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Abstract
In this paper, we investigate a Lyapunov-like
differential inequality that allows us to estab-
lish finite-time stability of a continuous-time
state-space dynamical system represented via a
multivariate ordinary differential equation or dif-
ferential inclusion. Equipped with this condi-
tion, we synthesize first and second-order (in
an optimization variable) dynamical systems that
achieve finite-time convergence to the minima of
a given sufficiently regular cost function. As a
byproduct, we show that the q-rescaled gradient
flow (q-RGF) proposed by Wibisono et al. (2016)
is indeed finite-time convergent, provided the cost
function is gradient dominated of order p ∈ (1, q).
This way, we effectively bridge a gap between the
q-RGF and the finite-time convergent normalized
gradient flow (NGF) (q =∞) proposed by Cortés
(2006) in his seminal paper in the context of multi-
agent systems. We discuss strategies to discretize
our proposed flows and conclude by conducting
some numerical experiments to illustrate our re-
sults.

1. Introduction
In recent years, there has been a surge of research papers
aiming to leverage ideas from dynamical systems and con-
trol theory (both in continuous and discrete time) into op-
timization and machine learning. As a simple example to
illustrate the connection between these fields, consider the
gradient flow (GF)

ẋ(t) = −∇f(x(t)), (1)

where ẋ(t) , dx(t)
dt , for a given convex and differentiable

cost function (or functional) f : X → R defined over a
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smooth Banach space X (typically a Euclidean or otherwise
finite-dimensional real vector space in nonlinear program-
ming, but infinite-dimensional in optimal control, calculus
of variations, and trajectory optimization). Indeed, this
system has been long studied in the mathematical commu-
nity due to its provable asymptotic stability (in the sense
of Lyapunov), and thus its ability for solutions x(t) to con-
verge, as t→∞, to a minimum of f . This idea dates back
to at least Hadamard (1908), as noted by Courant (1943),
where solving the differential equation (1) as an optimiza-
tion method is referred to as the “method of gradients.” For
a modern instances of papers dealing with the GF in ab-
stract and infinite-dimensional (or otherwise non-Euclidean)
spaces, see (Ambrosio et al., 2005), (Danieri & Savaré,
2014), and (Feehan, 2016). On the other hand, the standard
gradient descent (GD) algorithm

xk+1 = xk − η∇f(xk) (2)

with fixed step size η > 0 (also known as learning rate
in deep learning) is likely to be older even. Its origin, or
at least its main inspiration, is often attributed to Cauchy
(1847). Clearly, the GF and GD methods are connected
since the GD (2) is nothing more than the forward-Euler
discretization of the GF (1). Likewise, the backward-Euler
discretization (also known as implicit discretization)

xk+1 = xk − η∇f(xk+1), (3)

of the GF (1) can be readily rewritten as1

xk+1 = arg min
x∈Rn

{
f(x) +

1

2η
‖x− xk‖2

}
, (4)

which is simply the usual proximal point algorithm (PPA).

In continuous-time optimization, an ordinary differential
equation (ODE), partial differential equation (PDE), or dif-
ferential inclusion is designed to be explicitly computable
under assumed oracles of a cost function or some surrogate
of it, in such a way to lead their solutions to converge to a
minimizer or extremum of the cost function. The gradient
flow (1) naturally becomes the archetype gradient-based sys-
tem. To achieve this, tools from Lyapunov stability theory
are often employed, mainly due to the rich body of work

1In this paper, ‖.‖ denotes the `2-norm.
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within the nonlinear systems and control theory commu-
nity for this purpose. In particular, we often seek asymp-
totically Lyapunov stable gradient-based systems with an
equilibrium (stationary point) at an isolated extremum of
the given cost function, thus certifying local convergence.
Naturally, global asymptotic stability leads to global con-
vergence, though such an analysis will typically require the
cost function to be strongly convex everywhere.

For early work in this direction, see the work of Bot-
saris (1978a;b), Zghier (1981), Snyman (1982; 1983), and
Brown (1989). In particular, Brockett (1988) and, subse-
quently, Helmke & Moore (1994), studied relationships
between linear programming, ODEs, and general matrix the-
ory. Further, Schropp (1995) and Schropp & Singer (2000)
explored several aspects linking nonlinear dynamical sys-
tems to gradient-based optimization, including nonlinear
constraints. Cortés (2006) proposed two discontinuous nor-
malized modifications of gradient flows to attain finite-time
convergence. Later, Wang & Elia (2011) proposed a control-
theoretic perspective on centralized and distributed convex
optimization.

