
On Semi-parametric Inference with BART (Appendix)

1 Appendix

1.1 Proof of Theorem 4.1theorem.4.1

First, we show that with K large enough Ψ̂K will satisfy
√
n|Ψn − Ψ̂K | = oP (1). (1.1)

We can write
√
n|Ψn − Ψ̂K | =

√
n|Ψ(f0)−Ψ(fK0 ) +Wn(a− aK)|

=
√
n

∣∣∣∣∣ 1n
n∑
i=1

[
f0(xi)− fK0 (xi) + εi

] [
a(xi)− aK(xi)

]∣∣∣∣∣ ,
where we used the fact that

n∑
i=1

[f0(xi)− fK0 (xi)]a
K(xi) =

K∑
k=1

aKk
n

∑
xi∈Ωk

[
f0(xi)−

n

µ(Ωk)

∑
xi∈Ωk

f0(xi)

]
= 0.

Next, we can write
√
n|Ψn − Ψ̂K | <

[√
n‖a− aK‖L × ‖f0 − fK0 ‖L + ZK

n

]
,

where

ZK
n =

1√
n

n∑
i=1

εi[a(xi)− aK(xi)].

We assume that the design is regular (according to Definition 3.3 of Rockova and van der
Pas (2017) (further referred to as RP17) with p = q = 1). Assuming that a ∈ Hγ, it follows
from the proof of Lemma 3.2 of Rockova and van der Pas (2017) that

‖f0 − fK0 ‖L ≤ ‖f0‖HαC1/K
α and

∣∣‖a‖L − ‖aK‖L∣∣ ≤ ‖a− aK‖L ≤ ‖a‖HγC2/K
γ.

We assume that ‖a‖2
L ≤ ‖a‖2

∞ < C2
a for some Ca > 0 and ‖f0‖∞ < Cf for some Cf > 0.

Because

VarZK
n = ‖a− aK‖2

L =
1

n

n∑
i=1

[a(xi)− aK(xi)]
2 . 1/K2γ,
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we conclude that ZK
n = oP (1) when K →∞ as n→∞ and thereby

√
n|Ψn − Ψ̂K | .

√
nK−(α+γ) + oP (1). (1.2)

With the choice K = Kn = b(n/ log n)1/(2α+1)c for α > 1/2 and γ > 1/2, (1.2) will be
satisfied.

To continue, we introduce the following notation

fKt = fK − t aK√
n

and write

`n(fKt )− `n(fK0 )− [`n(fK)− `n(fK0 )]

= −n
2

[‖fKt − fK0 ‖2
L − ‖fK − fK0 ‖2

L] +
√
nWn(fKt − fK)

= −n
2

[‖fKt − fK‖2
L + 2〈fKt − fK , fK − fK0 〉L] +

√
nWn(fKt − fK)

= −t
2

2
‖aK‖2

L +
√
n t〈aK , fK − fK0 〉L − tWn(aK)

Then we have

t
√
n(Ψ(fK)− Ψ̂K) = t

√
n(Ψ(fK)−Ψ(fK0 ))− tWn(aK)

and thereby, using the fact

t
√
n(Ψ(fK)−Ψ(fK0 )) = t

√
n〈aK , fK − fK0 〉L,

we can write

t
√
n(Ψ(fK)− Ψ̂K) + `n(fK)− `n(fK0 )

= `n(fKt )− `n(fK0 ) +
t2

2
‖aK‖2

L −
√
n t〈aK , fK − fK0 〉L + t

√
n〈aK , fK − fK0 〉L

= `n(fKt )− `n(fK0 ) +
t2

2
‖aK‖2

L.

Given sets An,K ⊂ F [K] (to be defined later) such that Π(ACn,K |Y (n))→ 0 in Pn0 probability,
we define

In,K = EΠ[et
√
n(Ψ(fK)−Ψ̂K) | Y (n), An,K ] (1.3)

and, using the calculations above, we write

In,K = e
t2

2
‖aK‖2L ×

∫
An,K

e`n(fKt )−`n(fK0 )dΠK(fK)∫
An,K

e`n(fK)−`n(fK0 )dΠK(fK)
. (1.4)
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For β = (β1, . . . , βK)′ ∈ RK , define βtk = βk −
taKk√
n

and denote βt = (βt1, . . . , β
t
K) ∈ RK and

aK = (aK1 , . . . , a
K
K)′ ∈ RK . Then we have

fK(x) =
K∑
k=1

I(x ∈ Ωk)βk and fKt (x) =
K∑
k=1

I(x ∈ Ωk)β
t
k.

