
Near-optimal Regret Bounds for Stochastic Shortest Path

A. Algorithm

Algorithm 3 HOEFFDING-TYPE CONFIDENCE BOUNDS

input: state space S, action space A and confidence parameter δ.
initialization: arbitrary policy π̃, m← 1, B̃← cmin, C1 ← 0,∀(s, a, s′) ∈ S× A× S : N(s, a, s′)← 0, N(s, a)← 0.
for k = 1, 2, . . . do

set s← sinit.
while s 6= g do

follow optimistic optimal policy: a← π̃(s).
suffer cost: Cm ← Cm + c(s, a).
observe next state s′ ∼ P(· | s, a).
update visit counters: N(s, a, s′)← N(s, a, s′) + 1, N(s, a)← N(s, a) + 1.
if N(s′, π̃(s′)) ≤ 5000B̃2|S|

c2
min

log B̃|S||A|
δcmin

or s′ = g or Cm ≥ 24B̃ log 4m
δ then

# start new interval
if Cm ≥ 24B̃ log 4m

δ then
update B? estimate: B̃← 2B̃.

end if
advance intervals counter: m← m + 1.
initialize cost suffered in interval: Cm ← 0.
compute empirical transition function P̄ for every (s, a, s′) ∈ S× A× S :

P̄(s′ | s, a) =
N(s, a, s′)

max{N(s, a), 1}
.

compute policy π̃ that minimizes the expected cost with respect to a transition function P̃, such that for every
(s, a) ∈ S× A:

‖P̃(· | s, a) – P̄(· | s, a)‖1 ≤ 5

√
|S| log

(
|S||A|N+(s, a)/δ

)
N+(s, a)

.

end if
set s← s′.

end while
end for

B. Proofs
B.1. Proofs for Section 3.1

B.1.1. PROOF OF LEMMA 3.3

Lemma (restatement of Lemma 3.3). With probability at least 1 – δ/2, Ωm holds and
∑Hm

h=1 c(sm
h , am

h ) ≤ 24B? log 4m
δ for all

intervals m simultaneously. This implies that the total number of steps of the algorithm is

T = O
(

KB?
cmin

log
KB?|S||A|
δcmin

+
B3
?|S|2|A|
c3

min
log2 KB?|S||A|

δcmin

)
.

Lemma B.1. The event Ωm holds for all intervals m simultaneously with probability at least 1 – δ/4.

Proof. Fix a state s and an action a. Consider an infinite sequence {Zi}∞i=1 of draws from the distribution P(· | s, a). By
Theorem D.2 we get that for a prefix of length t of this sequence (that is {Zi}t

i=1)

‖P(· | s, a) – P̄{Zi}t
i=1

(· | s, a)‖1 ≤ 2

√
|S| log(δ–1

t )
t

,
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holds with probability 1 – δt, where P̄{Zi}t
i=1

(· | s, a) is the empirical distribution defined by the draws {Zi}t
i=1. We repeat this

argument for every prefix {Zi}t
i=1 of {Zi}∞i=1 and for every state-action pair, with δt = δ/8|S||A|t2. Then from the union bound

we get that Ωm holds for all intervals m simultaneously with probability at least 1 – δ/4.

Lemma B.2. Let m be an interval. If Ωm holds then J̃m(s) ≤ Jπ
?

(s) ≤ B? for every s ∈ S.

Proof. Tarbouriech et al. (2020) show that all the transition functions in the confidence set of Eq. (4) can be combined
into a single augmented MDP. The optimal policy of the augmented MDP can be found efficiently, e.g., with Extended
Value Iteration. The optimistic policy is the optimal policy in the augmented MDP. It minimizes J̃m(s) over all policies and
feasible transition functions, for all states s ∈ S simultaneously (following Bertsekas & Tsitsiklis, 1991). Since Ωm holds, it
follows that the real transition function is in the confidence set therefore it is also considered in the minimization. Thus
J̃m(s) ≤ Jπ

?

(s) for all s ∈ S. Finally, Jπ
?

(s) ≤ B? by the definition of B?.

Lemma B.3. Let m be an interval and (s, a) be a known state-action pair. If Ωm holds then

‖P̃m(· | s, a) – P(· | s, a)‖1 ≤
c(s, a)
2B?

.

Proof. By the definition of the confidence set

‖P̃m(· | s, a) – P̄m(· | s, a)‖1 ≤ 5

√
|S| log

(
|S||A|Nm

+ (s, a)/δ
)

Nm
+ (s, a)

≤ c(s, a)
4B?

,

where the last inequality follows because log(x)/x is decreasing, and Nm
+ (s, a) ≥ 5000B2

?|S|
c2

min
log B?|S||A|

δcmin
since (s, a) is known.

Similarly, since Ωm holds we also have that

‖P(· | s, a) – P̄m(· | s, a)‖1 ≤ 5

√
|S| log

(
|S||A|Nm

+ (s, a)/δ
)

Nm
+ (s, a)

≤ c(s, a)
4B?

,

and the lemma follows by the triangle inequality.

Lemma B.4. Let π̃ be a policy and P̃ be a transition function. Denote the cost-to-go of π̃ with respect to P̃ by J̃ . Assume
that for every s ∈ S, J̃(s) ≤ B? and that

‖P̃(· | s, π̃(s)) – P(· | s, π̃(s))‖1 ≤
c(s, π̃(s))

2B?
.

Then, π̃ is proper (with respect to P), and it holds that Jπ̃(s) ≤ 2B? for every s ∈ S.

