
Finite-Time Convergence in Continuous-Time Optimization

A. Discontinuous Systems and Differential Inclusions

Recall that for an initial value problem (IVP)

ẋ(t) = F (x(t)) (37a)
x(0) = x0 (37b)

with F : Rn
! Rn, the typical way to check for existence of solutions is by establishing continuity of F . Likewise, to

establish unicity of solution, we typically seek Lipschitz continuity. When F is discontinuous, we may understand (37a) as
the Filippov differential inclusion

ẋ(t) 2 K[F ](x(t)), (38)

where K[F ] : Rn ◆ Rn denotes the Filippov set-valued map given by

K[F ](x) ,
\

�>0

\

µ(S)=0

coF (B�(x) \ S), (39)

where µ denotes the usual Lebesgue measure and co the convex closure, i.e. closure of the convex hull co. For more details,
see (Paden & Sastry, 1987). We can generalize (38) to the differential inclusion (Bacciotti & Ceragioli, 1999)

ẋ(t) 2 F(x(t)), (40)

where F : Rn ◆ Rn is some set-valued map.
Definition 1 (Carathéodory/Filippov solutions). We say that x : [0, ⌧) ! Rn with 0 < ⌧  1 is a Carathéodory solution

to (40) if x(·) is absolutely continuous and (40) is satisfied a.e. in every compact subset of [0, ⌧). Furthermore, we say that
x(·) is a maximal Carathéodory solution if no other Carathéodory solution x0(·) exists with x = x0

|[0,⌧). If F = K[F ], then
Carathéodory solutions are referred to as Filippov solutions.

For a comprehensive overview of discontinuous systems, including sufficient conditions for existence (Proposition 3) and
uniqueness (Propositions 4 and 5) of Filippov solutions, see the work of Cortés (2008). In particular, it can be established
that Filippov solutions to (37) exist, provided that the following assumption (Assumption 1) holds.
Assumption 1 (Existence of Filippov solutions). F : Rn

! Rn is defined almost everywhere (a.e.) and is Lebesgue-
measurable in a non-empty open neighborhood U ⇢ Rn of x0 2 Rn. Further, F is locally essentially bounded in U , i.e., for
every point x 2 U , F is bounded a.e. in some bounded neighborhood of x.

More generally, Carathéodory solutions to (40) exist (now with arbitrary x0 2 Rn), provided that the following assumption
(Assumption 2) holds.
Assumption 2 (Existence of Carathéodory solutions). F : Rn ◆ Rn has nonempty, compact, and convex values, and is
upper semi-continuous.

Filippov & Arscott (1988) proved that, for the Filippov set-valued map F = K[F ], Assumptions 1 and 2 are equivalent
(with arbitrary x0 2 Rn in Assumption 1).

Unicity of solution requires further assumptions. Nevertheless, we can characterize the Filippov set-valued map in a similar
manner to Clarke’s generalized gradient, as seen in the following proposition.
Proposition 1 (Theorem 1 of Paden & Sastry (1987)). Under Assumption 1, we have

K[F ](x) =

⇢
lim
k!1

F (xk) : xk 2 Rn
\ (NF [ S) s.t. xk ! x

�
(41)

for some (Lebesgue) zero-measure set NF ⇢ Rn
and any other zero-measure set S ⇢ Rn

. In particular, if F is continuous

at a fixed x, then K[F ](x) = {F (x)}.

For instance, for the GF (1), we have K[�rf ](x) = {�rf(x)} for every x 2 Rn, provided that f is continuously
differentiable. Furthermore, if f is only locally Lipschitz continuous and regular (see Definition 3 of Appendix B), then
K[�rf ](x) = �@f(x), where

@f(x) ,
⇢

lim
k!1

rf(xk) : xk 2 Rn
\ Nf s.t. xk ! x

�
(42)
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denotes Clarke’s generalized gradient (Clarke, 1981) of f , with Nf denoting the zero-measure set over which f is not
differentiable (Rademacher’s theorem). It can be established that @f coincides with the subgradient of f , provided that f is
convex. Therefore, the GF (1) interpreted as Filippov differential inclusion may also be seen as a continuous-time variant of
subgradient descent methods.

B. Finite-Time Stability of Differential Inclusions

We are now ready to focus on extending some notions from traditional Lipschitz continuous systems to differential inclusions.
Definition 2. We say that x?