Assuming the multivariate Gaussian prior π(β) = 1√
2π|Σ|

e−
1
2
β′Σ−1β centered at zero with a

covariance matrix Σ, we can write

π(β) = π(βt)e
t2

2n
aK
′
Σ−1aK− t√

n
aK
′
Σ−1β

. (1.5)

Next, for ε̃n,K =
√

K log(n)
n

and M > 0, we define

An,K(M) =
{
fK ∈ F [K] : ‖fK − fK0 ‖L ≤M ε̃n,K

}
. (1.6)

We show (Section 1.1.2) that Π(ACn,K(M) |Y (n))→ 0 in Pn0 -probability as n→∞ for some
suitably large M > 0. We note that

An,K(M) ⊂ {β ∈ RK : ‖β − βK0 ‖2
2 ≤M2 n ε̃2

n,K},

where βK0 ∈ RK are coefficients of the projection of f0 onto F [K]. On the set An,K(M),
we can thus write

t√
n

∣∣aK′Σ−1β
∣∣ < t√

nλmin
‖aK‖2

√
‖β − βK0 ‖2

2 + ‖βK0 ‖2
2

<
t√

nλmin
‖aK‖2

√
K log n+KC2

f

<
tK Ca√
nλmin

√
log n+ C2

f , (1.7)

where λmin is the smallest singular value of Σ and where we used the fact that ‖a‖∞ < Ca
and ‖f0‖∞ < Cf . Using (1.7) and (1.5), we have

e
t2

2
‖a‖2L−

tK Ca
λmin

√
n

√
logn+C2

f < In,K < e
t2

2
‖a‖2L+

t2KC2
a

2nλmin
+ tK Ca
λmin

√
n

√
logn+C2

f .

If λmin > c for some c and K
√

(log n)/n → 0, we have limn→∞ In,K = et
2‖a‖2L for each

t ∈ R. This is satisfied if we set, for instance, K = Kn = b(n/ log n)1/(2α+1)c with α > 1/2.
This concludes the proof of the BvM property for a fixed K and a single partition.

1.1.1 The Laplace Prior

For the Laplace prior, we use the reverse triangle inequality |βk| > |βtk| − |
taKk√
n
| to find that

π(βK) =
K∏
k=1

ψ(βk;λ) <
K∏
k=1

ψ(βtk;λ)e
tλ|aKk |√

n = π(βKt )e
tλ√
n
‖aK‖1 < π(βKt )e

tλ√
n
KCa .
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Then we find that for K = Kn

e
t2

2
(‖a‖2L+o(1)) × e

− tλ√
n
Kn(α)Ca < In,K < e

t2

2
(‖a‖2L+o(1)) × e

tλ√
n
Kn(α)Ca .

Since Kn(α) = b(n/ log n)1/(2α+1)c, we have for α > 1/2 and t ∈ R.

lim
n→∞

EΠ[et
√
n(Ψ(fK)−Ψn) | Y (n)] = e

t2

2
‖a‖2L .

It is interesting to note that with the Laplace prior, one can obviate the proof of posterior
concentration around the projections, which was needed for the Gaussian case.

1.1.2 The Set An,K

We want to show that the posterior distribution concentrates around fK0 , the projection of
f0 onto F [K], at the following contraction rate

ε̃n,K =

√
K log(n)

n
.

For K ≤ n/ log(n) and An,K(M) defined in (1.6), we show that

lim
n→∞

Π(ACn,K(M) | Y (n)) = 0 in Pn0 -probability (1.8)

for some sufficiently constant M > 0. We show this statement by verifying conditions (2.4)
and (2.5) of Theorem 2.1 of Kelijn and van der Vaart (2006). We start with the entropy
condition (2.5). In our model, the covering number for testing under misspecification can
be bounded by the classical local entropy (according to Lemma 2.1 by Kelijn and van der
Vaart (2006). It follows from Section 8.1 of Rockova and van der Pas (2017) that the local
entropy satisfies

N
(
ε
36
,
{
fK ∈ F [K] : ‖fK − fK0 ‖L < ε

}
, ‖.‖L

)
≤
(

108

C̄

√
n

)K
,

where C̄ is such that µ(Ωk) > C̄/n. The entropy condition (2.5) will be met since

K log n . n ε̃2
n,K .