Proof. Consider the Bellman equations of π̃ with respect to transition function P̃ at some state s ∈ S (see Lemma 2.1),
defined as

J̃(s) = c(s, π̃(s)) +
∑
s′∈S

P̃(s′ | s, π̃(s))J̃(s′)

= c(s, π̃(s)) +
∑
s′∈S

P(s′ | s, π̃(s))J̃(s′) +
∑
s′∈S

J̃(s′)
(

P̃(s′ | s, π̃(s)) – P(s′ | s, π̃(s))
)

. (8)

Notice that by our assumptions and using Hölder inequality,∣∣∣∣∣∑
s′∈S

J̃(s′)
(

P̃(s′ | s, π̃(s)) – P(s′ | s, π̃(s))
)∣∣∣∣∣ ≤ ‖P̃(· | s, π̃(s)) – P(· | s, π̃(s))‖1 · ‖J̃‖∞

≤ c(s, π̃(s))
2B?

· B? =
c(s, π̃(s))

2
.
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Plugging this into Eq. (8), we obtain

J̃(s) ≥ c(s, π̃(s)) +
∑
s′∈S

P(s′ | s, π̃(s))J̃(s′) –
c(s, π̃(s))

2
=

c(s, π̃(s))
2

+
∑
s′∈S

P(s′ | s, π̃(s))J̃(s′).

Therefore, defining J ′ = 2J̃ , then J ′(s) ≥ c(s, π̃(s)) +
∑

s′∈S P(s′ | s, π̃(s))J ′(s′) for all s ∈ S. The statement now follows by
Lemma 2.1.

Lemma B.5. Let π be a proper policy such that for some v > 0, Jπ(s) ≤ v for every s ∈ S. Then, the probability that the
cost of π to reach the goal state from any state s is more than m, is at most 2e–m/4v for all m ≥ 0. Note that a cost of at most
m implies that the number of steps is at most m

cmin
.

Proof. By Markov inequality, the probability that π accumulates cost of more than 2v before reaching the goal state is at
most 1/2. Iterating this argument, we get that the probability that π accumulates cost of more than 2kv before reaching the
goal state is at most 2–k for every integer k ≥ 0. In general, for any m ≥ 0, the probability that π suffers a cost of more than
m is at most 2–bm/2vc ≤ 2 · 2–m/2v ≤ 2e–m/4v.

For the next lemma we will need the following definitions. The trajectory visited in interval m is denoted by Um =
(sm

1 , am
1 , . . . , sm

Hm , am
Hm , sm

Hm+1) where am
h is the action taken in sm

h , and Hm is the length of the interval. In addition, the
concatenation of the trajectories in the intervals up to and including interval m is denoted by Ūm = ∪m

m′=1Um′
.

Lemma B.6. Let m be an interval. For all r ≥ 0, we have that

P
[ Hm∑

h=1

c
(
sm

h , am
h

)
I{Ωm} > r | Ūm–1

]
≤ 3e–r/8B? .

Proof. Note that Ωm is determined given Ūm–1, and suppose that Ωm holds otherwise
∑Hm

h=1 c
(
sm

h , am
h

)
I{Ωm} is 0. Also

assume that r ≥ 8B? or else the statement holds trivially.

Define the MDP Mknow = (Sknow, A, Pknow, c, sinit) in which every state s ∈ S such that (s, π̃m(s)) is unknown is contracted
into the goal state. Let Pknow be the transition function induced in Mknow by P, and let Jm

know be the cost-to-go of π̃m in Mknow

with respect to Pknow. Similarly, define P̃know
m as the transition function induced in Mknow by P̃m, and J̃m

know as the cost-to-go
of π̃m in Mknow with respect to P̃know

m . It is clear that J̃m
know(s) ≤ J̃m(s) for every s ∈ S, so by Lemma B.2, J̃m

know(s) ≤ B?.
Moreover, since all the states s ∈ S for which (s, π̃m(s)) is unknown were contracted to the goal state, we can use Lemma B.3
to obtain for all s ∈ Sknow:

‖P̃know
m (· | s, π̃m(s)) – Pknow(· | s, π̃m(s))‖1 ≤ ‖P̃m(· | s, π̃m(s)) – P(· | s, π̃m(s))‖1 ≤

c(s, π̃m(s))
2B?

. (9)

We can apply Lemma B.4 in Mknow and obtain that Jm
know(s) ≤ 2B? for every s ∈ Sknow. Notice that reaching the goal state in

Mknow is equivalent to reaching the goal state or an unknown state-action pair in M, and also recall that all state-action pairs
in the interval are known except for the first one. Thus, from Lemma B.5,

P
[ Hm∑

h=2

c
(
sm

h , am
h

)
I{Ωm} > r – B? | Ūm–1

]
≤ 2e–(r–B?)/8B? ≤ 3e–r/8B? .

Since J̃m ≤ B?, our algorithm will never select an action whose instantaneous cost is larger than B?. Since the first
state-action in the interval might not be known, its cost is at most B?, and therefore

P
[ Hm∑

h=1

c
(
sm

h , am
h

)
I{Ωm} > r | Ūm–1

]
≤ P

[ Hm∑
h=2

c
(
sm

h , am
h

)
I{Ωm} > r – B? | Ūm–1

]
≤ 3e–r/8B? .
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Proof of Lemma 3.3. From Lemma B.6, with probability at least 1 – δ/16m2,
∑Hm

h=1 c
(
sm

h , am
h

)
≤ 24B? log 4m

δ , and by the
union bound this holds for all intervals m simultaneously with probability at least 1 – δ/4. By Lemma B.1, with probability
1 – δ/4, Ωm holds for all intervals m. Combining these two facts again by a union bound, we get that both Ωm holds and the
cost of interval m is at most 24B? log 4m

δ simultaneously to all intervals m with probability at least 1 – δ/2.

