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Abstract

For an explanation of a deep learning model to
be effective, it must both provide insight into a
model and suggest a corresponding action in or-
der to achieve an objective. Too often, the litany
of proposed explainable deep learning methods
stop at the first step, providing practitioners with
insight into a model, but no way to act on it.
In this paper we propose contextual decomposi-
tion explanation penalization (CDEP), a method
that enables practitioners to leverage explana-
tions to improve the performance of a deep learn-
ing model. In particular, CDEP enables inserting
domain knowledge into a model to ignore spuri-
ous correlations, correct errors, and generalize to
different types of dataset shifts. We demonstrate
the ability of CDEP to increase performance on
an array of toy and real datasets.

1. Introduction
In recent years, deep neural networks (DNNs) have demon-
strated strong predictive performance across a wide vari-
ety of settings. However, in order to predict accurately,
they sometimes latch onto spurious correlations caused by
dataset bias or overfitting (Winkler et al., 2019). More-
over, DNNs are also known to exploit bias regarding gen-
der, race, and other sensitive attributes present in training
datasets (Garg et al., 2018; Obermeyer et al., 2019; Dressel
& Farid, 2018). Recent work in explaining DNN predic-
tions (Murdoch et al., 2019; Doshi-Velez & Kim, 2017) has
demonstrated an ability to reveal the relationships learned
by a model. Here, we extend this line of work to not
only uncover learned relationships, but penalize them to
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Figure 1. CDEP allows practitioners to penalize both a model’s
prediction and the corresponding explanation.

We introduce contextual decomposition explanation
penalization (CDEP), a method which leverages a particu-
lar existing explanation technique for neural networks to
enable the insertion of domain knowledge into a model.
Given prior knowledge in the form of importance scores,
CDEP works by allowing the user to directly penalize
importances of certain features or feature interactions.
This forces the neural network to not only produce the
correct prediction, but also the correct explanation for that
prediction.1

While we focus on the use of contextual decomposition,
which allows the penalization of both feature importances
and interactions (Murdoch et al., 2018; Singh et al., 2018),
CDEP can be readily adapted for existing interpretation
techniques, as long as they are differentiable. Moreover,
CDEP is a general technique, which can be applied to arbi-
trary neural network architectures, and is often orders of
magnitude faster and more memory efficient than recent
gradient-based methods, allowing its use on meaningful
datasets.

We demonstrate the effectiveness of CDEP via experiments
across a wide array of tasks. In the prediction of skin cancer
from images, CDEP improves the prediction of a classifier
by teaching it to ignore spurious confounders present in the
training data.

1 Code, notebooks, scripts, documentation, and models for
reproducing experiments here and using CDEP on new mod-
els available at https://github.com/laura-rieger/
deep-explanation-penalization.

https://github.com/laura-rieger/deep-explanation-penalization
https://github.com/laura-rieger/deep-explanation-penalization
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In a variant of the MNIST digit-classification task where
the digit’s color is used as a misleading signal, CDEP reg-
ularizes a network to focus on a digit’s shape rather than its
color. Finally, simple examples show how CDEP can help
mitigate fairness issues, both in text classification and risk
prediction.

2. Background
Explanation methods Many methods have been devel-
oped to help explain the learned relationships contained
in a DNN. For local or prediction-level explanation, most
prior work has focused on assigning importance to indi-
vidual features, such as pixels in an image or words in a
document. There are several methods that give feature-
level importance for different architectures. They can be
categorized as gradient-based (Springenberg et al., 2014;
Sundararajan et al., 2017; Selvaraju et al., 2016; Baehrens
et al., 2010; Rieger & Hansen, 2019), decomposition-based
(Murdoch & Szlam, 2017; Shrikumar et al., 2016; Bach
et al., 2015) and others (Dabkowski & Gal, 2017; Fong &
Vedaldi, 2017; Ribeiro et al., 2016; Zintgraf et al., 2017),
with many similarities among the methods (Ancona et al.,
2018; Lundberg & Lee, 2017). However, many of these
methods have been poorly evaluated so far (Adebayo et al.,
2018; Nie et al., 2018), casting doubt on their usefulness in
practice. Another line of work, which we build upon, has
focused on uncovering interactions between features (Mur-
doch et al., 2018), and using those interactions to create a
hierarchy of features displaying the model’s prediction pro-
cess (Singh et al., 2019; 2020).