Regarding the prior concentration condition (2.4), we note (similarly as in Section 8.2 of
Rockova and van der Pas (2017)) that{

fK ∈ F [K] : ‖fK − fK0 ‖L ≤M ε̃n,K
}
⊃ {β ∈ RK : ‖β − βK0 ‖2 ≤M ε̃n,K}

With the Gaussian prior β |K ∼ NK(0,Σ), we have

Π
(
β ∈ RK : ‖β − βK0 ‖2 ≤M ε̃n,K

)
≥ Π

(
β̃ ∈ RK : ‖β̃ − β̃

K

0 ‖2 ≤M
ε̃n,K√
λmax

)
,
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where λmax is the maximal eigenvalue of Σ and where β̃
K

0 = Σ−1/2βK0 and β̃ = Σ−1/2β ∼
NK(0, IK). The right-hand side can be further lower-bounded with

2−Ke−‖β̃
K
0 ‖22−M2ε̃2n,K/(4λmax)

Γ
(
K
2

) (
K
2

) (
Mε̃n,K√
λmax

)K
.

With λmin denoting the minimal eigenvalue of Σ, we obtain the following lower bound for
the above:

e−C1K log(C2K λmax/ε̃n,K)−K‖f0‖2∞/λmin−C3ε̃2n,K/λmax

With λmin > c for some c > 0, λmax . n and ‖f0‖∞ ≤ log1/2(n), the above is bounded
from below by e−DK log(n) for some suitable D > 0. It then follows from Theorem 2.1 of
Kleijn and van der Vaart (2006) that (1.8) holds.

1.2 Posterior Concentration for the Laplace Prior

Ročková and van der Pas (2017) and Ročková and Saha (2019) show posterior concentration
for BART under (a) the conditionally uniform prior (8equation.3.8) and (9equation.3.9)
and (b) the Galton Watson Process prior (10equation.3.10). Both of these results apply for
Gaussian step heights. Here, we formally show that the Laplace prior gives rise to optimal
posterior concentration as well.

Theorem 1.1. Assume f0 ∈ Hα
p with 0 < α ≤ 1 where p . log1/2 n and ‖f0‖∞ . log1/2 n.

Moreover, we assume that X ≡ {xi}ni=1 is regular. We assume priors (8equation.3.8) and
(9equation.3.9) or the Galton Watson process (10equation.3.10) and Laplace step heights
(12equation.3.12) where 1/λ .

√
K. Then with εn = n−α/(2α+p) log1/2 n we have

Π
(
fT ,β : ‖fT ,β − f0‖n > Mn εn | Y (n)

)
→ 0,

for any Mn →∞ in Pn0 -probability, as n, p→∞.

Proof. It suffices to show the prior concentration condition (2.2) in Rockova and van der
Pas (2017), i.e.

Π(fT ,β : ‖fT ,β − f0‖n ≤ εn) ≥ e−dn ε
2
n

for some d > 2. Using similar considerations as in Section 8.2. of RP17, this boils down to
showing that

Π(β ∈ RK : ‖β − β̂‖2 ≤ εn/2) ≥ Π(β ∈ RK : ‖β − β̂‖1 ≤ εn/2),

where β̂ ∈ RK are the step heights of the projection of f0 onto a partition supported by
the k-d tree with K steps, where K . nε2

n/ log n. The right hand side equals∫
|β−β̂|1≤εn/2

(
λ

2

)K
e−λ|β|1dβ > e−λ|β̂|1

∫
|β|1≤εn/2

(
λ

2

)K
e−λ|β|1dβ

> e−λ|β̂|1
(
εnλ

2K

)K
e−λεn/2.

5



Assuming that ‖f0‖∞ . log n, we have |β̂|1 ≤ K log n . nε2
n. Next, for 1/λ .

√
K we

have K log[4K/(λε2
n)] . K log n . nε2

n.

1.3 Proof of Theorem 5.1theorem.5.1

According to Lemma 5.1lemma.5.1, the posterior concentrates on the set R(Kn). All
the following arguments will be thus conditional on R(Kn). The conditional posterior
decomposes into a mixture of laws with weights π(T | Y (n),R(Kn)) in the sense that

EΠ[et
√
n(Ψ(fT ,β)−Ψn) | Y (n),R(Kn)]

=
∑

T ∈R(Kn)

π[T | Y (n),R(Kn)]EΠ[et
√
n(Ψ(fT ,β)−Ψn) | Y (n), T ]

= et×oP (1)
∑

T ∈R(Kn)

π[T | Y (n),R(Kn)]In,T

where
In,T = EΠ

[
et
√
n(Ψ(fT ,β)−Ψ̂T )

∣∣Y (n), T
]

and where we used the fact that
√
n|Ψ̂T − Ψn| = oP (1) under the assumption of self-

similarity (as we showed earlier in the Section 5.2subsection.5.2). Under the Laplace prior
(12equation.3.12), we can write for T ∈ R(Kn)

e
t2

2
(‖a‖2L+o(1)) × e

− t λ√
n
KnCa < In,T < e

t2

2
(‖a‖2L+o(1)) × e

t λ√
n
KnCa .