If the cost of all intervals is bounded (and therefore so is the length of the interval), we can use the bound on the number of
intervals in Observation 3.2 to conclude that

T = O
(

B?
cmin

log
M
δ
·
(

K +
B2
?|S|2|A|
c2

min
log

B?|S||A|
δcmin

))
= O

(
KB?
cmin

log
KB?|S||A|
δcmin

+
B3
?|S|2|A|
c3

min
log2 KB?|S||A|

δcmin

)
.

B.1.2. PROOF OF LEMMA 3.4

Lemma (restatement of Lemma 3.4). With probability at least 1 – δ/2, we have

R̃K ≤
5000B3

?|S|2|A|
c2

min
log

B?|S||A|
cminδ

+ B?

√
T log

4T
δ

+ 10B?

√
|S| log

|S||A|T
δ

∑
s,a

M∑
m=1

nm(s, a)√
Nm

+ (s, a)
.

To analyze R̃K , we begin by plugging in the Bellman optimality equation of π̃m with respect to P̃m into R̃K . This allows us to
decompose R̃K into three terms as follows.

R̃K =
M∑

m=1

Hm∑
h=1

(
J̃m(sm

h ) –
∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)

)
I{Ωm} – K · Jπ

?

(sinit)

=
M∑

m=1

Hm∑
h=1

(
J̃m(sm

h ) – J̃m(sm
h+1)
)
I{Ωm} – K · Jπ

?

(sinit) (10)

+
M∑

m=1

Hm∑
h=1

∑
s′∈S

J̃m(s′)
(

P(s′ | sm
h , am

h ) – P̃m(s′ | sm
h , am

h )
)
I{Ωm} (11)

+
M∑

m=1

(
Hm∑
h=1

J̃m(sm
h+1) –

∑
s′∈S

P(s′ | sm
h , am

h )J̃m(s′)

)
I{Ωm}. (12)

Eq. (10) is a bound on the cost suffered from switching policies each time we visit an unknown state-action pair and is
bounded by the following lemma.

Lemma B.7.
∑M

m=1
∑Hm

h=1

(
J̃m(sm

h ) – J̃m(sm
h+1)
)
I{Ωm} ≤ B?|S||A| · 5000B2

?|S|
c2

min
log B?|S||A|

δcmin
+ K · Jπ?

(sinit).

Proof. Note that per interval
∑Hm

h=1(J̃m(sm
h ) – J̃m(sm

h+1)) is a telescopic sum which equals J̃m(sm
1 ) – J̃m(sm

Hm+1). Furthermore, for
every two consecutive intervals m, m + 1 one of the following occurs:

(i) If interval m ended in the goal state then J̃m(sm
Hm+1) = J̃m(g) = 0 and J̃m+1(sm+1

1 ) = J̃m+1(sinit). Thus, using Lemma B.2
for the last inequality,

J̃m+1(sm+1
1 )I{Ωm+1} – J̃m(sm

Hm+1)I{Ωm} = J̃m+1(sinit)I{Ωm+1} ≤ Jπ
?

(sinit).

This happens at most K times.

(ii) If interval m ended in an unknown state then

J̃m+1(sm+1
1 )I{Ωm+1} – J̃m(sm

Hm+1)I{Ωm} ≤ J̃m+1(sm+1
1 )I{Ωm+1} ≤ B?.

This happens at most |S||A| · 5000B2
?|S|

c2
min

log B?|S||A|
δcmin

times.
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Lemma B.8 bounds Eq. (11) using techniques borrowed from Jaksch et al. (2010).

Lemma B.8. It holds that

M∑
m=1

Hm∑
h=1

∑
s′∈S

J̃m(s′)
(

P(s′ | sm
h , am

h ) – P̃m(s′ | sm
h , am

h )
)
I{Ωm} ≤ 10B?

√
|S| log

|S||A|T
δ

∑
s,a

M∑
m=1

nm(s, a)√
Nm

+ (s, a)
.

Proof. Using the definition of the confidence sets we obtain

M∑
m=1

Hm∑
h=1

∑
s′∈S

J̃m(s′)
(

P(s′ | sm
h , am

h ) – P̃m(s′ | sm
h , am

h )
)
I{Ωm} ≤

≤ B?
∑
s∈S

∑
a∈A

M∑
m=1

nm(s, a)‖P(· | s, a) – P̃m(· | s, a)‖1I{Ωm}

≤ 10B?
∑
s∈S

∑
a∈A

M∑
m=1

nm(s, a)

√
|S| log

(
|S||A|Nm

+ (s, a)/δ
)

Nm
+ (s, a)

≤ 10B?

√
|S| log

|S||A|T
δ

∑
s∈S

∑
a∈A

M∑
m=1

nm(s, a)√
Nm

+ (s, a)
.

where the first inequality follows from Hölder inequality and Lemma B.2, and the second because P̃m and P are both in the
confidence set of Eq. (4) when Ωm holds. The third inequality follows because Nm

+ (s, a) ≤ T .

Lemma B.9 bounds the term in Eq. (12) using Azuma’s concentration inequality.

Lemma B.9. With probability at least 1 – δ/2,

M∑
m=1

(
Hm∑
h=1

J̃m(sm
h+1) –

∑
s′∈S

P(s′ | sm
h , am

h )J̃m(s′)

)
I{Ωm} ≤ B?

√
T log

4T
δ

.