Uses of explanation methods While much work has
been put into developing methods for explaining DNNs,
relatively little work has explored the potential to use these
explanations to help build a better model. Some recent
work proposes forcing models to attend to regions of the
input which are known to be important (Burns et al., 2018;
Mitsuhara et al., 2019), although it is important to note that
attention is often not the same as explanation (Jain & Wal-
lace, 2019).

An alternative line of work proposes penalizing the gra-
dients of a neural network to match human-provided bi-
nary annotations and shows the possibility to improve per-
formance (Ross et al., 2017; Bao et al., 2018; Du et al.,
2019) and adversarial robustness (Ross & Doshi-Velez,
2018). Two recent papers extend these ideas by penaliz-
ing gradient-based attributions for natural language mod-
els (Liu & Avci, 2019) and to produce smooth attributions
(Erion et al., 2019). Du et al. (2019) applies a similar idea
to improve image segmentation by incorporating attention
maps into the training process.

Predating deep learning, Zaidan et al. (2007) consider the

use of “annotator rationales” in sentiment analysis to train
support vector machines. This work on annotator rationales
was recently extended to show improved explanations (not
accuracy) in particular types of CNNs (Strout et al., 2019).

Other ways to constrain DNNs While we focus on the
use of explanations to constrain the relationships learned
by neural networks, other approaches for constraining neu-
ral networks have also been proposed. A computationally
intensive alternative is to augment the dataset in order to
prevent the model from learning undesirable relationships,
through domain knowledge (Bolukbasi et al., 2016), pro-
jecting out superficial statistics (Wang et al., 2019) or dra-
matically altering training images (Geirhos et al., 2018).
However, these processes are often not feasible, either due
to their computational cost or the difficulty of construct-
ing such an augmented data set. Adversarial training has
also been explored (Zhang & Zhu, 2019). These techniques
are generally limited, as they are often tied to particular
datasets, and do not provide a clear link between learning
about a model’s learned relationships through explanations,
and subsequently correcting them.

3. Methods
In the following, we will first establish the general form of
the augmented loss function. We then describe Contextual
Decomposition (CD), the explanation method proposed by
(Murdoch et al., 2018). Based on this, we introduce CDEP
and point out its desirable computational properties for reg-
ularization. In Section 3.4 we describe how prior knowl-
edge can be encoded into explanations and give examples
of typical use cases. While we focus on CD scores, which
allow the penalization of interactions between features in
addition to features themselves, our approach readily gen-
eralizes to other interpretation techniques, as long as they
are differentiable.

3.1. Augmenting the loss function

Given a particular classification task, we want to teach a
model to not only produce the correct prediction but also
to arrive at the prediction for the correct reasons. That is,
we want the model to be right for the right reasons, where
the right reasons are provided by the user and are dataset-
dependent. Assuming a truthful explanation method, this
implies that the explanation provided by the DNN for a
particular decision should be aligned with a pre-supplied
explanation encoding our knowledge of the underlying rea-
sons.

To accomplish this, we augment the traditional objective
function used to train a neural network, as displayed in
Eq 1 with an additional component. In addition to the stan-
dard prediction loss L, which teaches the model to produce
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the correct predictions by penalizing wrong predictions, we
add an explanation error Lexpl, which teaches the model to
produce the correct explanations for its predictions by pe-
nalizing wrong explanations.

In place of the prediction and labels fθ(X), y, used in the
prediction error L, the explanation error Lexpl uses the ex-
planations produced by an interpretation method explθ(X),
along with targets provided by the user explX . As is com-
mon with penalization, the two losses are weighted by a
hyperparameter λ ∈ R:

θ̂ = argmin
θ

Prediction error︷ ︸︸ ︷
L (fθ(X), y)

+λLexpl (explθ(X), explX)︸ ︷︷ ︸
Explanation error

(1)

The precise meaning of explX depend on the context. For
example, in the skin cancer image classification task de-
scribed in Section 4, many of the benign skin images con-
tain band-aids, while none of the malignant images do. To
force the model to ignore the band-aids in making their pre-
diction, in each image explθ(X) denotes the importance
score of the band-aid and explX would be zero. These and
more examples are further explored in Section 4.

3.2. Contextual decomposition (CD)

In this work, we use the CD score as the explanation func-
tion. In contrast to other interpretation methods, which fo-
cus on feature importances, CD also captures interactions
between features, making it particularly suited to regularize
the importance of complex features.

