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1. Active Learning proof
Let {xi ∈ Rd : 1 ≤ i ≤ N} be N feature vectors and denote the indices of the vectors by D = {1, 2, ...N}. Associated
with the feature xi are two binary class labels yi,1 and yi,2. These values differ for exactly m < N of the feature vectors,
with indices {ik}, k = 1, . . . ,m. We learn two logistic regression models with the same regularization parameter λ as
follows:

w1 = arg min
w∈Rd

∑
i∈D

`(xi,yi,1;w) +
λ

2
||w||22 ,

w2 = arg min
w∈Rd

∑
i∈D

`(xi,yi,2;w) +
λ

2
||w||22 . (1)

Here `(xi,yi;w) = −
(
yi log σ(w>xi) +

(
1 − yi

)
log
(
1 − σ(w>xi)

))
is the cross entropy for an individual training

example and σ(x) =
1

1 + e−x
is the sigmoid function.

Theorem 1 of (Sivan et al., 2019) provides a bound for the difference between the solutions of optimization problems
of the form in (1). For the special case of L2-regularized binary logistic regression with m different labels, we have
||w1 −w2|| ≤ 2||r||, where

r ,
1

2λ

m∑
k=1

(
∇w`(xik ,yik,1;w)|w=w1 −∇w`(xik ,yik,2;w)|w=w1

)
,

=
1

2λ

m∑
k=1

(
−
(
yik,1 − σ(w>1 xik)

)
xik +

(
yik,2 − σ(w>1 xik)

)
xik

)
,

=
1

2λ

m∑
k=1

(
yik,2 − yik,1

)
xik . (2)

Lemma 1 from (Sivan et al., 2019) provides upper and lower bounds for the prediction associated with a sample xj when
using the weights w2 derived from labels {yi,2}:

w>1 xj − r>xj − ||r||.||xj || ≤ w>2 xj ≤ w>1 xj − r>xj + ||r||.||xj || . (3)

Based on these bounds we can specify the following proposition:

Proposition 1. For weights w1 and w2 derived by L2-penalized logistic regression to two datasets with common feature
vectors but label sets differing for m vectors indexed by {ik}, k = 1, . . . ,m, define η , 1

2λ

∑m
k=1||xik || and b±η(w2, j) ,
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σ(w>2 xj)− σ(w>2 xj ± 2η||xj ||). For any xj , for j ∈ {1, . . . , N}:

|σ(w>1 xj)− σ(w>2 xj)| ≤ max(|bη(w2, j)|, |b−η(w2, j)|) . (4)

Proof. We first note that
(
yik,2 − yik,1

)
∈ {−1, 1} implies from the definition of r in (2) that ||r|| ≤ 1

2λ

m∑
k=1

||xik || = η.

Applying the Cauchy Schwarz inequality to (3), we have:

w>2 xj − 2||r||.||xj || ≤ w>1 xj ≤ w>2 xj + 2||r||.||xj || , (5)

and hence

w>2 xj − 2η||xj || ≤ w>1 xj ≤ w>2 xj + 2η||xj || . (6)

Since σ(·) is monotonically increasing, we have σ(w>1 xj − 2η||xj ||) ≤ σ(w>2 xj) ≤ σ(w>1 xj + 2η||xj ||) and (4)
follows.

1.1. Useful results

The proof of the main result bounding the difference in risks relies on the following two lemmas:
Lemma 1.1. LetX and Y be two random variables taking values in [a, b] and [c, d] respectively. Then |EX [X]−EY [Y ]| ≤
max

(
|a− d|, |b− c|

)
.

Proof. We note

a− d ≤ EX [X]−EY [Y ] ≤ b− c ,

from which the result follows.

Lemma 1.2. If 0 ≤ p1, p2 ≤ 1, then |min(p1, 1− p1)−min(p2, 1− p2)| ≤ |p1 − p2|.

Proof. Let q = min(p1, 1− p1)−min(p2, 1− p2).

case 1 : p1 < 0.5, p2 < 0.5

q = p1 − p2
case 2 : p1 ≥ 0.5, p2 ≥ 0.5

q = (1− p1)− (1− p2) = p2 − p1
case 3 : p1 < 0.5, p2 ≥ 0.5

p1 − p2 ≤ q = p1 − (1− p2) ≤ (1− p1)− (1− p2) = p2 − p1
case 4 : p1 ≥ 0.5, p2 < 0.5

p2 − p1 = (1− p1)− (1− p2) ≤ q = (1− p1)− p2 ≤ p1 − p2
So, we have |q| ≤ |p1 − p2|.