Proof. Consider the infinite sequence of random variables

Xt =
(

J̃m(sm
h+1) –

∑
s′∈S

P(s′ | sm
h , π̃m(sm

h ))J̃m(s′)
)
I{Ωm},

where m is the interval containing time t, and h is the index of time step t within interval m. Notice that this is a martingale
difference sequence, and |Xt| ≤ B? by Lemma B.2. Now, we apply anytime Azuma’s inequality (Theorem D.1) to any prefix
of the sequence {Xt}∞t=1. Thus, with probability at least 1 – δ/2, for every T:

T∑
t=1

Xt ≤ B?

√
T log

4T
δ

.

B.1.3. PROOF OF THEOREM 3.1

Theorem (restatement of Theorem 3.1). Suppose that Assumption 2 holds. With probability at least 1 – δ the regret of
Algorithm 1 is bounded as follows:

RK = O
(√

B3
?|S|2|A|K

cmin
log

KB?|S||A|
δcmin

+
B3
?|S|2|A|
c2

min
log3/2 KB?|S||A|

δcmin

)
.

Lemma B.10. Assume that the number of steps in every interval is is at most 24B?

cmin
log 4m

δ . Then for every s ∈ S and a ∈ A,

M∑
m=1

nm(s, a)√
Nm

+ (s, a)
≤ 3
√

NM+1(s, a) .
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Proof. We claim that, by the assumption of the lemma, for every interval m we have that nm(s, a) ≤ Nm
+ (s, a). Indeed, if (s, a)

is unknown then nm(s, a) = 1 and since Nm
+ (s, a) ≥ 1 the claim follows. If (s, a) is known then Nm

+ (s, a) ≥ 5000B2
?|S|

c2
min

log B?|S||A|
δcmin

and by our assumption the length of the interval, and in particular nm(s, a), is at most 24B?

cmin
log 4m

δ . Our statement then follows
by Jaksch et al. (2010, Lemma 19).

Proof of Theorem 3.1. With probability at least 1 – δ, both Lemmas 3.3 and B.9 hold. Lemma 3.3 states that the length of
every interval is at most 24B?

cmin
log 4m

δ , and Lemma B.10 obtains

∑
s∈S

∑
a∈A

M∑
m=1

nm(s, a)√
Nm

+ (s, a)
≤ 3

∑
(s,a)∈S×A

√
NM+1(s, a) ≤ 3

√
|S||A|T , (13)

where the last inequality follows from Jensen’s inequality and the fact that
∑

(s,a)∈S×A NM+1(s, a) ≤ T . Next, we sum the
bounds of Lemmas B.7 to B.9 and use Eq. (13) to obtain

RK ≤ 5000
B3
?|S|2|A|
c2

min
log

B?|S||A|
δcmin

+ 30B?|S|
√
|A|T log

|S||A|T
δ

+ B?

√
T log

4T
δ

.

To finish the proof use Lemma 3.3 to bound T .

B.2. Proofs for Section 4.1

B.2.1. PROOF OF LEMMA 4.2

Lemma (restatement of Lemma 4.2). With probability at least 1 – δ/2, Ωm holds for all intervals m simultaneously.

Proof. Fix a triplet (s, a, s′) ∈ S× A× S+. Consider an infinite sequence (Zi)∞i=1 of draws from the distribution P(· | s, a) and
let Xi = I{Zi = s′}. We apply Eq. (25) of Theorem D.3 with δt = δ

4|S|2|A|t2 to a prefix of length t of the sequence (Xi)∞i=1. Then
divide Eq. (25) by t and obtain that, after simplifying using the assumptions that |S| ≥ 2 and |A| ≥ 2, Eq. (6) holds with
probability 1 – δt. We repeat this argument for every prefix (Zi)t

i=1 of (Zi)∞i=1 and for every state-action-state triplet. Then
from the union bound we get that Ωm holds for all intervals m simultaneously with probability at least 1 – δ/2.

B.2.2. PROOF OF LEMMA 4.3

Lemma (restatement of Lemma 4.3). It holds that

R̃M =
M∑

m=1

( Hm∑
h=1

J̃m(sm
h ) – J̃m(sm

h+1)
)
I{Ωm} – K · Jπ

?

(sinit)

+
M∑

m=1

( Hm∑
h=1

J̃m(sm
h+1) –

∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}.

Lemma B.11. Let m be an interval. If Ωm holds then π̃m satisfies the Bellman equations in the optimistic model:

J̃m(s) = c(s, π̃m(s)) +
∑
s′∈S

P̃m(s′ | s, π̃i(s))J̃m(s′), ∀s ∈ S.

Proof. Note that the Bellman equations hold in the optimistic model since as we defined this model, there is a nonzero
probability of transition to the goal state by any action from every state. Thus in the optimistic model every policy is a
proper policy and in particular Lemma 2.2 holds.

Proof of Lemma 4.3. By Lemma B.11, we can use the Bellman equations in the optimistic model to have the following
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interpretation of the costs for every interval m and time h:

c(sm
h , am

h )I{Ωm} =
(

J̃m(sm
h ) –

∑
s′∈S

P̃i(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}

=
(

J̃m(sm
h ) – J̃m(sm

h+1)
)
I{Ωm} +

(
J̃m(sm

h+1) –
∑
s′∈S

P̃i(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}. (14)

We now write R̃M =
∑M

m=1
∑Hm

h=1 c(sm
h , am

h )I{Ωm} – K · Jπ?

(sinit), and substitute for each cost using Eq. (14) to get the
lemma.

B.2.3. PROOF OF LEMMA 4.4

Lemma (restatement of Lemma 4.4).
∑M

m=1

(∑Hm

h=1 J̃m(sm
h ) – J̃m(sm

h+1)
)
I{Ωm} – K · Jπ?

