∑
i∈I−k

K∑
j=1
j 6=k

φ(w>k xi −w>j xi − θk) (3)

where function φ(z) : R → R is a non-increasing convex
closed loss function which can be one of those commonly
used in linear classification such as the hinge loss φ(z) =
(1 − z)+, smooth hinge loss φ(z) = 1

2 (1 − z)2+ or the
logistic loss φ(z) = log(1 + exp(−z)). Note that {Ik =
I+k ∪I

−
k }Kk=1 form a partition of {1, 2, . . . , n}. The intuition

of this loss function is as follows. Take a data point xi with
yi = k and ybi = k as an example. Our hybrid model (1)
will classify xi correctly as long as it does not fall into the
region of a class other than k. To ensure xi does not fall
into another class’s region, we need w>j xi −w>k xi < θj
for every j other than k. Hence, with the non-increasing
property of φ, the loss term φ(w>k xi − w>j xi + θj) will
encourage a positive value of w>k xi − w>j xi + θj which
means we have w>j xi−w>k xi < θj . On the other hand, for
a data point xi with yi = k and ybi 6= k, our hybrid model
will classify xi correctly only when xi falls in the class k
region, namely, w>k xi −w>j xi ≥ θk for every j other than
k. Hence, we use the loss term φ(w>k xi −w>j xi − θk) to
encourage a positive value of w>k xi −w>j xi − θk.

3.2. Model Training

With the loss function defined in (3), the hybrid model
can be trained by solving the convex minimization prob-
lem (2) for which many efficient optimization techniques are
available in literature including subgradient methods (Ne-
mirovski et al., 2009; Duchi et al., 2011), accelerated gra-
dient methods (Nesterov, 2013; Beck & Teboulle, 2009),
primal-dual methods (Nemirovski, 2004; Chambolle &
Pock, 2011) and many stochastic first-order methods based
on randomly sampling over coordinates or data (Johnson &
Zhang, 2013; Duchi et al., 2011). The choice of algorithms
for (2) depends on various characteristics of the problem,
such as smoothness, strong convexity, and data size.

Since numerical optimization is not the focus of this paper,
we will simply utilize the accelerated proximal gradient
method (APG) by Nesterov (Nesterov, 2013) to solve (2)
when φ is smooth. See the algorithm in the Appendix.
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4. Experiments
We perform a detailed experimental evaluation of the pro-
posed model on four public datasets. The goal here is to ex-
amine the predictive performance, transparency, and model
complexity. We also analyze the medical dataset in detail to
provide users a more intuitive understanding of the model.
MALC is compared with some baseline models, and the
human evaluation results are also presented in this section.

4.1. Experiments on Public Datasets

Datasets

We analyze four real-world datasets that are publicly avail-
able at (Chang & Lin, 2011; Ilangovan, 2017; Kaggle, 2018;
Wang et al., 2017). 1) Coupon (Wang et al., 2017) (12079
× 113 and 3 classes) studies responses of consumers to
the recommendation of coupons when users are driving in
different contexts, using features such as the passenger, des-
tination, weather, time, etc. The three classes are “decline”,
“accept and will use right away”, and “accept and will use
later” 2) Covtype (Chang & Lin, 2011) (581,012 × 54 and
7 classes) studies the forest cover type of wilderness areas
which include Roosevelt National Forest of northern Col-
orado. The features in the covtype dataset are scaled to [0, 1].
3) Customer (Kaggle, 2018) (7032 × 29 and 2 classes) was
collected to study the behavior of customers and whether
they return or not. 4) Medical (Ilangovan, 2017) (106,643
× 14 and 5 classes) provide information about Clinical, An-
thropometric and Biochemical (CAB) survey done by Govt.
of India. This survey was conducted in nine states of India
with a high rate of maternal and infant death rates in the
country. We focused on the subset of data for children under
the age of five and predicted their illness type. We dropped
some features not needed for classification, and the missing
values in certain features were replaced by mean or mode
values appropriately. For each dataset, we randomly sample
80% instances to form the training sets and use the remain-
ing 20% as the testing sets. Since the Medical dataset is
highly unbalanced among different classes, we downsample
the majority class and upsample the minority class to make
them balanced.