More recently, Su et al. (2014) derived a second-order ODE
as the limit of Nesterov’s accelerated gradient method, when
the gradient step sizes vanish. This ODE is then used to
study Nesterov’s scheme from a new perspective, partic-
ularly in an larger effort to better understand acceleration
without substantially increasing computational burden. Ex-
panding upon the aforementioned idea, França et al. (2018)
derived a first-order ODE that models the continuous-time
limit of the sequence of iterates generated by the alternating
direction method of multipliers (ADMM). Then, the authors
employ Lyapunov theory to analyze the stability at critical
points of the dynamical systems and to obtain associated
convergence rates.

Later, França et al. (2019) analyzed general non-smooth
and linearly constrained optimization problems by deriving
equivalent (at the limit) non-smooth dynamical systems re-
lated to variants of the relaxed and accelerated ADMM. In
particular, two new ADMM-like algorithms were proposed:
one based on Nesterov’s acceleration and the other inspired
by Polyak’s heavy ball method, and derive differential in-
clusions modeling these algorithms in the continuous-time
limit. Using a non-smooth Lyapunov analysis, results on
rate of convergence are obtained for these dynamical sys-
tems in the convex and strongly convex settings.

In the more traditional context of machine learning, there
are multiple papers that have adopted the approach of ex-
plicitly borrowing or connecting ideas from control and
dynamical systems. For unsupervised learning, Plumb-
ley (1995) proposed Lyapunov stability theory as an ap-
proach to establish convergence of principal component
algorithms. Pequito et al. (2011) and Aquilanti et al.

(2019) proposed continuous-time generalized expectation-
maximization (EM) algorithms, based on mean-field games,
for clustering of finite mixture models. Romero et al. (2019)
established convergence of the EM algorithm, and a class of
generalized EM algorithms denoted δ-EM, via discrete-time
Lyapunov stability theory. For supervised learning, Liu &
Theodorou (2019) provided a review of deep learning from
the perspective of control and dynamical systems, with a
focus in optimal control. Zhu (2018) and Rahnama et al.
(2019) explored connections between control theory and
adversarial machine learning.

Statement of Contribution

In this work, we first provide a Lyapunov-based tool to both
check and construct continuous-time dynamical systems that
are finite-time stable represented via differential inclusions.
We then use this condition to construct multiple dynami-
cal systems with finite-time convergence to (strict) local
minima that can be viewed as continuous-time optimization
algorithms. In particular, for continuously differentiable and
gradient dominated cost functions, we provide a first-order
method that only assumes access to the cost function and its
gradient. Finally, for twice continuously differentiable and
strongly convex functions, we also provide a family of finite-
time convergent second-order methods, whose convergence
time can be prescribed near the desired minimum.

2. Finite-Time Convergence in Optimization
via Finite-Time Stability

Consider some objective cost function f : Rn → R that we
wish to minimize. In particular, let x? ∈ Rn be an arbitrary
local minimum of f that is unknown to us. In continuous-
time optimization, we typically proceed by designing a
nonlinear state-space dynamical system

ẋ = F (t, x) (5)

for which F (t, x) can be computed without explicit knowl-
edge2 of x? and for which (5) is certifiably asymptoti-
cally Lyapunov stable at x?. For instance, we often seek
systems that use only up to second-order information on
the cost function, thus we design F through an oracle
Of (x) = {f(x),∇f(x),∇2f(x)}.

In this work, however, we seek dynamical systems for
which (5) is certifiably finite-time Lyapunov stable at x?.
As will be clear later, such systems need to be possibly dis-
continuous or non-Lipschitz, which can more naturally be
expressed and analyzed in the lense of differential inclusions

2In other words, we typically design some G(·) that can
be explicitly computed for any input, and we set F (t, x) ,
G(t,Of (x)), where Of (·) denotes some oracle function such
that Of (x) encompasses all available data regarding f near x.
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instead of ODEs. To achieve this objective, our approach is
largely based on exploiting the Lyapunov-like differential
inequality

Ė(t) ≤ −c E(t)α, a.e. t ≥ 0, (6)

with constants c > 0 and α < 1, for absolutely continuous
(AC) functions E such that E(0) > 0. Indeed, under the
aforementioned conditions, exact convergence E(t) → 0

will be reached in finite time t→ t? ≤ E(0)
1−α

c(1−α) <∞.