CD was originally designed for LSTMs (Murdoch et al.,
2018) and subsequently extended to convolutional neural
networks and arbitrary DNNs (Singh et al., 2018). For a
given DNN f(x), one can represent its output as a Soft-
Max operation applied to logits g(x). These logits, in turn,
are the composition of L layers gi, such as convolutional
operations or ReLU non-linearities.

f(x) = SoftMax(g(x)) (2)
= SoftMax(gL(gL−1(...(g2(g1(x)))))) (3)

Given a group of features {xj}j∈S , the CD algorithm,
gCD(x), decomposes the logits g(x) into a sum of two
terms, β(x) and γ(x). β(x) is the importance score of the
feature group {xj}j∈S , and γ(x) captures contributions to
g(x) not included in β(x). The decomposition is computed
by iteratively applying decompositions gCDi (x) for each of

the layers gi(x).

gCD(x) = gCDL (gCDL−1(...(g
CD
2 (gCD1 (x)))))) (4)

= (β(x), γ(x)) (5)
= g(x) (6)

3.3. CDEP objective function

We now substitute the above CD scores into the generic
equation in Eq 1 to arrive at CDEP as it is used in this paper.
While we use CD for the explanation method explθ(X),
other explanation methods could be readily substituted at
this stage. In order to convert CD scores to probabilities,
we apply a SoftMax operation to gCD(x), allowing for eas-
ier comparison with the user-provided labels explX . We
collect from the user, for each input xi, a collection of fea-
ture groups xi,S , xi ∈ Rd, S ⊆ {1, ..., d}, along with ex-
planation target values explxi,S

, and use the ‖ · ‖1 loss for
Lexpl.

This yields a vector β(xj) for any subset of features in an
input xj which we would like to penalize. We can then col-
lect ground-truth label explanations for this subset of fea-
tures, explxj

and use it to regularize the explanation. Using
this we arrive at the equation for the weight parameters with
CDEP loss:

θ̂ = argmin
θ

Prediction error︷ ︸︸ ︷∑
i

∑
c

− yi,c log fθ(xi)c

+λ
∑
i

∑
S

||β(xi,S)− explxi,S
||1︸ ︷︷ ︸

Explanation error

(7)

In the above, i indexes each individual example in the
dataset, S indexes a subset of the features for which we
penalize their explanations, and c sums over each class.

Updating the model parameters in accordance with this for-
mulation ensures that the model not only predicts the right
output but also does so for the right (aligned with prior
knowledge) reasons. It is important to note that the eval-
uation of what the right reasons are depends entirely on the
practitioner deploying the model. As with the class labels,
using wrong or biased explanations will yield a wrong and
biased model.

3.4. Encoding domain knowledge as explanations

The choice of ground-truth explanations explX is depen-
dent on the application and the existing domain knowledge.
CDEP allows for penalizing arbitrary interactions between
features, allowing the incorporation of a very broad set of
domain knowledge.
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In the simplest setting, practitioners may precisely pro-
vide groundtruth human explanations for each data point.
This may be useful in a medical image classifications set-
ting, where data is limited and practitioners can endow the
model with knowledge of how a diagnosis should be made.
However, collecting such groundtruth explanations can be
very expensive.

To avoid assigning human labels, one may utilize program-
matic rules to identify and assign groundtruth importance
to regions, which are then used to help the model identify
important/unimportant regions. For example, Sec 4.1 uses
rules to identify spurious patches in images which should
have zero importance and Sec 4.4 uses rules to identify and
assign zero importance to words involving gender.

In a more general case, one may specify importances of
different feature interactions. For example in Sec 4.2 we
specify that the importance of pixels in isolation should
be zero, so only interactions between pixels can be used
to make predictions. This prevents a model from latching
onto local cues such as color and texture when making its
prediction.

3.5. Computational considerations

Previous work has proposed ideas similar to Eq 1, where
the choice of explanation method is based on gradients
(Ross et al., 2017; Erion et al., 2019). However, using
such methods leads to three main complications which are
solved by our approach.

The first complication is the optimization process. When
optimizing over gradient-based attributions via gradient de-
scent, the optimizer requires the gradient of the gradient,
requiring that all network components be twice differen-
tiable. This process is computationally expensive and op-
timizing it exactly involves optimizing over a differential
equation, often making it intractable. In contrast, CD at-
tributions are calculated along the forward pass of the net-
work, and as a result, can be optimized plainly with back-
propagation using the standard single forward-pass and
backward-pass per batch.