1.2. Risk bound for binary classification

We now recall the definition of the risk of querying node q given a current label set YLt
for binary classification:

R+q
|YLt

, 1
|U9q

t |

∑
k∈{0,1}

∑
i∈U9q

t

ϕ+q
i,k,YLt

p(yq = k|YLt) , (7)

where ϕ+q
i,k,YLt

,
(

1 − max
k′∈{0,1}

p(yi = k′|YLt
,yq = k)

)
= min

k′∈{0,1}
p(yi = k′|YLt

,yq = k). We are interested in

bounding the difference in the risks that can arise when we use two label sets YLt and Y′Lt
that differ by only one label,

associated with the node index q∗t−1.

We now state the main result:
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Theorem 1.3. The risk error arising from applying binary L2-regularized logistic regression with regularization parameter
λ to two labelled datasets YLt and Y′Lt

that differ by one label, associated with the node q∗t−1, is bounded as:

|R+q
|YLt

−R+q
|Y′Lt
| ≤ 1

|U9q
t |

∑
i∈U9q

t

b̃(ηq,w2, i) ,

where w2,k is the weight vector learned using {Y′Lt
∪ {yq = k}}, ηq , 1

2λ

(
||xq||+ ||xq∗t−1

||
)

, and

b̃(ηq,w2, i) = max
k∈{0,1}

max
(∣∣σ(w>2,kxi)− σ(w>2,kxi + 2ηq||xi||)

∣∣ , ∣∣σ(w>2,kxi)− σ(w>2,kxi − 2ηq||xi||)
∣∣) . (8)

Proof. We define the random variable ϕ+q
i,YLt

which takes value ϕ+q
i,k,YLt

with probability p(yq = k|YLt
) for k ∈ {0, 1}.

Analogously, let ϕ+q
i,Y′Lt

take value ϕ+q
i,k,Y′Lt

with probability p(q = k|Y′Lt
) for k ∈ {0, 1}. The difference in risk is then:

R+q
|YLt

−R+q
|Y′Lt

= 1
|U9q

t |

∑
i∈U9q

t

Eyq [ϕ+q
i,YLt

]− Eyq [ϕ+q
i,Y′Lt

] , (9)

where Eyq
denotes expectation over yq conditioned on the corresponding observed label sets, either YLt

or Y′Lt
. For

query node q, for each k1, k2 ∈ {0, 1}, we learn weights w1,k1 using {YLt
∪ {yq = k1}} and weights w2,k2 using

{Y′Lt
∪ {yq = k2}}. For each i ∈ U9q

t , we have:

|ϕ+q
i,k1,YLt

− ϕ+q
i,k2,Y′Lt

| ≤ |σ(w>1,k1xi)− σ(w>2,k2xi)| , using Lemma (1.2) ,

≤ max(|σ(w>2,k2xi)− σ(w>2,k2xi − 2ηq||xi||)|, |σ(w>2,k2xi)− σ(w>2,k2xi + 2ηq||xi||)|) ,
≤ max
k∈{0,1}

max(|σ(w>2,kxi)− σ(w>2,kxi − 2ηq||xi||)|, |σ(w>2,kxi)− σ(w>2,kxi + 2ηq||xi||)|) .

(10)

Here the second inequality follows from Proposition (1), observing that the labels can differ for nodes q∗t−1 and q.

Now, the difference in risk is bounded as

|R+q
|YLt

−R+q
|Y′Lt
| ≤ 1

|U9q
t |

∑
i∈U9q

t

|Eyq
[ϕ+q
i,YLt

]− Eyq
[ϕ+q
i,Y′Lt

]| ,

≤ 1

|U9q
t |

∑
i∈U9q

t

max(| max
k∈{0,1}

ϕ+q
i,k,YLt

− min
k∈{0,1}

ϕ+q
i,k,Y′Lt

|, | min
k∈{0,1}

ϕ+q
i,k,YLt

− max
k∈{0,1}

ϕ+q
i,k,Y′Lt

|) , using Lemma (1.1) ,

≤ 1

|U9q
t |

∑
i∈U9q

t

max
k∈{0,1}

max(|σ(w>2,kxi)− σ(w>2,kxi − 2ηq||xi||)|, |σ(w>2,kxi)− σ(w>2,kxi + 2ηq||xi||)|) , using (10) ,

=
1

|U9q
t |

∑
i∈U9q

t

b̃(ηq,w2, i) (11)

1.3. Risk bound for multiclass classification

We now consider the case where we perform multi-class classification using one-versus-all binary logistic regression for
each class and then normalizing by the sum of the output sigmoids. As before, we focus on the case where two labels can be
different for the proposed query node q and the previous query node q∗t−1.