We will restrict ourselves to the design of time-invariant
systems F (t, x) = F (x). We now summarize the problem
statement:
Problem 1. Given a sufficiently smooth cost function
f : Rn → R with a sufficiently regular local minimizer x?,
and an initial approximation x0 ∈ Rn sufficiently near x?,
solve the following tasks:

1. Design a sufficiently smooth3 candidate Lyapunov func-
tion V which is defined and positive definite near and
with respect to (w.r.t.) x?4.

2. Design a function G that can be explicitly computed
for any input and such that, for the (possibly discon-
tinuous) system5 (5) with F , G ◦ Of , the differential
inequality (6) holds for E , V ◦ x(·), with x(·) a
Filippov solution6 with x(0) = x0.

By following this strategy, we will therefore achieve (local
and strong) finite-time stability, and thus finite-time conver-
gence. Furthermore, if V (x0) can be upper bounded, then
F can be readily tuned to achieve finite-time convergence
under a prescribed range for the settling time, or even with
exact prescribed settling time if V (x0) can be explicitly
computed and (6) holds with equality.

One variant of Problem 1 that we do not explore in this
paper is to remove the possible dependence of G on x0
by replacing finite-time stability with fixed-time stability.
In many (perhaps most) practical situations, we have full
control on the initial approximation, so we find it reasonable
to design optimization algorithms around it.

3. First-Order Convergent Flows
Given some continuously differentiable cost function
f : Rn → R with a local minimizer and isolated stationary

3At least locally Lipschitz continuous and regular (see supple-
mentary material (SM)).

4In other words, there exists some open neighborhood D of x?

such that V is defined in D and satisfies V (x) ≥ 0 with equality
if and only if x = x?, for every x ∈ D \ {x?}.

5Right-hand side defined at least a.e., Lebesgue measurable.
Furthermore, we may require it to be locally essentially bounded
to ensure existence of solutions.

6See SM.

point x? ∈ Rn, Cortés (2006) proposed the (discontinuous)
normalized gradient flows

ẋ = − ∇f(x)

‖∇f(x)‖
(7)

and
ẋ = − sign(∇f(x)), (8)

where sign(·) denotes the sign function (applied elemen-
twise for real-valued vectors). He then established finite-
time stability based on the candidate Lyapunov function
V (x) = f(x) − f?, with f? = f(x?), and two differen-
tial inequality assumptions: a first-order one akin to (6) for
α = 0, and another which essentially boils down to the
corresponding energy function E(·) being non-increasing
and strongly convex. However, the first-order conditions
proved insufficient to establish the finite-time convergence
of his proposed flows, whereas the second-order condition
is sufficient, but also requires twice continuously differen-
tiability and that the Hessian of the cost function is positive
definite near the local minimum of interest.

More precisely, Cortés (2006) showed that, if f is twice
continuously differentiable and strongly convex in an open
neighborhood D ⊆ Rn of x?, then the solutions to his
proposed flows (7) and (8) converge in finite time to x?,
provided they start in some positively invariant compact
subset S ⊂ D. He further showed that the convergence
times are upper bounded by

t? ≤ ‖∇f(x0)‖
min
x∈S

λmin[∇2f(x)]
(9)

for (7), and

t? ≤ ‖∇f(x0)‖1
min
x∈S

λmin[∇2f(x)]
(10)

for (8).

We will now see how our approach can be used to gen-
eralize (7) and (8) while still maintaining finite-time con-
vergence, but without requiring second differentiability or
strong convexity, instead focusing on the notion of gradient
dominance.

