Improving Robustness of Deep-Learning-Based Image Reconstruction - Supplementary Material

Proof of Theorem 1:

For the inverse problem of recovering the true x from the measurement $y=A x$, goal is to design a robust linear recovery model given by $\hat{x}=B A x$

The min-max formulation to get robust model for a linear set-up:

$$
\begin{array}{r}
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon} \mathbb{E}_{x \in D}\|B A x-x\|^{2}+\lambda\|B(A x+\delta)-x\|^{2} \\
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon} \mathbb{E}_{x \in D}(1+\lambda)\|B A x-x\|^{2}+\lambda\|B \delta\|^{2}+2 \lambda(B \delta)^{T}(B A x-x) \tag{1}
\end{array}
$$

Since the data is normalized, i.e., $\mathbb{E}(x)=0$ and $\operatorname{cov}(x)=I$. This makes the above optimization problem as:

$$
\begin{array}{r}
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon} \mathbb{E}_{x \in D}(1+\lambda)\|(B A-I) x\|^{2}+\lambda\|B \delta\|^{2} \\
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon} \mathbb{E}_{x \in D}(1+\lambda) \operatorname{tr}(B A-I) x x^{T}(B A-I)^{T}+\lambda\|B \delta\|^{2} \tag{2}
\end{array}
$$

Since, $\mathbb{E}(\operatorname{tr}(\cdot))=\operatorname{tr}(\mathbb{E}(\cdot))$, the above problem becomes:

$$
\begin{array}{r}
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon}(1+\lambda) \operatorname{tr}(B A-I)(B A-I)^{T}+\lambda\|B \delta\|^{2} \\
\min _{B} \max _{\delta:\|\delta\|_{2} \leq \epsilon}(1+\lambda)\|B A-I\|_{F}^{2}+\lambda\|B \delta\|^{2} \tag{3}
\end{array}
$$

Using SVD decomposition of $A=U S V^{T}$ and $B=M Q P^{T}$

Since, only the second term is dependent on δ, maximizing the second term with respect to δ : We have $\left\|M Q P^{T} \delta\right\|=\left\|Q P^{T} \delta\right\|$ since M is unitary. Given Q is diagonal, $\left\|Q P^{T} \delta\right\|$ w.r.t. δ can be maximized by having $P^{T} \delta$ vector having all zeros except the location corresponding to the $\max _{i} Q_{i}$. Since, $\left\|P^{T} \delta\right\|=\|\delta\|$, again because P is unitary, so to maximize within the ϵ-ball, we will have $P^{T} \delta=\epsilon[0, . ., 0,1,0, . ., 0]$ where 1 is at the $\arg \max _{i} Q_{i}$ position. This makes the term to be:

$$
\max _{\delta:\|\delta\|_{2} \leq \epsilon}\left\|M Q P^{T} \delta\right\|^{2}=\epsilon^{2}\left(\max _{i} Q_{i}\right)^{2}
$$

Substituting the above term in Equation 4:

$$
\begin{array}{r}
\min _{M, Q, P: M^{T}} \min _{M=I, P^{T}}(1+\lambda)\left\|M Q P^{T} U S V^{T}-I\right\|_{F}^{2}+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \\
\min _{M, Q, P: . .}(1+\lambda) \operatorname{tr}\left(M Q P^{T} U S V^{T}-I\right)\left(M Q P^{T} U S V^{T}-I\right)^{T}+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \\
\min _{M, Q, P: . .}(1+\lambda) \operatorname{tr}\left(M Q P^{T} U S^{2} U^{T} P Q M^{T}-2 M Q P^{T} U S V^{T}+I\right)+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \\
\min _{M, Q, P: . .}(1+\lambda) \operatorname{tr}\left(P^{T} U S^{2} U^{T} P Q^{2}-2 M Q P^{T} S V^{T}+I\right)+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \tag{5}
\end{array}
$$

For the above equation, only the second term depends on M, minimizing the second term w.r.t. M keeping others fixed:

$$
\min _{M: M^{T} M=I} \operatorname{tr}\left(-2 M Q P^{T} U S V^{T}\right)
$$

Since, this is a linear program with the quadratic constraint, relaxing the constraint from $M^{T} M=$ I to $M^{T} M \leq I$ won't change the optimal point as the optimal point will always be at the boundary i.e. $M^{T} M=I$

$$
\min _{M: M^{T} M \leq I} \operatorname{tr}\left(-2 M Q P^{T} U S V^{T}\right) \text { which is a convex program }
$$

Introducing the Lagrange multiplier matrix K for the constraint

$$
\mathcal{L}(M, K)=\operatorname{tr}\left(-2 M Q P^{T} U S V^{T}+K\left(M^{T} M-I\right)\right)
$$

Substituting $G=Q P^{T} U S V^{T}$ and using stationarity of Lagrangian

$$
\Delta L_{M}=M\left(K+K^{T}\right)-G^{T}=0 \Longrightarrow M L=G^{T} \text { where } L=K+K^{T}
$$

Primal feasibility: $M^{T} M \leq I$. Optimal point at boundary $\Longrightarrow \mathrm{M}^{T} M=I$

Because of the problem is convex, the local minima is the global minima which satisfies the two conditions: Stationarity of Lagrangian $\left(M L=G^{T}\right)$ and Primal feasibility $\left(M^{T} M=I\right)$. By the choice of $M=V$, and $L=S U^{T} P Q$, both these conditions are satisifed implying $M=V$ is the optimal point.
Substituting $M=V$ in Equation 5, we get:

$$
\begin{array}{r}
\min _{Q, P: . .}(1+\lambda) \operatorname{tr}\left(P^{T} U S^{2} U^{T} P Q^{2}-2 V Q P^{T} U S V^{T}+I\right)+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \\
\min _{Q, P: . .}(1+\lambda) \operatorname{tr}\left(P^{T} U S^{2} U^{T} P Q^{2}-2 Q P^{T} U S+I\right)+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \\
\min _{Q, P: . .}(1+\lambda)\left\|Q P^{T} U S-I\right\|_{F}^{2}+\lambda \epsilon^{2}\left(\max _{i} Q_{i}\right)^{2} \tag{6}
\end{array}
$$