2 Rn is an equilibrium of (40) if x(t) ⌘ x? on some small enough non-degenerate interval is
a Carathéodory solution to (40). In other words, if and only if 0 2 F(x?). We say that (40) is (Lyapunov) stable at x?

2 Rn

if, for every " > 0, there exists some � > 0 such that, for every maximal Carathéodory solution x(·) of (40), we have
kx0 � x?

k < � =) kx(t)� x?
k < " for every t � 0 in the interval where x(·) is defined. Note that, under Assumption 2,

if (40) is stable at x?, then x? is an equilibrium of (40) (Bacciotti & Ceragioli, 1999). Furthermore, we say that (40) is
(locally and strongly) asymptotically stable at x?

2 Rn if is stable at x? and there exists some � > 0 such that, for every
maximal Carathéodory solution x : [0, ⌧) ! Rn of (40), if kx0�x?

k < � then x(t) ! x? as t ! ⌧ . Finally, (40) is (locally

and strongly) finite-time stable at x? if it is asymptotically stable and there exists some � > 0 and T : B�(x?) ! [0,1)
such that, for every maximal Carathéodory solution x(·) of (40) with x0 2 B�(x?), we have limt!T (x0) x(t) = x?.

We will now construct a Lyapunov-based criterion adapted from the literature of finite-time stability of Lipschitz continuous
systems.
Lemma 1. Let E(·) be an absolutely continuous function satisfying the differential inequality

Ė(t)  �c E(t)↵ (43)

a.e. in t � 0, with c, E(0) > 0 and ↵ < 1. Then, there exists some t? > 0 such that E(t) > 0 for t 2 [0, t?) and E(t?) = 0.

Furthermore, t? > 0 can be bounded by

t? 
E(0)1�↵

c(1� ↵)
, (44)

with this bound tight whenever (43) holds with equality. In that case, but now with ↵ � 1, then E(t) > 0 for every t � 0,

with limt!1 E(t) = 0. This will be represented by t? = 1, with E(1) , limt!1 E(t).

Proof. Suppose that E(t) > 0 for every t 2 [0, T ] with T > 0. Let t? be the supremum of all such T ’s, thus satisfying
E(t) > 0 for every t 2 [0, t?). We will now investigate E(t?). First, by continuity of E , it follows that E(t?) � 0. Now, by
rewriting

Ė(t)  �c E(t)↵ ()
d

dt


E(t)1�↵

1� ↵

�
 �c, (45)

a.e. in t 2 [0, t?), we can thus integrate to obtain

E(t)1�↵

1� ↵
�

E(0)1�↵

1� ↵
 �c t, (46)

everywhere in t 2 [0, t?), which in turn turn leads to

E(t)  [E(0)1�↵
� c(1� ↵)t]1�↵ (47)

and

t 
E(0)1�↵

� E(t)1�↵

c(1� ↵)


E(0)1�↵

c(1� ↵)
, (48)

where the last inequality follows from E(t) > 0 for every t 2 [0, t?). Taking the supremum in (48) then leads to the upper
bound (44). Finally, we conclude that E(t?) = 0, since E(t?) > 0 is impossible given that it would mean, due to continuity
of E , that there exists some T > t? such that E(t) > 0 for every t 2 [0, T ], thus contradicting the construction of t?.

Finally, notice that if E is such that (43) holds with equality, then (47) and the first inequality in (48) hold with equality
as well. The tightness of the bound (44) thus follows immediately. Furthermore, notice that if ↵ � 1, and E is a tight
solution to the differential inequality (43), i.e. E(t) = [E(0)1�↵

� c(1� ↵)t]1�↵, then clearly E(t) > 0 for every t � 0 and
E(t) ! 0 as t ! 1. ⌅
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Cortés & Bullo (2005) proposed (Proposition 2.8) a Lyapunov-based criterion to establish finite-time stability of discon-
tinuous systems, which fundamentally coincides with our Lemma 1 for the particular choice of exponent ↵ = 0. Their
proposition was, however, directly based on Theorem 2 of Paden & Sastry (1987). Later, Cortés (2006) proposed a
second-order Lyapunov criterion, which, on the other hand, fundamentally translates to E(t) , V (x(t)) being strongly
convex. Finally, Hui et al. (2009) generalized Proposition 2.8 of Cortés & Bullo (2005) in their Corollary 3.1, to establish
semistability. Indeed, these two results coincide for isolated equilibria.