Borrowing terminology from Wilson et al. (2019), we say
that a continuously differentiable function f : Rn → R is
µ-gradient dominated of order p ∈ (1,∞] (with µ > 0) in
some neighborhood D of a local minimizer x? ∈ Rn if

p− 1

p
‖∇f(x)‖

p
p−1 ≥ µ

1
p−1 (f(x)− f?) (11)

for every x ∈ D, where f? = f(x?). When µ > 0 is
unknown or unimportant, but known to exist, we will omit
it in the previous definition.
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For strongly convex functions, gradient dominance of order
p = 2 can be established. In fact, gradient dominance is
usually defined exclusively for order p = 2, often referred
to as the Polyak-Łojasiewicz (PL) inequality, which was
introduced by Polyak (1963) to relax the (strong) convexity
assumption commonly used to show convergence of the GD
algorithm (2). The PL inequality can also be used to relax
convexity assumptions of similar gradient and proximal-
gradient methods (Karimi et al., 2016). Our adopted gen-
eralized notion of gradient dominance is strongly tied to
the Łojasiewicz gradient inequality from real analytic ge-
ometry, established by Łojasiewicz (1963; 1965)7 indepen-
dently and simultaneously from (Polyak, 1963), and gener-
alizing the PL inequality. More precisely, this inequality is
typically written as

‖∇f(x)‖ ≥ C · |f(x)− f?|θ (12)

for every x ∈ Rn in a small enough open neighborhood
of the stationary point x = x?, for some C > 0 and
θ ∈

(
1
2 , 1
]
. This inequality is guaranteed for analytic8

functions (Łojasiewicz, 1965). More precisely, when x? is
a local minimizer of f , the aforementioned relationship is
explicitly given by

C =

(
p

p− 1

) p−1
p

µ
1
p , θ =

p− 1

p
. (13)

Therefore, analytic functions are always gradient domi-
nated. However, while analytic functions are always smooth,
smoothness is not required to attain gradient dominance.
Continuous differentiability is still required, however.

Let us now consider the candidate Lyapunov function
V (x) , f(x)− f? from which we will construct first-
order finite-time convergent flows. Notice that (6) with
E(t) , V (x(t)) then becomes

∇f(x(t)) · ẋ(t) ≤ −c(f(x(t))− f?)α. (14)

Naturally, an immediate candidate for ẋ(t) is

ẋ = −c (f(x)− f?)α

‖∇f(x)‖2
∇f(x), (15)

but, unfortunately, it requires knowledge of f?, which is
usually not available. See SM for further discussion. More
generally, to satisfy (14) without knowledge of f?, we could
design

ẋ = −c‖∇f(x)‖β−2∇f(x) (16)

with β chosen such that ‖∇f(x)‖β ≥ (f(x)−f?)α. Notice
that the RHS of (16) is continuous (but non-Lipschitz, unless

7For more modern treatments in English, see (Łojasiewicz &
Zurro, 1999; Bolte et al., 2007)

8Analytic functions are functions that are locally given by con-
vergent power series.

β ≥ 2), provided that f is continuously differentiable near
x? and β > 1. From the gradient dominance, it follows that

‖∇f‖
p
p−1 ≥

(
p

p− 1

)
µ

1
p−1 (f − f?), (17)

and thus

‖∇f(x)‖α( p
p−1 ) ≥

(
p

p− 1

)α
µ

α
p−1 (f(x)− f?)α (18)

for every x near x?. Since ∇f(x) → 0 as x → x?, then
it clearly suffices to choose β ≤ α

(
p
p−1

)
. On the other

hand, the particular choice of c and α < 1 are unimportant
to attain finite-time convergence, and thus we may choose
any β < p

p−1 . In other words, it suffices that β = q
q−1 with

q ∈ (p,∞], which results in

ẋ = −c ∇f(x)

‖∇f(x)‖
q−2
q−1

, (19)

known as the q-rescaled gradient flow (q-RGF), originally
proposed by Wibisono et al. (2016). We can use a similar
reasoning to generalize (8) into q-signed gradient flow (q-
SGF)

ẋ = −c ‖∇f(x)‖
1
q−1

1 sign(∇f(x)), (20)

which naturally coincides with (19) for n = 1. Due to in-
equalities between different `r-norms, we could also replace
the norms in either of the proposed flows by ‖ · ‖r, subject
to a suitable range for r ≥ 1. Other generalizations could
include replacing the norms altogether by some function
x 7→ α(‖s‖) with α a class K function (Khalil, 2001).