Denote the i-th column of $C=U^{T} P$ by c_{i} and the entries in Q are in decreasing order (as entries in S are in increasing order) and the largest entry q_{m} in Q, has multiplicity m, the Equation 6 becomes:

$$
\begin{equation*}
\min _{C, Q}(1+\lambda) \sum_{i=1}^{m}\left\|q_{m} S c_{i}-e_{i}\right\|^{2}+\lambda \epsilon^{2} q_{m}^{2}+(1+\lambda) \sum_{i=m+1}^{n}\left\|q_{i} S c_{i}-e_{i}\right\|^{2} \tag{7}
\end{equation*}
$$

If we consider the last term i.e. $i>m$, it can be minimized by setting $c_{i}=e_{i}$ which is equivalent to choose $P_{i}=U_{i}$ and $q_{i}=1 / s_{i}$. This makes the last term ($=0$), using $h=\lambda \epsilon^{2} /(1+\lambda)$, making the Equation 7 as:

$$
\begin{array}{r}
\min _{C, Q} \sum_{i=1}^{m}\left(c_{i}^{T} S q_{m}^{2} S c_{i}-2 e_{i}^{T} q_{m} S c_{i}+e_{i}^{T} e_{i}\right)+h q_{m}^{2} \\
\min _{C, Q} q_{m}^{2}\left(\sum_{i=1}^{m} c_{i}^{T} S^{2} c_{i}+h\right)-2 q_{m} \sum_{i=1}^{m} S_{i} C_{i i}+\sum_{i=1}^{m} e_{i}^{T} e_{i}
\end{array}
$$

The above term is upward quadratic in q_{m}, minima w.r.t. q_{m} will occur at $q_{m}^{*}=\frac{\sum_{i=1}^{m} S_{i} C_{i i}}{\left(\sum_{i=1}^{m} c_{i}^{T} S^{2} c_{i}+h\right)}$, which will make the quadratic term as $\sum_{i=1}^{m} e_{i}^{T} e_{i}-\frac{\left(\sum_{i=1}^{m} S_{i} C_{i i}\right)^{2}}{\left(\sum_{i=1}^{m} c_{i}^{T} S^{2} c_{i}+h\right)}$, which has to be minimized w.r.t C

$$
\begin{array}{r}
\min _{C} \sum_{i=1}^{m} e_{i}^{T} e_{i}-\frac{\left(\sum_{i=1}^{m} S_{i} C_{i i}\right)^{2}}{\left(\sum_{i=1}^{m} c_{i}^{T} S^{2} c_{i}+h\right)} \\
\max _{C} \frac{\left(\sum_{i=1}^{m} S_{i} C_{i i}\right)^{2}}{\left(\sum_{i=1}^{m} c_{i}^{T} S^{2} c_{i}+h\right)} \\
\max _{C} \frac{\left(\sum_{i=1}^{m} S_{i} C_{i i}\right)^{2}}{\sum_{i=1}^{m} S_{i}^{2} C_{i i}^{2}+\sum_{j \neq i} S_{j}^{2} C_{i j}^{2}+h} \tag{8}
\end{array}
$$

Since $C=U^{T} P \Longrightarrow C_{i j}=u_{i}^{T} p_{j} \Longrightarrow\left\|C_{i j}\right\| \leq 1$. To maximize the term given by the Equation 8 , we can minimize the denominator by setting the term $C_{i j}=0$, which makes the matrix C as diagonal.
Divide the matrix U and P into two parts: one corresponding to $i \leq m$ and another $i>m$, where i represents the column-index of $C=U^{T} P$.

Let $U=\left[U_{1} \mid U_{2}\right]$ and $P=\left[P_{1} \mid P_{2}\right]$. From above, we have $P_{2}=U_{2}$ for $i>m$, making $P=\left[P_{1} \mid U_{2}\right]$.

$$
\begin{array}{r}
U^{T}=\left[\begin{array}{l}
U_{1}^{T} \\
U_{2}^{T}
\end{array}\right] \text { and } P=\left[P_{1} \mid U_{2}\right] \\
U^{T} P=\left[\begin{array}{cc}
U_{1}^{T} P_{1} & U_{1}^{T} U_{2} \\
U_{2}^{T} P_{1} & U_{2}^{T} U_{2}
\end{array}\right]=\left[\begin{array}{cc}
U_{1}^{T} P_{1} & \mathbf{0} \\
U_{2}^{T} P_{1} & I
\end{array}\right]
\end{array}
$$

Since, $U^{T} P$ is diagonal, we have $U_{2}^{T} P_{1}=\mathbf{0}, U_{1}^{T} P_{1}=\Gamma$ where Γ is diagonal. Also, we have $P_{1}^{T} P_{1}=I$. Only way to satisfy this would be making $P_{1}=U_{1}$ which makes $P=U$ and $C=I$. It also results in

$$
\begin{equation*}
q_{m}^{*}=\frac{\sum_{i=1}^{m} S_{i}}{\sum_{i=1}^{m} S_{i}^{2}+h}, \text { where, } h=\epsilon^{2} \frac{\lambda}{1+\lambda} \tag{9}
\end{equation*}
$$

Hence, the resulting B would be of the form $M Q P^{T}$ where:

$$
\begin{equation*}
 \tag{10}
\end{equation*}
$$