A second advantage from the use of CD in Eq 7 is the abil-
ity to quickly finetune a pre-trained network. In many ap-
plications, particularly in transfer learning, it is common
to finetune only the last few layers of a pre-trained neural
network. Using CD, one can freeze early layers of the net-
work and quickly finetune final layers, as the calculation of
gradients of the frozen layers is not necessary.

Third, CDEP incurs much lower memory usage than com-
peting gradient-based methods. With gradient-based meth-
ods the training requires the storage of activations and gra-
dients for all layers of the network as well as the gradient
with respect to the input (which can be omitted in normal

training). Even for the simplest gradient-based methods,
this more than doubles the required memory for a given
batch and network size, sometimes becoming prohibitively
large. In contrast, penalizing CD requires only a small con-
stant amount of memory more than standard training.

4. Results
The results here demonstrate the efficacy of CDEP on a va-
riety of datasets using diverse explanation types. Sec 4.1
shows results on ignoring spurious patches in the ISIC skin
cancer dataset (Codella et al., 2019), Sec 4.2 details ex-
periments on converting a DNN’s preference for color to
a preference for shape on a variant of the MNIST dataset
(LeCun, 1998), Sec 4.3 showcases the use of CDEP to train
a neural network that aligns better with a pre-defined fair-
ness measure, and Sec 4.4 shows experiments on text data
from the Stanford Sentiment Treebank (SST) (Socher et al.,
2013).2

4.1. Ignoring spurious signals in skin cancer diagnosis

In recent years, deep learning has achieved impressive re-
sults in diagnosing skin cancer, with predictive accuracy
sometimes comparable to human doctors (Esteva et al.,
2017). However, the datasets used to train these models
often include spurious features which make it possible to
attain high test accuracy without learning the underlying
phenomena (Winkler et al., 2019). In particular, a popular
dataset from ISIC (International Skin Imaging Collabora-
tion) has colorful patches present in approximately 50% of
the non-cancerous images but not in the cancerous images
as can be seen in Fig. 2 (Codella et al., 2019; Tschandl
et al., 2018). An unpenalized DNN learns to look for these
patches as an indicator for predicting that an image is be-
nign as can be seen in Fig. 3. We use CDEP to remedy this
problem by penalizing the DNN placing importance on the
patches during training.

The task in this section is to classify whether an image
of a skin lesion contains (1) benign lesions or (2) malig-
nant lesions. In a real-life task, this would for example be
done to determine whether a biopsy should be taken. The
ISIC dataset consists of 21,654 images with a certain di-
agnosis (19,372 benign, 2,282 malignant), each diagnosed
by histopathology or a consensus of experts. We excluded
2247 images since they had an unknown or not certain di-
agnosis.

To obtain the binary maps of the patches for the skin can-
cer task, we first segment the images using SLIC, a com-
mon image-segmentation algorithm (Achanta et al., 2012).
Since the patches are a different color from the rest of the
image, they are usually their own segment. Subsequently

2All models were trained in PyTorch (Paszke et al., 2017).
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Benign

half of data polluted with patchesMalignant

Figure 2. Example images from the ISIC dataset. Half of the benign lesion images include a patch in the image. Training on this data
results in the neural network overly relying on the patches to classify images. We aim to avoid this with our method.

Table 1. Results from training a DNN on ISIC to recognize skin cancer (averaged over three runs). Results shown for the entire test
set and for only the images the test set that do not include patches (“no patches”). The network trained with CDEP generalizes better,
getting higher AUC and F1 on both. Std below 0.006 for all AUC and below 0.012 for all F1.

AUC (NO PATCHES) F1 (NO PATCHES) AUC (ALL) F1 (ALL)

VANILLA (EXCLUDING TRAINING DATA WITH PATCHES) 0.87 0.57 0.92 0.55
VANILLA 0.93 0.67 0.96 0.67
RRR 0.76 0.45 0.87 0.45
CDEP 0.95 0.73 0.97 0.73

we take the mean RGB and HSV values for all segments
and filter for segments in which the mean was substantially
different from the typical caucasian skin tone. Since dif-
ferent images were different from the typical skin color in
different attributes, we filtered for those images recursively.
As an example, in the image shown in the appendix in Fig.
S3, the patch has a much higher saturation than the rest of
the image.