(sinit) ≤ 2B?|S||A| log T .

Lemma B.12. Let m be an interval. If Ωm holds then J̃m(s) ≤ Jπ
?

(s) ≤ B? for every s ∈ S.

Proof. Denote by P̃ the transition function computed by Algorithm 2 at the beginning of epoch i(m), and by J̃ the cost-to-go
with respect to P̃. We claim that for every proper policy π and state s ∈ S, J̃π(s) ≤ Jπ(s). Then, the lemma follows easily
since J̃m(s) ≤ J̃π

?

(s) ≤ Jπ
?

(s) ≤ B?.

Indeed, let s ∈ S and consider the Bellman equations of π with respect to P:

Jπ(s) = c(s,π(s)) +
∑
s′∈S

P(s′ | s,π(s))Jπ(s′) ≥ c(s,π(s)) +
∑
s′∈S

P̃(s′ | s,π(s))Jπ(s′),

where the inequality follows because P̃(s′ | s, a) ≤ P(s′ | s, a) for every (s, a, s′) ∈ S× A× S. This holds since P is in the
confidence set of Eq. (6) (as Ωm holds), and by the way P̃ is computed in Algorithm 2. Therefore, by Lemma 2.1 we obtain
that Jπ(s) ≥ J̃π(s) for every s ∈ S as required.

Proof of Lemma 4.4. For every two consecutive intervals m, m + 1, denoting i = i(m), we have one of the following:

(i) If interval m ended in the goal state then J̃i(m)(sm
Hm+1) = J̃i(m)(g) = 0 and J̃i(m+1)(sm+1

1 ) = J̃i(m+1)(sinit). Therefore, by
Lemma B.12,

J̃i(m+1)(sm+1
1 )I{Ωm+1} – J̃i(m)(sm

Hm+1)I{Ωm} = J̃i(m+1)(sinit)I{Ωm+1} ≤ Jπ
?

(sinit).

This happens at most K times.

(ii) If interval m ended in an unknown state-action pair or since the cost reached B?, and we stay in the same epoch, then
i(m) = i(m + 1) = i and sm+1

1 = sm
Hm+1. Thus

J̃i(m+1)(sm+1
1 )I{Ωm+1} – J̃i(m)(sm

Hm+1)I{Ωm} = J̃i(sm+1
1 )I{Ωm} – J̃i(sm

Hm+1)I{Ωm} = 0.

(iii) If interval m ended by doubling the visit count to some state-action pair, then we start a new epoch. Thus by
Lemma B.12,

J̃i(m+1)(sm+1
1 )I{Ωm+1} – J̃i(m)(sm

Hm+1)I{Ωm} ≤ J̃i+1(sm+1
1 )I{Ωm+1} ≤ B?,

This happens at most 2|S||A| log T times.

To conclude, we have

M∑
m=1

( Hm∑
h=1

J̃i(m)(sm
h ) – J̃i(m)(sm

h+1)
)
I{Ωm} – KJπ

?

(sinit) ≤ KJπ
?

(sinit) + 2B?|S||A| log T – KJπ
?

(sinit)

= 2B?|S||A| log T .
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B.2.4. PROOF OF LEMMA 4.5

Lemma (restatement of Lemma 4.5). With probability at least 1–δ/4, the following holds for all M = 1, 2, . . . simultaneously.

M∑
m=1

( Hm∑
h=1

J̃m(sm
h+1) –

∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}

≤
M∑

m=1

E
[( Hm∑

h=1

J̃m(sm
h+1) –

∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm} | Ūm–1

]
+ 3B?

√
M log

8M
δ

.

Proof. Consider the following martingale difference sequence (Xm)∞m=1 defined by

Xm =
Hm∑
h=1

(
J̃m(sm

h+1) –
∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}.

The Bellman optimality equations of π̃m with respect to P̃m (Lemma B.11) obtain

|Xm| =
∣∣∣∣(J̃m(sm

Hm+1) – J̃m(sm
1 )︸ ︷︷ ︸

≤B?

+
Hm∑
h=1

c(sm
h , am

h )︸ ︷︷ ︸
≤2B?

)
I{Ωm}

∣∣∣∣ ≤ 3B?,

where the inequality follows from Lemma B.12 and the fact that the total cost within each interval at most 2B? by construction.
Therefore, we use anytime Azuma’s inequality (Theorem D.1) to obtain that with probability at least 1 – δ/4:

M∑
m=1

Xm ≤
M∑

m=1

E
[
Xm | Ūm–1] + 3B?

√
M log

8M
δ

.

B.2.5. PROOF OF LEMMA 4.6

Lemma (restatement of Lemma 4.6). For every interval m and time h, denote Am
h = log(|S||A|Nm

+ (sm
h ,am

h )/δ)
Nm

+ (sm
h ,am

h ) . Then,

E
[( Hm∑

h=1

J̃m(sm
h+1) –

∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm} | Ūm–1

]

≤ 16 · E
[ Hm∑

h=1

√
|S|Vm

h Am
h I{Ω

m}
∣∣∣∣ Ūm–1

]
+ 272 · E

[ Hm∑
h=1

B?|S|Am
h I{Ωm}

∣∣∣∣ Ūm–1
]

,

where Vm
h is the empirical variance defined as

Vm
h =

∑
s′∈S+

P(s′ | sm
h , am

h )
(

J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
)2

.

The next lemma gives a different interpretation to the confidence bounds of Eq. (6), and will be useful in the proofs that
follow.