For a given label set Y , we learn weights w(k) for each class k ∈ {1, . . . ,K} using L2-regularized binary one-vs-all logistic
regression. The output prior to normalization for a given feature vector xi is then σ(w(k)>xi). We then normalize by
dividing by Ci =

∑K
k=1 σ(w(k)>xi) to obtain a probability vector v.
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Define
β(w2, η, i) , max

k
β(w2, k, η, i), (12)

for

β(w2, k, η, i) , max

(∣∣∣∣∣σ(w
(k)>
2 xi)

C2,i
− σ(w

(k)>
2 xi)− ρ(w2, η, i)

C2,i + 4ρ(w2, η, i)

∣∣∣∣∣ ,
∣∣∣∣∣σ(w

(k)>
2 xi)

C2,i
− σ(w

(k)>
2 xi) + ρ(w2, η, i)

C2,i − 4ρ(w2, η, i)

∣∣∣∣∣
)
,

(13)
where ρ(w2, η, i) , maxk max(|bη(w

(k)
2 , i)|, |b−η(w

(k)
2 , i)|) for b±η(w2, i) , σ(w>2 xi)− σ(w>2 xi ± 2η||xi||).

Proposition 2. For two label sets Y and Y′ that differ in exactly two labels, yj1 6= y′j1 and yj2 6= y′j2 , we perform
multiclass regression for classes k ∈ {1, . . . ,K} by conducting L2-regularized one-vs-all binary logistic regression for
each class and then normalizing the output values to sum to one. Let w(k)

1 denote the weights learned for class k using label
set Y and w

(k)
2 denote the corresponding weights learned using label set Y′. Let p1,k,i = σ(w

(k)>
1 xi)/C1,i be the output

probability associated with class k for feature vector xi using label set Y , where C1,i =
∑K
k=1 σ(w

(k)>
1 xi). Let p2,k,i and

C2,i be the corresponding entities derived using label set Y′.

For any feature vector xi, |p1,k,i − p2,k,i| ≤ β(w2, ηs, i) for each class k where ηs , 1
2λ (||xj1 ||+ ||xj2 ||).

Proof. Two different labels can affect the weight vectors w(k) for at most four classes, because there is no change in the
one-versus-all binary labels for class k unless at least one of yj1 , yj2 , y′j1 or y′j2 equals k. For any class k, at most two

labels can change for the binary classification. For the one-vs-all binary classifier for class k, we learn a weight vector w(k)
1

using Y and w
(k)
2 using Y′. Then from Proposition 1, we have (for the case where both labels change):

|σ(w
(k)>
1 xi)− σ(w

(k)>
2 xi)| ≤ max(|bηs(w

(k)
2 , i)|, |b−ηs(w

(k)
2 , j)|) . (14)

Define ρ(w2, η, i) , maxk max(|bη(w
(k)
2 , i)|, |b−η(w

(k)
2 , i)|). Then for any class k,

σ(w
(k)>
2 xi)− ρ(w2, ηs, i) ≤ σ(w

(k)>
1 xi) ≤ σ(w

(k)>
2 xi) + ρ(w2, ηs, i) . (15)

We can thus bound the difference in the normalization terms C1,i =
∑K
k=1 σ(w

(k)>
1 xi) and C2,i =

∑K
k=1 σ(w

(k)>
2 xi).

Since at most four classes can be affected by the change of two labels, we have:

C2,i − 4ρ(w2, ηs, i) ≤ C1,i ≤ C2,i + 4ρ(w2, ηs, i) . (16)

We can now bound the difference in the probabilities p1,k,i = σ(w
(k)>
1 xi)/C1,i and p2,k,i = σ(w

(k)>
2 xi)/C2,i as follows:

|p1,k,i − p2,k,i| = |σ(w
(k)>
2 xi)/C2,i − σ(w

(k)>
1 xi)/C1,i|

≤ max

(∣∣∣∣∣σ(w
(k)>
2 xi)

C2,i
− σ(w

(k)>
2 xi)− ρ(w2, ηs, i)

C2,i + 4ρ(w2, ηs, i)

∣∣∣∣∣ ,
∣∣∣∣∣σ(w

(k)>
2 xi)

C2,i
− σ(w

(k)>
2 xi) + ρ(w2, ηs, i)

C2,i − 4ρ(w2, ηs, i)

∣∣∣∣∣
)

(17)

Taking the maximum of the right hand side of (17) over k leads to |p1,k,i − p2,k,i| < β(w2, ηs, i) for all k.