After the spurious patches were identified, we penalized
them with CDEP to have zero importance. For classifi-
cation, we use a VGG16 architecture (Simonyan & Zis-
serman, 2014) pre-trained on the ImageNet Classification
task(Deng et al., 2009)3 and freeze the weights of early lay-
ers so that only the fully connected layers are trained. To
account for the class imbalance present in the dataset, we
weigh the classes to be equal in the loss function.

Table 1 shows results comparing the performance of a
model trained with and without CDEP. We report results
on two variants of the test set. The first, which we refer to
as “no patches” only contains images of the test set that do
not include patches. The second also includes images with
those patches. Training with CDEP improves the AUC and

F1-score for both test sets.

In the first row of Table 1, the model is trained using only
the data without the spurious patches, and the second row
shows the model trained on the full dataset. The network
trained using CDEP achieves the best F1 score, surpassing
both unpenalized versions.

Interestingly, the model trained with CDEP also improves
when we consider the entire (biased) dataset, indicating
that the model does in fact generalize better to all exam-
ples. We also compared our method against the method
introduced in 2017 by Ross et al. (RRR). For this, we re-
stricted the batch size to 16 (and consequently use a learn-
ing rate of 10−5) due to memory constraints.4

Using RRR did not improve on the base AUC, implying
that penalizing gradients is not helpful in penalizing higher-
order features.5 In fact, using RRR severely decreased per-

3Pre-trained model retrieved from torchvision.
4A higher learning rate yields NaN loss and a higher batch size

requires too much GPU RAM, necessitating these settings. Due
to this a wider sweep of hyperparameters was not possible.

5We were not able to compare against the method recently pro-
posed in (Erion et al., 2019) due to its prohibitively slow training
and large memory requirements.

https://pytorch.org/docs/stable/torchvision/models.html
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Figure 3. Visualizing heatmaps for correctly predicted exampes
from the ISIC skin cancer test set. Lighter regions in the heatmap
are attributed more importance. The DNN trained with CDEP
correctly captures that the patch is not relevant for classification.

formance in all considered metrics, implying that penaliz-
ing gradients not only does not help but impedes the learn-
ing of relevant features.

Visualizing explanations To investigate how CDEP al-
tered a DNN’s explanations, we visualize GradCAM
heatmaps (Ozbulak, 2019; Selvaraju et al., 2017) on the
ISIC test dataset with a regularized and unregularized net-
work in Fig. 3. As expected, after penalizing with CDEP,
the DNN attributes less importance to the spurious patches,
regardless of their position in the image. More examples
are shown in the appendix. Anecdotally, patches receive
less attribution when the patch color was far from a Cau-
casian human skin tone, perhaps because these patches are
easier for the network to identify.

4.2. Combating inductive bias on variants of the
MNIST dataset

In this section, we investigate CDEP’s ability to alter which
features a DNN uses to perform digit classification, using
variants of the MNIST dataset (LeCun, 1998) and a stan-
dard CNN architecture for this dataset retrieved from Py-
Torch 6.

6Retrieved from github.com/pytorch/examples/blob/master/mnist.

ColorMNIST Similar to one previous study (Li & Vas-
concelos, 2019), we alter the MNIST dataset to include
three color channels and assign each class a distinct color,
as shown in Fig. 4. An unpenalized DNN trained on this
biased data will completely misclassify a test set with in-
verted colors, dropping to 0% accuracy (see Table 2), sug-
gesting that it learns to classify using the colors of the digits
rather than their shape.

Here, we want to see if we can alter the DNN to focus on
the shape of the digits rather than their color. We stress that
this is a toy example where we artificially induced a bias;
while the task could be easily solved by preprocessing the
input to only have one color channel, this artificial bias al-
lows us to measure the DNN’s reliance on the confounding
variable color in end-to-end training. By design, the task
is intuitive and the bias is easily recognized and ignored by
humans. However, for a neural network trained in a stan-
dard manner, ignoring the confounding variable presents a
much greater challenge.

Interestingly, this task can be approached by minimizing
the contribution of pixels in isolation (which only represent
color) while maximizing the importance of groups of pixels
(which can represent shapes). To do this, we penalize the
CD contribution of sampled single pixel values, following
Eq 7. By minimizing the contribution of single pixels we
encourage the network to focus instead on groups of pixels.
Since it would be computationally expensive and not nec-
essary to apply this penalty to every pixel in every training
input, we sample pixels to be penalized from the average
distribution of nonzero pixels over the whole training set
for each batch.