Lemma B.13. Denote Am
h = log(|S||A|Nm

+ (s, a)/δ)/Nm
+ (s, a). When Ωm holds we have for any (s, a, s′) ∈ S× A× S+:

|P(s′ | s, a) – P̃m(s′ | s, a)| ≤ 8
√

P(s′ | s, a)Am
h + 136Am

h .

Proof. Since Ωm holds we have for all (s, a, s′) ∈ S× A× S+ that

P̄m(s′ | s, a) – P(s′ | s, a) ≤ 4
√

P̄m(s′ | s, a)Am
h + 28Am

h .
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This is a quadratic inequality in
√

P̄m(s′ | s, a). Using the fact that x2 ≤ a · x + b implies x ≤ a +
√

b with a = 4
√

Am
h and

b = P(s′ | s, a) + 28Am
h , we have√

P̄m(s′ | s, a) ≤ 4
√

Am
h +
√

P(s′ | s, a) + 28Am
h ≤

√
P(s′ | s, a) + 10

√
Am

h ,

where we used the inequality
√

x + y ≤
√

x +
√

y that holds for any x ≥ 0 and y ≥ 0. Substituting back into Eq. (6) obtains

|P(s′ | s, a) – P̄m(s′ | s, a)| ≤ 4
√

P(s′ | s, a)Am
h + 68Am

h .

From a similar argument

|P̃m(s′ | s, a) – P̄m(s′ | s, a)| ≤ 4
√

P(s′ | s, a)Am
h + 68Am

h .

Using the triangle inequality finishes the proof.

Proof of Lemma 4.6. Denote Xm =
(∑Hm

h=1 J̃m(sm
h+1) –

∑
s′∈S P̃m(s′ | sm

h , am
h )J̃m(s′)

)
I{Ωm}, and Zm

h =
(
J̃m(sm

h+1) –
∑

s′∈S P(s′ |
sm

h , am
h )J̃m(s′)

)
I{Ωm}. Think of the interval as an infinite stochastic process, and note that, conditioned on Ūm–1,

(
Zm

h

)∞
h=1 is a

martingale difference sequence w.r.t (Uh)∞h=1, where Uh is the trajectory of the learner from the beginning of the interval
and up to and including time h. This holds since, by conditioning on Ūm–1, Ωm is determined and is independent of the
randomness generated during the interval. Note that Hm is a stopping time with respect to (Zm

h )∞h=1 which is bounded by
2B?/cmin. Hence by the optional stopping theorem E[

∑Hm

h=1 Zm
h | Ūm–1] = 0, which gets us

E[Xm | Ūm–1] = E
[ Hm∑

h=1

(
J̃m(sm

h+1) –
∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm} | Ūm–1

]

= E
[ Hm∑

h=1

Zm
h | Ūm–1

]
+ E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]

= E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]
.

Furthermore, we have

E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]

= E
[ Hm∑

h=1

∑
s′∈S+

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)(

J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
)
I{Ωm} | Ūm–1

]

≤ E
[

8
Hm∑
h=1

∑
s′∈S+

√√√√Am
h P(s′ | sm

h , am
h )
(

J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
)2

I{Ωm} | Ūm–1
]

+ E
[

136
Hm∑
h=1

∑
s′∈S+

Am
h

∣∣∣∣J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
∣∣∣∣I{Ωm} | Ūm–1

]

≤ E
[

16
Hm∑
h=1

√
|S|Vm

h Am
h I{Ω

m} + 272|S|B?Am
h I{Ωm} | Ūm–1

]
,

where the first equality follows since J̃m(g) = 0, and P(· | sm
h , am

h ) and P̃i(· | sm
h , am

h ) are probability distributions over S+

whence
∑

s′′∈S+ P(s′′ | sm
h , am

h )J̃m(s′′) does not depend on s′. The first inequality follows from Lemma B.13, and the second
inequality from Jensen’s inequality, Lemma B.12, |S+| ≤ 2|S|, and the definition of Vm

h .
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B.2.6. PROOF OF LEMMA 4.7

Lemma (restatement of Lemma 4.7). For any interval m, E
[∑Hm

h=1 Vm
h I{Ωm} | Ūm–1

]
≤ 44B2

?.

Lemma B.14. Let m be an interval and (s, a) be a known state-action pair. If Ωm holds then for every s′ ∈ S+

|P̃m
(
s′ | s, a

)
– P
(
s′ | s, a

)
| ≤ 1

8

√
cmin · P

(
s′ | s, a

)
|S|B?

+
cmin

4|S|B?
.

Proof. By Lemma B.13 we have that

|P̃m
(
s′ | s, a

)
– P
(
s′ | s, a

)
| ≤ 8

√
P(s′ | s, a) log

(
|S||A|Nm

+ (s, a)/δ
)

Nm
+ (s, a)

+
136 log

(
|S||A|Nm

+ (s, a)/δ
)

Nm
+ (s, a)

which gives the required bound because log(x)/x is decreasing, and (s, a) is a known state-action pair so Nm
+ (s, a) ≥

30000 · B?|S|
cmin

log B?|S||A|
δcmin

.

Proof of Lemma 4.7. Note that the first state-action pair in the subinterval, (sm
1 , am

1 ), might be unknown and that all state-
action pairs that appear afterwards are known. Thus, we bound

E
[ Hm∑

h=1

Vm
h | Ūm–1

]
= E
[
Vm

1 I{Ωm} | Ūm–1
]

+ E
[ Hm∑

h=2

Vm
h I{Ωm} | Ūm–1

]
.