Training Black-box Models We first choose three state-
of-the-art black-box classifiers, Random Forest (Liaw et al.,
2002), XGBoost (Chen & Guestrin, 2016) and fully-
connected neural network with two hidden layers. All of
these models are implemented with R or python. The Ran-
dom Forest model is built using the ranger package (Wright
& Ziegler, 2015). The XGBoost model is built using the
xgboost package (Chen et al., 2015). The neural network
model is built using the keras package (Chollet & Allaire,
2017). For each model, we identify one or two hyperparam-
eters, and, for each dataset, we apply an 80%-20% holdout
method on the training set to select the values for these hy-

perparameters from a discrete set of candidates that give the
best validation performance. For Random Forest, we use
500 trees and tune the minimum node size and maximal tree
depth. For XGBoost, we tune maximal tree depth and the
number of boosting iterations. For the neural network, we
choose the sigmoid function as the activation function and
tune the number of neurons and the dropout rates in the two
hidden layers.

Training MALC We use the three black-box models’ pre-
dictions on the training set as the input to build MALC
models. In (2), we choose φ to be the smooth hinge loss and
r(w) = ‖w‖1. We would like to obtain a list of models that
span the entire spectrum of transparency, so we vary C1 and
C2 to achieve that goal. Note that C1 is directly related to
transparency, and we use grid-search to find a suitable range
to achieve transparency from zero to one. C2 is related
to the sparsity of the model. Overall, we choose C1 from
[0.005, 0.95] and C2 from [0.03, 0.25]. For each C1 value,
we use 80%-20% holdout on the training set to choose C2

from a discrete set of candidates that give the best validation
performance. After choosing the pairs of (C1, C2) values,
the Algorithm APG is run up to 20, 000 iterations to make
sure the change in objective value was less than 0.1%, in
the last iterations, to ensure the convergence.

Efficient Frontier Analysis We characterize the trade-off
between predictive accuracy and transparency using efficient
frontiers. To create efficient frontiers, we vary the param-
eters C1 and C2 to generate a list of models producing an
accuracy-transparency curve for each dataset. This provides
the user with a range of models and the option to choose
a desirable balance of transparency and predictive perfor-
mance compared to the two discrete choices of a black-box
or interpretable model. In Figure 3, each efficient frontier
starts with a transparency value of zero, which corresponds
to a pure black-box model. The general trend is as trans-
parency increases, and accuracy tends to decrease. The rate
of change of transparency w.r.t predictive performance is
different for each dataset. For coupon and covtype datasets,
accuracy decreases steadily as the transparency increases.
However, The medical dataset provides an interesting sce-
nario where the initial increase in transparency does not lead
to a decrease in predictive performance. It only falls after a
certain transparency threshold. Note that the transparency
value of one corresponds to a pure linear (interpretable)
model. But the interpretability comes at the cost of predic-
tive performance, as evident by lower accuracy of linear
models compared to the accuracy of the black-box models
for all datasets. MALC provides the user with a unique
framework of choosing a model from the whole spectrum of
options available on an efficient frontier with their desired
accuracy and transparency. We recommend the users to
choose the models around the tipping point to ensure gain
in transparency without a significant loss of accuracy.
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Figure 3. The efficient frontiers (EF) of MALC when collaborating with different black-box models. The numbers on EF represent the
average number of features per class being used by that MALC model. The results of the pure interpretable baselines are shown on the
right of each EF. N-model represents the no. of conditions for each decision tree model and no. of non-zero coefficients for the Lasso
model. Flexible model results are presented on the left y-axis, and small model (number of nodes < 50) results on the right y-axis.

Number of Features Analysis We would also like to make
sure the linear models are indeed interpretable, i.e., using a
few non-zero terms in the model. We report in Figure 3 the
average number of non-zero coefficients in MALC, which is
calculated as a ratio of the number of non-zero coefficients
in K linear models (w) to the number of classes. Observe
that MALC models require a relatively small number of
features from the dataset to gain transparency, preserving
linear models’ interpretability.

The control over transparency-accuracy trade-off and the
use of a small number of features to gain transparency make
MALC a strong candidate for real-world applications, par-
ticularly when the user wants to avoid a pure black-box
model or a pure interpretable but non-accurate model.