We now present a novel result that generalizes the aforementioned first-order Lyapunov-based results, by exploiting our
Lemma 1. More precisely, given a Laypunov candidate function V (·), the objective is to set E(t) , V (x(t)), and we aim to
check that the conditions of Lemma 1 hold. To do this, and assuming V to be locally Lipschitz continuous, we first borrow
and adapt from Bacciotti & Ceragioli (1999) the definition of set-valued time derivative of V : D ! R w.r.t. the differential
inclusion (40), given by

V̇ (x) , {a 2 R : 9v 2 F(x) s.t. a = p · v, 8p 2 @V (x)}, (49)

for each x 2 D. Notice that, under Assumption 2 for Filippov differential inclusions F = K[F ], the set-valued time
derivative of V thus coincides with with the set-valued Lie derivative LFV (·). Indeed, more generally V̇ could be seen as a
set-valued Lie derivative LFV w.r.t. the set-valued map F .
Definition 3. V (·) is said to be regular if every directional derivative, given by

V 0(x; v) , lim
h!0

V (x+ h v)� V (x)

h
, (50)

exists and is equal to

V �(x; v) , lim sup
x0!xh!0+

V (x0 + h v)� V (x0)

h
, (51)

known as Clarke’s upper generalized derivative (Clarke, 1981).

In practice, regularity is a fairly mild and easy to guarantee condition. For instance, it would suffice that V is convex or
continuously differentiable to ensure that it is Lipschitz and regular.
Assumption 3. V : D ! R is locally Lipscthiz continuous and regular, with D ✓ Rn open.

Under Assumption 3, Clarke’s generalized gradient

@V (x) , {p 2 Rn : V �(x; v) � p · v, 8v 2 Rn
} (52)

is non-empty for every x 2 D, and is also given by

@V (x) =

⇢
lim
k!1

rV (xk) : xk 2 Rn
\ NV s.t. xk ! x

�
, (53)

where NV denotes the set of points in D ✓ Rn where V is not differentiable (Rademachers theorem) (Clarke, 1981).

Through the following lemma (Lemma 2), we can formally establish the correspondence between the set-valued time-
derivative of V and the derivative of the energy function E(t) , V (x(t)) associated with an arbitrary Carathéodory solution
x(·) to the differential inclusion (40).
Lemma 2 (Lemma 1 of Bacciotti & Ceragioli (1999)). Under Assumption 3, given any Carathéodory solution

x : [0, ⌧) ! Rn
to (40), then E(t) , V (x(t)) is absolutely continuous and Ė(t) = d

dtV (x(t)) 2 V̇ (x(t)) a.e. in t 2 [0, ⌧).

We are now ready to state and prove our Lyapunov-based sufficient condition for finite-time stability of differential inclusions.
Theorem 3. Suppose that Assumptions 2 and 3 hold for some set-valued map F : Rn ◆ Rn

and some function V : D ! R,

where D ✓ Rn
is an open and positively invariant neighborhood of a point x?

2 Rn
. Suppose that V is positive definite

w.r.t. x?
and that there exist constants c > 0 and ↵ < 1 such that

sup V̇ (x)  �c V (x)↵ (54)

a.e. in x 2 D. Then, (40) is finite-time stable at x?
, with settling time upper bounded by

t? 
V (x0)1�↵

c(1� ↵)
, (55)
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where x(0) = x0. In particular, any Carathéodory solution x(·) with x(0) = x0 2 D will converge in finite time to x?

under the upper bound (55). Furthermore, if D = Rn
, then (40) is globally finite-time stable. Finally, if V̇ (x) is a singleton

a.e. in x 2 D and (54) holds with equality, then the bound (55) is tight.

Proof. Note that, by Proposition 1 of (Bacciotti & Ceragioli, 1999), we know that (40) is Lyapunov stable at x?. All that
remains to be shown is local convergence towards x? (which must be an equilibrium) in finite time. Indeed, given any
maximal solution x : [0, t?) ! Rn to (40) with x(0) = x0 6= x?, we know by Lemma 2, that E(t) = V (x(t)) is absolutely
continuous with Ė(t) 2 V̇ (x(t)) a.e. in t 2 [0, t?]. Therefore, we have

Ė(t)  sup V̇ (x(t))  �c V (x(t))↵ = �c E(t)↵ (56)

a.e. in t 2 [0, t?]. Since E(0) = V (x0) > 0, given that x0 6= x?, the result then follows by invoking Lemma 1 and noting
that E(t?) = 0 () V (t?, x(t?)) = 0 () x(t?) = x?. ⌅

Finite-time stability still follows without Assumption 2, provided that x? is an equilibrium of (40). In practical terms, this
means that trajectories starting arbitrarily close to x? may not actually exist, but nevertheless there exists a neighborhood D

of x? over which, any trajectory x(·) that indeed exists and starts at x(0) = x0 2 D must converge in finite time to x?, with
settling time upper bounded by T (x0) (the bound still tight in the case that (54) holds with equality).