The first summand is trivially bounded by B2
? (Lemma B.12). We now upper bound E

[∑Hm

h=2 Vm
h I{Ωm} | Ūm–1

]
. Denote

Zm
h =

(
J̃m(sm

h+1) –
∑

s′∈S P(s′ | sm
h , am

h )J̃m(s′)
)
I{Ωm}, and think of the interval as an infinite stochastic process. Note that,

conditioned on Ūm–1,
(
Zm

h

)∞
h=1 is a martingale difference sequence w.r.t (Uh)∞h=1, where Uh is the trajectory of the learner from

the beginning of the interval and up to time h and including. This holds since, by conditioning on Ūm–1, Ωm is determined
and is independent of the randomness generated during the interval. Note that Hm is a stopping time with respect to (Zm

h )∞h=1
which is bounded by 2B?/cmin. Therefore, applying Lemma B.15 found below obtains

E
[ Hm∑

h=2

Vm
h I{Ωm} | Ūm–1

]
= E
[( Hm∑

h=2

Zm
h I{Ωm}

)2

| Ūm–1
]

. (15)

We now proceed by bounding |
∑Hm

h=1 Zm
h | when Ωm occurs. Therefore,∣∣∣∣ Hm∑

h=2

Zm
h

∣∣∣∣ =
∣∣∣∣ Hm∑

h=2

J̃m(sm
h+1) –

∑
s′∈S

P(s′ | sm
h , am

h )J̃m(s′)
∣∣∣∣

≤
∣∣∣∣ Hm∑

h=2

J̃m(sm
h+1) – J̃m(sm

h )
∣∣∣∣ (16)

+
∣∣∣∣ Hm∑

h=2

J̃m(sm
h ) –

∑
s′∈S

P̃m(s′ | sm
h , am

h )J̃m(s′)
∣∣∣∣ (17)

+
∣∣∣∣ Hm∑

h=2

∑
s′∈S+

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)(

J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
)∣∣∣∣, (18)

where Eq. (18) is given as P(· | sm
h , am

h ) and P̃i(· | sm
h , am

h ) are probability distributions over S+,
∑

s′′∈S+ P(s′′ | sm
h , am

h )J̃m(s′′)
is constant w.r.t s′, and J̃m(g) = 0.

We now bound each of the three terms above individually. Eq. (16) is a telescopic sum that is at most B? on Ωm (Lemma B.12).
For Eq. (17), we use the Bellman equations for π̃m on the optimistic model defined by the transitions P̃m (Lemma B.11) thus
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it is at most
∑Hm

h=2 c
(
sm

h , am
h

)
≤ 2B? (see text following Lemma 4.5). For Eq. (18), recall that all states-action pairs at times

h = 2, . . . , Hm are known by definition of Hm. Hence by Lemma B.14,∣∣∣∣∑
s′∈S+

(
J̃m(s′) –

∑
s′′∈S+

P
(
s′′ | sm

h , am
h

)
J̃m(s′′)

)(
P̃m
(
s′ | sm

h , am
h

)
– P
(
s′ | sm

h , am
h

))∣∣∣∣
≤ 1

8

∑
s′∈S+

√
cmin · P

(
s′ | sm

h , am
h

)(
J̃m(s′) –

∑
s′′∈S+ P

(
s′′ | sm

h , am
h

)
J̃m(s′′)

)2

|S|B?

+
∑
s′∈S+

cmin

4|S|B?
·
∣∣∣J̃m(s′) –

∑
s′′∈S+

P
(
s′′ | sm

h , am
h

)
J̃m(s′′)

∣∣∣︸ ︷︷ ︸
≤B? by Lemma B.12

≤ 1
4

√
cmin · Vm

h

B?
+

c
(
sm

h , am
h

)
2

, (by Jensen’s inequality, cmin ≤ c(sm
h , am

h ), |S+| ≤ 2|S|)

and again by Jensen’s inequality and that the total cost throughout the interval is at most 2B?, we have on Ωm

Hm∑
h=2

1
4

√
cmin · Vm

h

B?
+

c
(
sm

h , am
h

)
2

≤ 1
4

√√√√ Hm︸︷︷︸
≤2B?/cmin

·
Hm∑
h=2

cmin · Vm
h

B?
+

1
2

Hm∑
h=2

c
(
sm

h , am
h

)
︸ ︷︷ ︸

≤2B?

(Jensen’s inequality)

≤ 1
4

√√√√2
Hm∑
h=2

Vm
h + B?.

Plugging these bounds back into Eq. (15) gets us

E
[ Hm∑

h=2

Vm
h I{Ωm}

∣∣∣∣ Ūm–1
]
≤ E

[(
4B? +

1
4

√√√√2
Hm∑
h=1

Vm
h I{Ωm}

)2 ∣∣∣∣ Ūm–1
]

≤ 32B2
? +

1
4
E
[ Hm∑

h=2

Vm
h I{Ωm}

∣∣∣∣ Ūm–1
]

,

where the last inequality is by the elementary inequality (a + b)2 ≤ 2(a2 + b2). Rearranging gets us E
[∑Hm

h=2 Vm
h I{Ωm} |

Ūm–1
]
≤ 43B2

?, and the lemma follows.

Lemma B.15. Let (Xt)∞t=1 be a martingale difference sequence adapted to the filtration (Ft)∞t=0. Let Yn = (
∑n

t=1 Xt)2 –∑n
t=1 E[X2

t | Ft–1]. Then (Yn)∞n=0 is a martingale, and in particular if τ is a stopping time such that τ ≤ c almost surely, then
E[Yτ ] = 0.