Comparison with Baselines MALC has a unique model
form that is different from the current work in interpretable
machine learning. Considering the situation, it is appropri-
ate to compare MALC with stand-alone interpretable mod-
els (like decision trees, LASSO), to evaluate transparency
by trading off accuracy. We compare with three decision
trees CART (Breiman, 2017), C4.5 (Quinlan, 2014), C5.0
(Pandya & Pandya, 2015) and LASSO (Tibshirani, 1996) as
stand-alone interpretable models.

For CART, we tune the complexity parameter, which im-
poses a penalty to the tree for having two many splits. For

C4.5 and C5.0, we tune the minimum number of samples at
splits. The regularization parameter was tuned for LASSO.
Further details of the parameter setup for the baseline ex-
periments are in the Appendix. We choose two models for
each decision tree method, a most accurate model without
any size constraint labeled as “flexible”, and a most accu-
rate model with less than 50 conditions (nodes), labeled as
‘small.’ See Figure 3.

Except for the customer dataset, interpretable baselines lose
about 10% of accuracy compared to black-box models. This
makes them less favorable by users, as shown later in our
human evaluation. On the other hand, MALC provides more
model choices for users while being consistently smaller
than baseline models. Users can, therefore, choose their de-
sired accuracy and transparency, based on efficient frontiers.

4.2. Case Study on the Medical Dataset

We show an example of MALC on the medical dataset.
There are five classes in this dataset, “no illness”, diar-
rhea/dysentery”, “acute respiratory infection”, “fever of
any type”, and “other illness”. MALC was built in collab-
oration with a pre-trained random forest whose accuracy
is 66.0%. After building five linear competitors, the accu-
racy of MALC reaches 66.4% while gaining transparency of
77.7%. The coefficients of the five linear models are shown
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Figure 4. An example of MALC in collaboration with a pre-trained random forest. The linear model coefficients for each of the five
classes are displayed.

in Figure 4. From the linear models, one can easily extract
some of the key characteristics for each class. For example,
the later children start to receive semisolid food, and the
longer they are exclusively breastfed, the more likely they
will be free of any of the illness (Class 1). Children who
start receiving semisolid mashed food at a very young age,
start receiving water at an early age, and are too late to start
receiving animal milk/formula milk are more likely to have
an acute respiratory infection (Class 3).

We chose an example instance and show the input features
and the output of the linear models in Figure 4. This child
started receiving animal milk/formula milk at the age of 25
months, almost six times the average age of receiving ani-
mal/formula milk (4.3 months). This child started receiving
semisolid food at 10 months old, later than the average age
of children (5.8 months) who start receiving semisolid food.
This is helpful for the child’s overall health conditions, as
suggested by classifier 1. However, this effect is completely
overtaken by the late usage of formula milk.

Also, the child was breastfed later than 64% of the children
in the dataset. Combining these important features, classifier
3 outputs the highest score, with a large enough margin over
the other four linear models. Thus this child is predicted to
have an acute respiratory infection consistent with the true
label.

An interesting observation for this model is that it performs
slightly better than the black-box alone, which means the
77.7% transparency is obtained for free. This is the desired
situation for hybrid models like MALC to be adopted.

4.3. Human Evaluation

We study humans’ preferences for black-box models, inter-
pretable models, and MALC when they have different pre-
dictive accuracies and how the preferences vary for technical
and non-technical users. See the supplementary material for
the survey questions.

For this purpose, we designed a survey and collected re-
sponses from 71 subjects in total. The subjects were mainly
recruited from two channels, graduate students from au-
thors’ home university and Amazon Mechanical Turk. Thus
our study covers both technical and non-technical users: 25
subjects have at least a Master’s degree, and the rest have
lower or no degrees. The average age of the participants
was 33.8, from the youngest 23 to the oldest 61. 77% of the
subjects were male.

In this survey, we presented to subjects the context of cus-
tomer retention prediction. We first teach subjects how to
understand a linear model and MALC, respectively, to give
them some idea what interpretability means, in contrast to a
black-box model. To make sure users understand the model
and screen out those who were not paying attention, we then
provide users with a test question, asking them to use a sim-
ple linear model to classify an instance. Those who failed
the question were excluded from the following reports.