Table 2 shows that CDEP can partially divert the network’s
focus on color to also focus on digit shape. We com-
pare CDEP to two previously introduced explanation pe-
nalization techniques: penalization of the squared gradients
(RRR) (Ross et al., 2017) and Expected Gradients (EG)
(Erion et al., 2019) on this task. For EG we additionally try
penalizing the variance between attributions of the RGB
channels (as recommended by the authors of EG in per-
sonal correspondence). None of the baselines are able to
improve the test accuracy of the model on this task above
the random baseline, while CDEP is able to significantly
improve this accuracy to 31.0%. We show the increase of
predictive accuracy with increasing penalization in the ap-
pendix. Increasing the regularizer rate for CDEP increases
accuracy on the test set, implying that CDEP meaningfully
captured and penalized the bias towards color.

DecoyMNIST For further comparison with previous
work, we evaluate CDEP on an existing task: DecoyM-
NIST (Erion et al., 2019). DecoyMNIST adds a class-
indicative gray patch to a random corner of the image. This

https://github.com/pytorch/examples/blob/master/mnist/main.py
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Figure 4. ColorMNIST: the shapes remain the same between the training set and the test set, but the colors are inverted.

Table 2. Test Accuracy on ColorMNIST and DecoyMNIST. CDEP is the only method that captures and removes color bias. All values
averaged over thirty runs. Predicting at random yields a test accuracy of 10%.

VANILLA CDEP RRR EXPECTED GRADIENTS

COLORMNIST 0.2 ± 0.2 31.0 ± 2.3 0.2 ± 0.1 10.0 ± 0.1

DECOYMNIST 60.1 ± 5.1 97.2 ± 0.8 99.0 ± 1.0 97.8 ± 0.2

task is relatively simple, as the spurious features are not en-
tangled with any other feature and are always at the same
location (the corners). Table 2 shows that all methods per-
form roughly equally, recovering the base accuracy. Re-
sults are reported using the best penalization parameter λ,
chosen via cross-validation on the validation set. We pro-
vide details on the computation time, and memory usage
in Table S1, showing that CDEP is similar to existing ap-
proaches. However, when freezing early layers of a net-
work and finetuning, CDEP very quickly becomes more ef-
ficient than other methods in both memory usage and train-
ing time.

4.3. Fixing bias in COMPAS

In all examples so far, the focus has been on improving gen-
eralization accuracy. Here, we turn to improving notions of
fairness in models while preserving prediction accuracy in-
stead.

We train and analyze DNNs on the COMPAS dataset (Lar-
son et al., 2016), which contains data for predicting recidi-
vism (i.e whether a person commits a crime / a violent
crime within 2 years) from many attributes. Such mod-
els have been used for the purpose of informing whether
defendants should be incarcerated and can have very seri-
ous implication. As a result, we examine and influence the
model’s treatment of race, restricting our analysis to the
subset of people in the dataset whose race is identified as
black or white (86% of the full dataset). All models were
fully connected DNNs with two hidden layers of size 5,
ReLU nonlinearity, and dropout rate of 0.1 (see appendix
for details).

We analyze the effect of CDEP to alter models with respect
to one particular notion of fairness: the wrongful convic-
tion rate (defined as the fraction of defendants who are rec-
ommended for incarceration, but did not recommit a crime
in the next two years). We aim to keep this rate low and
relatively even across races, similar to the common “equal-
ized odds” notion of fairness (Dieterich et al., 2016); note
that a full investigation of fairness and its most appropriate
definition is beyond the scope of the work here.

Table 3 shows results for different models trained on the
COMPAS dataset. The first row shows a model trained with
standard procedures and the second row shows a model
trained with the race of the defendants hidden. The unreg-
ularized model in the first row has a stark difference in the
rates of false positives between black and white defendants.
Black defendants are more than twice as likely to be mis-
classified as high-risk for future crime. This is in-line with
previous analysis of the COMPAS dataset (Larson et al.,
2016).

Obscuring the sensitive attribute from the model does not
remove this discrepancy. This is due to the fact that black
and white people come from different distributions (e.g.
black defendants have a different age distribution).