C. Proof of Theorem 1

Let us focus first on the q-RGF (19) with the candidate Lyapunov function V , f � f?. Clearly, V is Lipschitz continuous
and regular (given that it is continuously differentiable). Furthermore, V is positive definite w.r.t. x?.

Notice that, due to the dominated gradient assumption, x? must be an isolated stationary point of f . To see this, notice that,
if x? were not an isolated stationary point, then there would have to exist some x̃? sufficiently near x? such that x̃? is both a
stationary point of f , and satisfies f(x̃?) > f?, since x? is a strict local minimizer of f . But then, we would have

0 =
p� 1

p
krf(x̃?)k

p
p�1 � µ

1
p�1 (f(x̃?)� f?) > 0, (57)

and subsequently 0 > 0, which is absurd.

Therefore, F (x) , �crf(x)/krf(x)k
q�2
q�1 is continuous for every x 2 D \ {0}, for some small enough open neighbor-

hood D of x?. Let us assume that D is positively invariant w.r.t. (19), which can be achieved, for instance, by replacing
D with its intersection with some small enough strict sublevel set of f . Notice that kF (x)k = ckrf(x)k

1
q�1 with

q 2 (p,1] ⇢ (1,1], i.e., 1
q�1 2 [0,1). If q = 1, which results in the normalized gradient flow ẋ = �

rf(x)
krf(x)k proposed

by Cortés (2006), then kF (x)k = c > 0. We can thus show that F (x) is discontinuous at x = 0 for q = 1. On the other
hand, if q 2 (p,1) ⇢ (1,1), then we have kF (x)k ! 0 as x ! x?, and thus F (x) is continuous (but not Lipschitz) at
x = x?. Regardless, we may freely focus exclusively on D \ {x?

} since {x?
} is obviously a zero-measure set.

Let F , K[F ]. We thus have, for each x 2 D \ {x?
},

sup V̇ (x) = sup {a 2 R : 9v 2 F(x) s.t. a = p · v, 8p 2 @V (x)} (58a)
= sup {rV (x) · v : v 2 F(x)} (58b)
= rV (x) · F (x) (58c)

= �ckrf(x)k2�
q�2
q�1 (58d)

= �ckrf(x)k
1
✓0 (58e)

 �c[C(f(x)� f?)✓]
1
✓0 (58f)

= �cC
1
✓0 V (x)

✓
✓0 . (58g)

Since ✓
✓0 < 1, given that s > 1 7!

s�1
s is strictly increasing, then the conditions of Theorem 3 are satisfied. In particular, we

have finite-time stability at x? with a settling time t? upper bounded by

t? 
(f(x0)� f?)1�

✓
✓0

cC
1
✓0
�
1� ✓

✓0

� 
(krf(x0)k/C)

1
✓ (1� ✓

✓0 )

cC
1
✓0
�
1� ✓

✓0

� =
krf(x0)k

1
✓�

1
✓0

cC
1
✓

�
1� ✓

✓0

� (59)
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for each x0 2 D, which completes the proof.
Remark 1. Regarding the flow given by equation (15), as we mentioned in the main paper, it does require knowledge of f⇤,
which is generally unknown. However, if we replace f? by some estimate f̃? of it, then we still obtain a (locally) finite-time
convergent flow, only that it will converge to either an invariant subset of {x 2 Rn : f(x) = f̃?

} if f̃?
� 0, or it will

converge to x? if f̃? < f?. For instance, when a non-negative energy function is being minimized, then we can use f̃? = 0.
However, in most applications, this flow appears to be less useful, which motivated us to look at the other first-order flows,
as presented in Section 3.