Recalling the definition of the risk of querying node q given a current label set YLt
for multiclass classification:

R+q
|YLt

, 1
|U9q

t |

∑
k∈{1,...,K}

∑
i∈U9q

t

ϕ+q
i,k,YLt

p(yq = k|YLt
) , (18)

where ϕ+q
i,k,YLt

,

(
1− max

k′∈{1,...,K}
p(yi = k′|YLt

,yq = k)

)
. As for the binary case, the difference in risk is:

R+q
|YLt

−R+q
|Y′Lt

= 1
|U9q

t |

∑
i∈U9q

t

Eyq
[ϕ+q
i,YLt

]− Eyq
[ϕ+q
i,Y′Lt

] , (19)

where Eyq denotes expectation over yq conditioned on the observed label set, either YLt or YLt . The random variable
ϕ+q
i,YLt

now takes on value ϕ+q
i,k,YLt

with probability p(yq = k|YLt) for k ∈ {1, . . . ,K}.
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Theorem 1.4. Consider multiclass regression performed via repeated one-vs-all L2-regularized logistic regression with
regularization parameter λ to two labelled datasets YLt and Y′Lt

that differ by one label, associated with the node q∗t−1.

Let w(k′)
2,k be the weight vector learned for class k′ using label data {Y′Lt

∪ {yq = k}. The risk error arising from using
Y′Lt

instead of YLt
is bounded as:

|R+q
|YLt

−R+q
|Y′Lt
| ≤ 1

|U9q
t |

∑
i∈U9q

t

β̃(w2, ηq, i) . (20)

Here β̃(w2, ηq, i) = maxk β(w2,k, ηq, i) for β(w2,k, ηq, i) as defined in (12) and ηq , 1
2λ

(
||xq||+ ||xq∗t−1

||
)
.

Proof. For query node q, for each k1, k2 ∈ {1, . . . ,K}, we learn weights w(k)
1,k1

using {YLt ∪{yq = k1}} and w
(k)
2,k2

using
{Y′Lt

∪ {yq = k2}}, for each candidate class k. For each i ∈ U9q
t , we have:

|ϕ+q
i,k1,YLt

− ϕ+q
i,k2,Y′Lt

| =
∣∣∣∣ max
k′∈{1,...,K}

p(yi = k′|Y′Lt
,yq = k2)− max

k′∈{1,...,K}
p(yi = k′|YLt ,yq = k1)

∣∣∣∣ ,
≤ max

(
max

k′∈{1,...,K}
|p(yi = k′|Y′Lt

,yq = k2)− p(yi = k′|YLt
,yq = k1)|

)
,

≤ β(w2,k2 , ηq, i) ,

≤ max
k2

β(w2,k2 , ηq, i) , β̃(w2, ηq, i) . (21)

where the last line follows from Proposition 2.

Now, the difference in risk is bounded as

|R+q
|YLt

−R+q
|Y′Lt
| ≤ 1

|U9q
t |

∑
i∈U9q

t

|Eyq
[ϕ+q
i,YLt

]− Eyq
[ϕ+q
i,Y′Lt

]| ,

≤ 1

|U9q
t |

∑
i∈U9q

t

max(|max
k

ϕ+q
i,k,YLt

−min
k
ϕ+q
i,k,YLt

|, |min
k
ϕ+q
i,k,YLt

−max
k

ϕ+q
i,k,Y′Lt

|) , using Lemma (1.1) ,

≤ 1

|U9q
t |

∑
i∈U9q

t

β̃(w2, ηq, i) , using (21) . (22)

2. Computation of model evidence from BMRF
In this section, we provide more details for the computation of the model evidence of the BMRF model λTSA,YL . We
consider an arbitrary ordering of the nodes in the labelled set and obtain the joint probability of interest p(YL) with a chain
rule of conditionals as follow :

p(YL) = p(y1)p(y2|y1)...p(y|L||y1,y2, ...y|L|−1) . (23)

The conditional distributions are evaluated with the approximation provided in (Jun & Nowak, 2016). The model evidence
can be updated at each active learning iteration by only computing the conditional probability of the newly added point,
which is already computed as part of the TSA active learning algorithm. As a result, the added time complexity results from
the computation of p(YL0

) at the beginning of the algorithm. The marginal probability of the first node label p(y1) is set
uniformly for all classes.