Theorem 1. Suppose that f : Rn → R is continuously
differentiable and µ-gradient dominated of order p ∈ (1,∞)
near a strict local minimizer x? ∈ Rn. Let c > 0 and q ∈
(p,∞]. Then, any maximal solution (in the sense of Filippov)
to the q-RGF given by (19) or the q-SGF flow (20) will
converge in finite time to x?, provided that ‖x(0)−x?‖ > 0
is sufficiently small. Furthermore, their convergence times
are both upper bounded by

t? ≤ ‖∇f(x0)‖ 1
θ−

1
θ′

cC
1
θ

(
1− θ

θ′

) , (21)

where x0 = x(0) and f? = f(x?), with C, θ given by (13)
and θ′ = q−1

q . In particular, given any compact and posi-
tively invariant subset S ⊂ D, both flows converge in finite
with the aforementioned convergence time upper bound
(which can be tightened by replacing D with S) for any
x0 ∈ S. Furthermore, if D = Rn, then we have global
finite-time convergence, i.e. finite-time convergence to any
maximal solution (in the sense of Filippov) x(·) with arbi-
trary x0 ∈ Rn.
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Proof. The main idea is to show that the differential inequal-
ity (6) is satisfied for the energy function E(t) , V (x(t)),
defined in terms of the candidate Lyapunov function
V (x) , f(x)− f?. Refer to SM for full details. �

Wibisono et al. (2016) showed, for convex cost functions,
that solutions x(·) to the q-RGF (19) (with c = 1) satisfy
the convergence rate f(x(t))− f? = O

(
1

tq−1

)
. However,

as concluded in Theorem 1, the q-RGF actually converges
in finite time, provided that f is gradient dominated of order
p ∈ (1, q). Therefore, the q-RGF will be finite-time con-
vergent for strongly convex functions, provided we choose
q > 2. For analytic functions, the q-RGF is also finite-time
convergent, provided that q > 1 is chosen large enough.
More precisely, any q > p = 1

1−θ achieves this. Unfortu-
nately, however, bounding the exponent θ for non-strongly
convex and non-polynomial functions appears to be math-
ematically intractable in general (D’Acunto & Kurdyka,
2005; Pham, 2012). Notice that, in principle, the conver-
gence time can be prescribed, as t? ≤ T with used-selected
T > 0 by appropriate choice of c > 0 and q > p that make
the RHS of (21) equal to T . However, the set of candidate
hyperparameters c, q will naturally depend on µ, p. These
observations are equally valid for the flow (8).

We believe a reciprocal result to Theorem 1 is likely to be
true. More precisely, that, if f is not gradient dominated
of order p for some p ∈ (1, q), then the convergence of the
q-RGF will only be asymptotic. To illustrate this notion, let
us explore the objective function considered in Appendix F
of (Wibisono et al., 2016), given by

f(x) =
1

p
‖x‖p, (22)

with p ∈ (1,∞), which is µ-gradient dominated of order p
near x? = 0, with µ = (p − 1)p−1. Furthermore, f is not
gradient dominated of order p′ for any p′ < p. Therefore,
in order to apply our theory and thus ensure finite-time
convergence, we must choose q > p.

Notice that the p-RGF reduces to

ẋ = −c x, (23)

and thus x(t) = e−c tx0. In other words, the solutions to the
p-RGF converge asymptotically to the minimum x? = 0,
and not in finite time.

On the other hand, the q-RGF for a general q > 1 becomes

ẋ = −c‖x‖−εx, (24)

with ε = q−p
q−1 . It appears that this ODE cannot be analyti-

cally solved in the multivariate case, so for simplicity we
assume x(t) ∈ R. The solutions thus become

x(t) = sign(x0) max{0, (|x0|ε − ε c t)
1
ε }. (25)

Clearly, if q > p, then ε > 0, and x(t) → t? as t → t?,
with t? = 1

c ε |x0|
ε < ∞. On the other hand, if 1 < q < p,

then ε < 0, and thus x(t)→ x? only as t→∞. The case
q = p, corresponds to ε→ 0, which leads to x(t) = e−tx0
as previously discussed.

In terms of the settling time upper bound (21) (assuming
now q > p and multivariate x(t) ∈ Rn), in this case it
turns out to hold with equality. Indeed, it simplifies to
t? ≤ 1

c ε‖x0‖
ε with ε = q−p

q−1 , which generalizes the exact
settling time derived analytically in the scalar case. The set-
tling time upper bound is tight in this case precisely because
the inequality originating from the gradient dominance actu-
ally holds with equality, and thus the Lyapunov differential
inequality (6) will hold with equality as well.