D. Proof of Theorem 2

Let us focus first on (27), since the proof for (28) follows similar steps. The idea is to show that it is finite-time
stable at x?, with the inequality in Theorem 3 holding exactly for V (x) = krf(x)k2. First, notice that F (x) ,
�ckrf(x)k2↵ [r2f(x)]rrf(x)

rf(x)>[r2f(x)]r+1rf(x) is continuous near (but not at) x = x?, and undefined at x = x? itself. Furthermore,
we have

kF (x)k = ckrf(x)k2↵
k[r2f(x)]rrf(x)k

rf(x)>[r2f(x)]r+1rf(x)
(60a)

 ckrf(x)k2↵
�max(r2f(x))rkrf(x)k

�min(r2f(x))r+1krf(x)k2
(60b)

 c
�max(r2f(x))r

�min(r2f(x))r+1
krf(x)k2↵�1, (60c)

with 2↵� 1 � 0 and �min[r2f(x)] � m > 0 everywhere near x = x? for some m > 0 (m-strong convexity). Therefore, F
is Lebesgue integrable (and thus measurable) and locally essentially bounded, which means that Assumption 1 is satisfied.

Set V (x) , krf(x)k2, defined over D. If D is not positively invariant w.r.t. (27), we can always replace it by a smaller
open subset that is, e.g. a sufficiently small strict sublevel set contained within D. Clearly, V is continuously differentiable,
thus satisfying Assumption 3. Furthermore, it is positive definite w.r.t. x? and, given x 2 D \ {x?

}, we have

sup V̇ (x) = sup{a 2 R : 9v 2 K[F ](x) s.t. a = p · v, 8p 2 @V (x)} (61a)

= sup

⇢�
2r2f(x)rf(x)

�
·

✓
�ckrf(x)k2↵

[r2f(x)]rrf(x)

rf(x)>[r2f(x)]r+1rf(x)

◆�
(61b)

= �2ckrf(x)k2↵ (61c)
= �(2c)V (x)↵ (61d)

with ↵ < 1. Furthermore, V̇ (x?) = {rV (x?) · v : v 2 K[F ](x?)} = {0} since rV (x?) = 2r2f(x?)rf(x?) = 0. The
result thus follows by invoking Theorem 3.

We now proceed to establish finite-time stability of (28) at x?. Like before, we notice that F (x) =

�ckrf(x)k2↵�1
1 x [r2f(x)]r sign(rf(x))

sign(rf(x))>[r2f(x)]r+1 sign(rf(x)) is continuous near, but not at, x = x?. Furthermore, notice that

kF (x)k = ckrf(x)k2↵�1
1

k[r2f(x)]r sign(rf(x))k

sign(rf(x))>[r2f(x)]r+1 sign(rf(x))
(62a)

 ckrf(x)k2↵�1
1

�max(r2f(x))rk sign(rf(x))k

�min(r2f(x))r+1k sign(rf(x))k2
(62b)

 c
�max(r2f(x))r

�min(r2f(x))r+1

krf(x)k2↵�1
1

k sign(rf(x))k
(62c)

 c
�max(r2f(x))r

�min(r2f(x))r+1

krf(x)k2↵�1
1

k sign(rf(x))k1/
p
n

(62d)


c

p
n

�max(r2f(x))r

�min(r2f(x))r+1
krf(x)k2↵�1

1 (62e)

(62f)
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for every x 2 D \ N , with N =
Sn

i=1

n
x 2 D : @f

@xi
(x) = 0

o
. Since N is a zero-measure set due to being a finite union

of hypersurfaces in Rn (n � 1), and also recalling that f is strongly convex near x? and p � 1 � 0, it follows that F is
Lebesgue integrable and locally essentially bounded. Therefore, Assumption 1 is once again satisfied.

Now consider the candidate Lyapunov function V (x) = krf(x)k1, defined over D. Clearly, V is not continuously
differentiable this time. However, it is still satisfies Assumption 1 due to being a.e. differentiable. In particular, we have
@V (x) = {r

2f(x) sign(rf(x))} for every x 2 D \N . In other words, we have @V (x) = {r
2f(x) sign(rf(x))} a.e. in

x 2 D.

Given x 2 D \ N , we thus have

sup V̇ (x) = sup{a 2 R : 9v 2 K[F ](x) s.t. a = p · v, 8p 2 @V (x)} (63a)

=
⇣
r

2f(x) sign(rf(x))
⌘
·

✓
�

ckrf(x)k2↵�1
1 [r2f(x)]r sign(rf(x))

sign(rf(x))>[r2f(x)]r+1 sign(rf(x))

◆
(63b)

= �ckrf(x)k2↵�1
1 (63c)

= �c V (x)2↵�1, (63d)

with 2↵� 1 < 1. The result once again follows by invoking Theorem 3.