The third row shows the results for CDEP, where the model
is regularized to place more importance on the race feature
and its interactions, encouraging it to learn the dependence
between race and the distribution of other features. By
doing so, the model achieves a lower wrongful conviction
rate for both black and white defendants, as well as bring-
ing these rates noticeably closer together by disproportion-
ally lowering the wrongful conviction rate for black defen-
dants. Notably, the test accuracy of the model stays rela-
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tively fixed despite the drop in wrongful conviction rates.

Table 3. Fairness measures on the COMPAS dataset. WCR stands
for wrongful conviction rate the fraction of innocent defendants
who are recommended for incarceration). All values averaged
over five runs.

TEST ACC WCR(BLACK) WCR(WHITE)

VANILLA 67.8±1.0 0.47± 0.03 0.22±0.03
RACE HIDDEN 68.5±0.3 0.44±0.02 0.23±0.01
CDEP 68.8±0.3 0.39±0.04 0.20± 0.01

4.4. Fixing bias in text data

To demonstrate CDEP’s effectiveness on text, we use the
Stanford Sentiment Treebank (SST) dataset (Socher et al.,
2013), an NLP benchmark dataset consisting of movie re-
views with a binary sentiment (positive/negative). We in-
ject spurious signals into the training set and train a stan-
dard LSTM 7 to classify sentiment from the review.

Positive
pacino is the best she’s been in years and keener is mar-
velous
she showcases davies as a young woman of great charm,
generosity and diplomacy

Negative
i’m sorry to say that this should seal the deal - arnold is
not, nor will he be, back.
this is sandler running on empty, repeating what he’s al-
ready done way too often.

Figure 5. Example sentences from the SST dataset with artifi-
cially induced bias on gender.

We create three variants of the SST dataset, each with dif-
ferent spurious signals which we aim to ignore (examples
in the appendix). In the first variant, we add indicator words
for each class (positive: ‘text’, negative: ‘video’) at a ran-
dom location in each sentence. An unpenalized DNN will
focus only on those words, dropping to nearly random per-
formance on the unbiased test set. In the second variant, we
use two semantically similar words (‘the’, ‘a’) to indicate
the class by using one word only in the positive and one
only in the negative class. In the third case, we use ‘he’
and ‘she’ to indicate class (example in Fig 5). Since these
gendered words are only present in a small proportion of
the training dataset (∼ 2%), for this variant, we report ac-
curacy only on the sentences in the test set that do include
the pronouns (performance on the test dataset not includ-
ing the pronouns remains unchanged). Table 4 shows the
test accuracy for all datasets with and without CDEP. In all

7Retrieved from github.com/clairett/pytorch-sentiment-
classification.

scenarios, CDEP is successfully able to improve the test
accuracy by ignoring the injected spurious signals.

Table 4. Results on SST. CDEP substantially improves predictive
accuracy on the unbiased test set after training on biased data.

UNPENALIZED CDEP

RANDOM WORDS 56.6 ± 5.8 75.4 ± 0.9
BIASED (ARTICLES) 57.8 ± 0.8 68.2 ± 0.8
BIASED (GENDER) 64.2 ± 3.1 78.0 ± 3.0

5. Conclusion
In this work we introduce a novel method to penalize neu-
ral networks to align with prior knowledge. Compared to
previous work, CDEP is the first of its kind that can pe-
nalize complex features and feature interactions. Further-
more, CDEP is more computationally efficient than previ-
ous work, enabling its use with more complex neural net-
works.

We show that CDEP can be used to remove bias and im-
prove predictive accuracy on a variety of toy and real data.
The experiments here demonstrate a variety of ways to use
CDEP to improve models both on real and toy datasets.
CDEP is quite versatile and can be used in many more ar-
eas to incorporate the structure of domain knowledge (e.g.
biology or physics). The effectiveness of CDEP in these
areas will depend upon the quality of the prior knowledge
used to determine the explanation targets.

Future work includes extending CDEP to more complex
settings and incorporating more fine-grained explanations
and interaction penalizations. We hope the work here will
help push the field towards a more rigorous way to use in-
terpretability methods, a point which will become increas-
ingly important as interpretable machine learning devel-
ops as a field (Doshi-Velez & Kim, 2017; Murdoch et al.,
2019).

https://github.com/clairett/pytorch-sentiment-classificatio
https://github.com/clairett/pytorch-sentiment-classificatio
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