4. Second-Order Convergent Flows
Let us now investigate the candidate Lyapunov function
V (x) , ‖∇f(x)‖2, with x? now assumed a local minimizer
and isolated stationary point. Setting E(t) , V (x(t)), then,
provided that f is twice continuously differentiable, (6)
becomes

2∇f(x)>∇2f(x)ẋ ≤ −c‖∇f(x)‖2α. (26)

Clearly, there are many possible flows that can be con-
structed to satisfy the previous condition, so let us focus
on a family constructed for strongly convex f . Given a
symmetric and positive definite matrix P ∈ Rn×n with
SVD decomposition P = V ΣV >, Σ = diag(λ1 . . . , λn),
λ1, . . . , λn > 0, we define P r , V ΣrV >, where Σr ,
diag (λr1, . . . , λ

r
n). Equipped with this definition, we pro-

pose the family

ẋ = −c‖∇f(x)‖2α [∇2f(x)]r∇f(x)

∇f(x)>[∇2f(x)]r+1∇f(x)
(27)

with c > 0, α < 1, and r ∈ R tunable hyperparameters,
as (27) leads directly to (26). In a similar fashion, we pro-
pose the family

ẋ = − c‖∇f(x)‖2α−11 [∇2f(x)]r sign(∇f(x))

sign(∇f(x))>[∇2f(x)]r+1 sign(∇f(x))
(28)

with the same hyperparameters, constructed via the candi-
date Lyapunov function V (x) , ‖∇f(x)‖1.

We are now ready to state the finite-time convergence of
these proposed flows.

Theorem 2. Suppose that f : Rn → R is twice continu-
ously differentiable and strongly convex in an open neigh-
borhood D ⊆ Rn of a stationary point x? ∈ Rn. Let c > 0,
α < 1, and r ∈ R. Then, any maximal Filippov solution
to the discontinuous second-order generalized Newton-like
flows (27) and (28) with sufficiently small ‖x0 − x?‖ > 0
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(where x0 = x(0)) will converge in finite time to x?. Fur-
thermore, their convergence times are given exactly by

t? =
‖∇f(x0)‖2(1−α)

2c(1− α)
, t? =

‖∇f(x0)‖2α1
2cα

, (29)

respectively. In particular, given any compact and positively
invariant subset S ⊂ D, the flows converge in finite for any
x0 ∈ S. Furthermore, if D = Rn, then we have global
finite-time convergence.

Proof. Refer to SM for a detailed proof. �

One point that we want to emphasise here is the fact that
with these second-order flows, one can much more read-
ily (compared to our first-order flows) prescribe the finite
convergence time by appropriate choice of c, α. This is
a clear advantage comparatively to the first-order meth-
ods, for which the obtained finite-time convergence upper
bound (21) is less practical. In particular, we may prescribe
t? = T with arbitrary T > 0 by choosing, for instance,
α = 1

2 and c = ‖∇f(x0)‖/T . In particular, for instance,
we propose the rescaled Newton flow (RNF)

ẋ = −‖∇f(x0)‖
T

[∇2f(x)]−1∇f(x)

‖∇f(x)‖
(30)

by further choosing r = −1 in (27). Therefore, for (30), we
obtain the prescribed finite-time convergence x(t)→ x? as
t→ T , where T > 0 fully tunable.

As a simple example, let us reconsider the function (22),
this time only with p = 2. Indeed, the flow (30) reduces
to ẋ = −‖x0‖

T
x
‖x‖ . In particular, for n = 1, its solution is

given by x(t) = max
{

0, 1− t
T

}
x0, which clearly satisfies

x(t)→ x? = 0 as t→ T .

5. Numerical Experiments
In this section, we illustrate the finite-time convergence
properties of the q-RGF (19) and our designed second-order
flow (27) on academic optimization test functions. Then,
we investigate preliminary discretization strategies for the
flows discussed in this paper.

5.1. First-Order Flow

Consider once again the cost function (22), in the scalar case
x ∈ R and with p = 3. We will illustrate the performance
of the RGF (19) with c = 2.