3. Additional Experiments
In this section we report the results for Experiment 1 but include the best-performing label propagation technique (TSA (Jun
& Nowak, 2016)). This is the setting where the initial training set is larger than only one node.
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These results are provided to illustrate that label propagation methods are not competitive with the GCN-based methods
when a larger initial training set is available. Figure 2 shows the results for the Cora and Citeseer datasets.

20 40 60
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40
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A
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y

AGE
ANRMAB
GEEM*
Random
TSA

20 40 60
Number of nodes in labeled set
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ur
ac

y

(a) Cora (b) Citeseer

Figure 1. Experiment 1 with added label-propagation baseline TSA (Jun & Nowak, 2016).

4. SGCN extension : Simplified Chebynet for classification
In the main paper, we employed the SGC, a form of graph-cognizant logistic regression that can be derived as a linear
version of the GCN (Kipf & Welling, 2017), as described in (Wu et al., 2019). For some graph datasets, the GCN is not a
good model, because it relies strongly on immediate neighbours being similar to the centre node. In this section we derive
an alternate graph-cognizant logistic regression architecture that is equivalent to a linear version of the Chebynet (Defferrard
et al., 2016).

4.1. Methodology

Following the same methodology as in (Wu et al., 2019), we can also derive a linear version of the Chebynet (Defferrard
et al., 2016). This graph convolutional neural network incorporates a more general version of graph convolution. This can
be useful for datasets that have a more complex structure which cannot be captured by the approximate first order GCN
model. A 2-layer Chebynet has the form:

σ

W−1∑
w=0

Tw(L)σ

W−1∑
j=0

Tj(L)Xθj,1

 θw,2

 (24)

In this expression, we are performing approximate spectral convolution by multiplying the feature matrix X with multiple
Chebyshev polynomials of a scaled Laplacian L = I−D−

1
2AD−

1
2 . W is the maximum order of Chebyshev polynomial

that we consider and θ are the learnable parameters. We refer the reader to (Defferrard et al., 2016) for a more detailed
explanation.

To obtain a linear approximation, we can replace the non-linear operator σ in the hidden layers with the identity matrix:

σ

W−1∑
w=0

W−1∑
j=0

Tw(L)Tj(L)XΘw,j

 . (25)

We can learn the parameters via logistic regression by stacking all of the preprocessed TwTjX terms into a new augmented
matrix X̂, thereby multiplying the feature dimensionality by a factor of (W )`.

4.2. Experiment

We provide the results of an experiment for a dataset where the first order approximation made by the GCN graph filters is
significantly outperformed by the Chebynet. WebKB is a webpages dataset where the node features are representations
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of webpage content and an edge is added when a website links another. Table 1 provides the statistics of the dataset. We
set the number of layers of the GEEM Chebynet to 1 to reduce the time complexity and use w = 3 polynomials because
this was the number used in (Defferrard et al., 2016). For the baselines, we also replace the GCN employed in AGE and
ANRMAB by a Chebynet using the same default hyperparameters as described in the main paper. All active learning
algorithms commence with the same randomly chosen 21 initial nodes. This value was chosen to give an initial classification
accuracy of approximately 65 percent.

Figure 1 depicts the performance of the algorithms. Figure 1(a) highlights how important it is to use a Chebynet-based
classifier rather than GCN. In Figure 1(b), we see that AGE and ANRMAB perform similarly and both are outperformed by
random selection. This is an indication that the default hyperparameters are not a good match for this new dataset or the
Chebynet architecture. In the active learning setting, there is no validation set available to search for better parameters. The
GEEM algorithm that incorporates linear Chebynet logistic regression significantly outperforms random selection.

Table 1. Statistics of webKB.
Dataset #Classes #Features #Nodes #Edges Edge density
WebKB 5 1,703 251 450 0.03%
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(a) (b)

Figure 2. Experiment 1 for the WebKB dataset. Initial labeled set of 8% nodes a) GCN vs Chebynet AGE. The chebynet version clearly
outperforms. b) Comparison of active learning algorithms with Chebynet-based architecture

Table 2. Experiment 1 for WebKB dataset. Average accuracy at different budgets. Asterisks indicate that a Wilcoxon ranking test showed
a significant difference (at 5% significance level) between the marked method and the best performing baseline.

budget b 0 1 10 30 60

GEEM* 64.3 66.6 71.2 77.0* 82.4*
Random 64.3 64.7 69.2 74.3 78.1
AGE 64.9 63.9 66.3 70.0 74.3
ANRMAB 64.9 64.2 66.6 70.7 72.9
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