For users who passed the testing question (61 out of 71), we
ask them for the largest accuracy loss they can tolerate if
required to use an interpretable model instead of a black-
box model. Results are shown in Figure 5(a). Notice that
there is a small group of people who would never choose
interpretable models if there is an accuracy loss, and also a
small group of people who will always choose interpretable
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(a) The largest tolerable accuracy loss by differ-
ent subjects.

(b) Distribution of human choices of different model types. MALC2 has the same
transparency as MALC1 but higher accuracy.

Figure 5. Human Evaluation Results

models, no matter how much accuracy is lost. The majority
of people can accept a certain level of accuracy loss, with
the largest group willing to sacrifice at most 5% accuracy.
The result also validates why in the previous experiments in
Figure 3, interpretable baselines are insufficient since they
lose more than 5% accuracy than black-box models.

We use δ to represent a subject’s tolerable loss of accuracy.
Then we ask users to choose from the following models: 1)
a highly accurate black-box model, 2) we randomly show
one from two linear models, one with 15 non-zero coeffi-
cients and one with five non-zero coefficients, both with an
accuracy loss of δ compared to the black-box model and
3) a hybrid model MALC1 with five non-zero coefficients,
accuracy loss 0.5δ and transparency 50%. Subjects’ choices
are shown in Question 1 and Question 2 in Figure 5(b). We
observe when the linear model becomes less interpretable
(the number of non-zero coefficients increased from 5 to
15), some users abandoned linear models and switch to the
black-box or the hybrid model. Note that the majority of the
switch happened to non-technical users, as they are more
sensitive to the increase in the cognitive load in understand-
ing a model. Next in question 3, we replace MALC1 with
an improved hybrid model MALC2, with 0.25δ accuracy
loss and the same transparency as MALC1 and ask users
to choose again. As MALC becomes more accurate, more
users choose MALC, mainly technical users: those who
chose the linear model in the previous question all switched
to MALC2.

Results show that almost half of the users are willing to
trade-off accuracy for interpretability, and the preference
becomes stronger if MALC has a better predictive perfor-
mance. , even when there is no extra gain in the trade-off:
when MALC1 lies on a straight line connecting the black-
box model and an interpretable model. Interestingly, we
notice that “accuracy oriented” users remain loyal to their
choice of the black-box models even if we provide better
MALC and “interpretability oriented” users also remain
faithful to their choice of the linear model. Our survey

demonstrates the diversity in users’ choice of models.

5. Conclusion
We proposed a Model-Agnostic Linear Competitors Model
for multi-class classification. MALC promotes transparency
by building K linear models to collaborate with a pre-
trained black-box model. We formulated the training of a
MALC model as convex optimization, where predictive ac-
curacy and transparency balance through objective function.
The optimization problem is solved with the accelerated
proximal gradient method.

MALC provides more flexible model choices for users. Ex-
periments show that MALC was able to yield models with
different transparency and accuracy values by varying the
parameters, thus providing more model options to users.
In real applications, users can decide the operating point
based on the efficient frontier. The decision depends on the
application use-case and desired balance of transparency
and accuracy, which varies by different users, as shown in
the human evaluation.

Discussion of Applications MALC can be used in situ-
ations where the requirement for predictive performance
is stringent, while interpretability is highly appreciated.
MALC helps “gain” some interpretability at the trade-off
of a possible user-tolerable loss of accuracy. MALC is
model-agnostic, making it flexible to collaborate with state-
of-the-art black-box models to utilize their high predictive
power while preserving some proprietary information of the
black-box model.

In addition to collaborating with black-box models, MALC
can collaborate with human decision-makers. Consider a
domain expert as fb, MALC can be trained needing only
his decisions on previous data. Such situations apply to, for
example, medical diagnosis, like the one in the case study.
Our linear model can replace a human doctor in some easy
cases, saving medical resources for the hospital and costs
for patients.
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The proposed work offers a new perspective in building
handshakes between interpretable and black-box models, to
build collaboration between them to exploit the strength of
both. Hybrid models like MALC can serve as a comfortable
stepping stone for users accustomed to black-box models to
move towards more interpretable machine learning.
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