First, we fix x0 = 3/4 and vary q > 1. The results are
reported in Figure 1. As we can see, choosing any q > p
ensures finite-time convergence, but as q → p+, the con-
vergence becomes purely asymptotic. Furthermore, we can
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Figure 1. Solutions to the q-RGF (24) with x0 = 3/4, c = 2, and
various values of q > 1, on the cost function (22) (scalar case)
with p = 3. Note: ε(q) = (q − p)/(q − 1).

see that the settling time upper bound (21) from Theorem 1,
which simplifies to t? ≤ 1

c ε‖x0‖
ε with ε = q−p

q−1 , is tight.

Next, we fix q = 10 and vary x0 ∈ R near x? = 0, while
maintaining every other parameter the same as before. The
results are reported in Figure 2. As we can see, we have
finite-time convergence near x? = 0 and the settling time
upper bound (21) is tight. In reality, for this simple example,
the finite-time convergence property holds globally, mean-
ing that any x0 ∈ Rn actually leads to x(t) → x? = 0 as
t→ t? = 1

c ε‖x0‖
ε.
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Figure 2. Solutions to the q-RGF (24) with c = 2, q = 10, and
various values of x0 ∈ R near x? = 0, on the cost function (22)
(scalar case) with p = 3. Note: ε = (q − p)/(q − 1) = 7/9.

5.2. Second-Order Flow

We now test the second-order flow (27) with (c, α, r) =
(‖∇f(x0)‖, 1/2,−1) on the optimization testbed function
known as the Rosenbrock function, namely f : R2 → R
given by

f(x1, x2) = (a− x1)2 + b(x2 − x21)2, (31)

with parameters a, b ∈ R. This function admits exactly one
stationary point (x?1, x

?
2) = (a, a2) for b ≥ 0, which is a
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strict global minimum for b > 0. If b < 0, then (x?1, x
?
2) is a

saddle point. Finally, if b = 0, then {(a, x2) : x2 ∈ R} are
the stationary points of f , and they are all non-strict global
minima.

Figure 3. Trajectories of the proposed flow (27) with (c, α, r) =
(‖∇f(x0)‖, 1/2,−1) and four different initial conditions x0 ∈
R2, for the Rosenbrock function with parameters (a, b) =
(3, 100), which has a unique minimum x? = (a, a2) = (3, 9).

As we can see in Figure 3, this flow converges correctly to
the minimum (a, a2) = (3, 9) for all the tested initial con-
ditions with an exact prescribed settling time T = 1. Note
that, at any given point in the trajectory x(·), the functions
t 7→ ‖x(t)− x?‖ and t 7→ |f(x(t))− f(x?)| are not guar-
anteed to not increase, indeed only t 7→ ‖∇f(x(t))‖ can be
guaranteed to do so, which explains the increase in (d) that
could never have occurred in (e).

5.3. Preliminary Numerical Investigation of Potential
Discretization Schemes

It is unclear if finite-time convergence in continuous time
translates into some useful property when discretized, or if
it should merely serve as a warning to better understand the
limitations of a continuous-time representation and analy-
sis of optimization algorithms that are ultimately intended
to be implemented on a digital computer (and thus any
continuous-time representation requires discretization to be
implementable). Nevertheless, in this subsection we pro-
vide a preliminary investigation of potential discretization
approaches that seek to combine the finite-time convergent
flows studied in this paper together with well-established
acceleration ideas for iterative (discrete-time) algorithms.

Recall that the Nesterov’s accelerated GD is given by

yk = xk + βk(xk − xk−1) (32a)
xk+1 = yk − η∇f(yk) (32b)

with 0 ≤ βk < 1, often βk = k−1
k+2 or βk = β ∈ [0, 1).

We argue that Nesterov’s acceleration can be interpreted
as actually being a modified Forward-Euler discretization
of the GF (1), that thus achieves acceleration. More gen-
erally, given some optimization flow represented by the
continuous-time system ẋ = F (x), locally convergent to a
local minimizer x? ∈ Rn of a cost function f : Rn → R,
then we can replicate Nesterov’s acceleration of (1). More
precisely, we obtain the algorithm

yk = xk + βk(xk − xk−1) (33a)
xk+1 = yk + ηF (yk) (33b)

where naturally choosing F = −∇f results in Nesterov’s
accelerated GD.