Since Kn = bM2n
1/(2α+1)c, we have for 1/2 < α ≤ 1 and for all t ∈ R

lim
n→∞

EΠ[et
√
n(Ψ(fT ,β)−Ψn) | Y (n),R(Kn)] = e

t2

2
‖a‖2L .

For the Gaussian prior, one can proceed analogously as before. For each T ∈ R(Kn)∩VK ,
we denote with An,T (M) = {fT ,β ∈ F [T ] : ‖fT ,β − fT0 ‖L ≤ M

√
K log n/n}. Using the

same arguments as in Section 1.1.2, one can show that, given T ∈ R(Kn), the posterior

concentrates on An,T (M). We then define In,T = EΠ
[
et
√
n(Ψ(fT ,β)−Ψ̂T )

∣∣Y (n), T , An,T (M)
]

and using the same arguments show that limn→∞ In,T = e
t2

2
‖a‖2L uniformly for all T ∈

R(Kn).

1.4 Proof of Theorem 5.2theorem.5.2

Let aE denote the projection of a onto F [E ] (the set of all forest mappings (7equation.3.7)
supported on a given ensemble E). The no-bias condition (16equation.4.16) is satisfied
automatically since aE = a.

Similarly as in Rockova and van der Pas (2017) (Corollary 5.1), one can show that
the posterior concentrates on E , whose trees are not too big (i.e.

∑
tK

t . nε2
n/ log n for
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εn = n−α/(2α+p) log n). The next step is to show that the prior is sufficiently diffuse in the
sense that it does not change much under a small perturbation. To this end, we introduce
a local shift, for some s > 0,

fE,Bs =
T∑
t=1

(
fT t,βt −

s

T
√
n

)
= fE,B −

s√
n
,

where B = [β1
s, . . . ,β

T
s ] and where βts = βt − s/(T

√
n). Now we have to perform the

change of measures from fE,B to fE,Bs . We start with the independent Laplace prior

(12equation.3.12) for each βt with a penalty λt � 1/
√
Kt. Similarly as in Section 1.1.1, we

have

T∏
t=1

π(βt) <
T∏
t=1

π(βts)× exp

(
s

T
√
n

T∑
t=1

λtK
t

)
<

T∏
t=1

π(βts)× exp

(
s c1√
n

max
t

√
Kt

)
for some c1 > 0. Since maxtK

t . nε2
n, the exponential term converges to one. A similar

argument holds also for the lower bound. For the Gaussian prior βt |Kt ∼ NKt(0, Kt×IKt),
we have

T∏
t=1

π(βt) =
T∏
t=1

π(βts)× exp

(
s2

2nT 2
+
s‖B‖2√
nT

)
,

where B = (β1′, . . . ,βT ′) ∈ R
∑
tK

t
is the vector of all step heights in the ensemble.

Similarly as before, one can show that the conditional posterior distribution of B, given
E , concentrates around the projection of f0 onto F [E ] at the rate

∑
tK

t log n. Since√∑
tK

t log n/n .
√
ε2
n log n → 0, we can use similar arguments as in Section ?? to

conclude the BvM property.

1.5 Proof of Lemma 1

Proof. With εn = n−α/(2α+p)
√

log n, the assumption (18equation.5.18) implies ‖fT0 −f0‖L >
Mn/M3 εn when diam(T ) > dn(α), where fT0 is the ‖ · ‖L projection of f0 onto F [T ]. The
posterior distribution under the Bayesian CART prior concentrates at the rate εn in the
‖ · ‖L sense, i.e. Π(‖f − f0‖L > Mnεn | Y (n)) → 0 in Pn0 -probability for any arbitrarily
slowly increasing sequence Mn. This follows from Ročková and van der Pas (2017) for
the conditionally uniform tree partition prior and from Ročková and Saha (2019) for the
tree-branching process prior. Both of these papers study Gaussian step heights. In the
Appendix (Section 1.2), we extend these results to Laplace step heights. From the near-
minimaxity of the posterior, it then follows that partitions that are not regular are not
supported by the posterior. The dimensionality part regarding K follows from Ročková
and van der Pas (2017) and Ročková and Saha (2019).
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