We can now choose amongst the different flows discussed
in this paper, in order to test this simple discretization idea.
To achieve further acceleration, we can also make the step
size η > 0 adaptive, i.e. we replace η ← ηk in (33). The
parameter µ > 0 can also (and often is, for F = −∇f ) be
made adaptive. In particular, we will adopt an accelerated
backtracking approach (and thus an inexact line search)
borrowed from (Almeida et al., 1997). More precisely, we
choose the (tunable) hyperparameters 0 < d < 1 < u and
set ηk = uηk−1 if

f(yk + uηk−1F (yk))

≤ min{f(xk), f(yk + ηk−1F (yk))},
(34)

and ηk = drkηk−1 otherwise, where rk is defined by the
smallest r ∈ {0, 1, . . .} such that

f(yk + drηk−1F (yk)) ≤ f(xk) (35)

In other words, we increase the step size by a factor u > 0
(i.e., η ← u · η) whenever helpful, but otherwise reduce
it by a factor d > 0 (i.e., η ← d · η) repeatedly until the
objective function actually decreases, or at least until it does
not increase.

We now test this discretization idea with on the log-sum-exp
function given by

f(x) = ρ log

[
n∑
i=1

exp

(
a>i x− bi

ρ

)]
(36)

with n = 20, m = 50, ρ = 5. Each entry of a1, . . . , am
and b1, . . . , bm is independently sampled from a N (0, 1)
distribution.

The results are presented in Figures 4 and 5 and illustrate
the potential of our proposed discretization approach, par-
ticularly when combined with the finite-time convergent
flows studied in this paper. All of the hyperparameters were
manually tuned to achieve near-optimal performance. The
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figures represent the average result of 50 random initializa-
tions x0 ∼ N (0, 1) (component-wise, independently), with
a fixed sample for a1, . . . , am, b1, . . . , bm as previously de-
scribed.

We notice that, regarding the first-order flows, namely the
q-RGF (19), we can slightly improve convergence of its
discretization, compared to discretizations of the standard
gradient flow (1), by tuning q, particularly so if we re-tune
the other parameters in the discretization. This is the case for
both a simple forward-Euler discretization, or our proposed
Nesterov-style discretization described in (33). However,
we also noted in our experiments that backtracking does
not appear to combine well with the first-order methods
considered in this paper, including for the gradient flow
case. However, once we move to the second-order flows,
namely for the RNF (30), we see that (accelerated) back-
tracking synergizes remarkably well with the Nestorov-like
forward-Euler discretization scheme proposed earlier. It
is also interesting to note that a simple forward-Euler dis-
cretization with fixed step sizes of the RNF (30) originally
appears slower than the standard Newton method, but indeed
eventually surpasses it, for the example considered.
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Figure 4. Numerical experiments for the first-order discrete algo-
rithms
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Figure 5. Numerical experiments for the second-order discrete al-
gorithms

6. Conclusion
We have introduced a new family of discontinuous first-
order and second-order flows for continuous-time optimiza-
tion. The main characteristic of the proposed flows is their
finite-time convergence guarantees, with, in some cases, an

arbitrary pre-defined convergence time. To analyze these
discontinuous flows, we first extended an exiting Lyapunov-
based inequality condition for finite-time stability in the
case of smooth dynamics to the case of non-smooth dy-
namics modeled by differential inclusions. We then derived
and established finite-time stability (and thus convergence)
for the proposed family of continuous-time optimization
algorithms. We also proposed a preliminary discretization
method of the proposed flows. Finally, we conducted nu-
merical experiments on known optimization benchmarks.

Several questions remain open, which we will target in our
future work. First, while we have used commonly avail-
able numerical solvers in part of our (small-scale) numerical
experiments, and have proposed a first step towards a dis-
cretization method, more work will be done in this construc-
tive discretization research direction. Furthermore, we also
seek to adapt our methods to allow for linear and nonlinear
constraints, and to develop distributed and decentralized
variants. Lastly, many real-life problems that require a time-
varying optimization framework, such as in motion planning
or formation control in robotics, do not allow direct access
to gradients, Hessian matrices, or time-derivatives of the
gradient. Instead, these are typically estimated based on
measurements (e.g. of the cost function) that often occur
in discrete time and carry noisy perturbations. Therefore,
future work will also be dedicated to the robustification of
our proposed flows, including zeroth-order (gradient-free)
schemes.
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