Proof. We first show that (Yn)∞n=1 is a martingale. Indeed,

E[Yn | Fn–1] = E
[( n∑

t=1

Xt

)2

–
n∑

t=1

E[X2
t | Ft–1] | Fn–1

]

= E
[( n–1∑

t=1

Xt

)2

– 2
( n–1∑

t=1

Xt

)
Xn + X2

n –
n∑

t=1

E[X2
t | Ft–1] | Fn–1

]

=
( n–1∑

t=1

Xt

)2

– 2
( n–1∑

t=1

Xt

)
· 0 + E[X2

n | Fn–1] –
n∑

t=1

E[X2
t | Ft–1] (E[Xn | Fn–1] = 0)

=
( n–1∑

t=1

Xt

)2

–
n–1∑
t=1

E[X2
t | Ft–1] = Yn–1.
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We would now like to show that E[Yτ ] = E[Y1] = 0 using the optional stopping theorem. The latter holds since τ ≤ c almost
surely and E[Y1] = E[X2

1 – E[X2
1 | F0]] = 0.

B.2.7. PROOF OF LEMMA 4.8

Lemma (restatement of Lemma 4.8). With probability at least 1 – δ/4,

M∑
m=1

E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]

≤ 614B?

√
M|S|2|A| log2 T|S||A|

δ
+ 8160B?|S|2|A| log2 T|S||A|

δ
.

Proof. Recall the following definitions:

Am
h =

log(|S||A|Nm
+ (sm

h , am
h )/δ)

Nm
+ (sm

h , am
h )

. Vm
h =

∑
s′∈S+

P(s′ | sm
h , am

h )
(

J̃m(s′) –
∑

s′′∈S+

P(s′′ | sm
h , am

h )J̃m(s′′)
)2

.

From Lemma 4.6 we have that

E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]

≤ E
[

16
√
|S|

Hm∑
h=1

√
Vm

h Am
h I{Ω

m} + 272B?|S|Am
h I{Ωm} | Ūm–1

]
.

Moreover, by applying the Cauchy-Schwartz inequality twice, we get that

E
[ Hm∑

h=1

√
Vm

h Am
h I{Ω

m}
∣∣∣∣ Ūm–1

]
≤ E

[√√√√ Hm∑
h=1

Vm
h I{Ωm} ·

√√√√ Hm∑
h=1

Am
h I{Ωm}

∣∣∣∣ Ūm–1
]

≤

√√√√E
[ Hm∑

h=1

Am
h I{Ωm}

∣∣∣∣ Ūm–1

]
·

√√√√E
[ Hm∑

h=1

Vm
h I{Ωm}

∣∣∣∣ Ūm–1

]

≤ 7B?

√√√√E
[ Hm∑

h=1

Am
h I{Ωm}

∣∣∣∣ Ūm–1

]
. (Lemma 4.7)

We sum over all intervals to obtain

M∑
m=1

E
[ Hm∑

h=1

∑
s′∈S

(
P(s′ | sm

h , am
h ) – P̃m(s′ | sm

h , am
h )
)
J̃m(s′)I{Ωm} | Ūm–1

]
≤

≤ 112B?
M∑

m=1

√√√√|S|E[ Hm∑
h=1

Am
h I{Ωm} | Ūm–1

]
+ 272B?|S|

M∑
m=1

E
[ Hm∑

h=1

Am
h I{Ωm} | Ūm–1

]

≤ 112B?

√√√√M|S|
M∑

m=1

E
[ Hm∑

h=1

Am
h I{Ωm} | Ūm–1

]
+ 272B?|S|

M∑
m=1

E
[ Hm∑

h=1

Am
h I{Ωm} | Ūm–1

]
,

where the last inequality follows from Jensen’s inequality. We finish the proof using Lemma B.16 below.

Lemma B.16. With probability at least 1 – δ/4, the following holds for M = 1, 2, . . . simultaneously.

M∑
m=1

E
[ Hm∑

h=1

Am
h I{Ωm} | Ūm–1

]
≤ O

(
|S||A| log2 T|S||A|

δ

)
.
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Proof. Define the infinite sequence of random variables: Xm =
∑Hm

h=1 Am
h I{Ωm} for which |Xm| ≤ 3 log(|S||A|/δ) due to

Lemma B.17 below. We apply Eq. (26) of Lemma D.4 to obtain with probability at least 1 – δ/4, for all M = 1, 2, . . .
simultaneously

M∑
m=1

E
[
Xm | Ūm–1] ≤ 2

M∑
m=1

Xm + 12 log
(
|S||A|
δ

)
log
(

8M
δ

)
.

Now, we bound the sum over Xm by rewriting it as a sum over epochs:

M∑
m=1

Xm ≤
M∑

m=1

Hm∑
h=1

log(|S||A|Nm
+ (sm

h , am
h )/δ)

Nm
+ (sm

h , am
h )

≤ log
|S||A|T
δ

∑
s∈S

∑
a∈A

E∑
i=1

ni(s, a)
N i

+(s, a)
,

where E is the last epoch. Finally, from Lemma B.18 below we have that for every (s, a) ∈ S× A,

E∑
i=1

ni(s, a)
N i

+(s, a)
≤ 2 log NE+1(s, a) ≤ 2 log T .

We now plugin the resulting bound for
∑M

m=1 Xm and simplify the acquired expression by using M ≤ T .

Lemma B.17. For any interval m, |
∑Hm

h=1 Am
h | ≤ 3 log(|S||A|/δ).

Proof. Note that all state-action pairs (sm
h , am

h ) (except the first one (sm
1 , am

1 )) are known. Hence, for h ≥ 2, Nm
+ (sm

h , am
h ) ≥

30000 · B?|S|
cmin

log B?|S||A|
δcmin

. Therefore, since log(x)/x is decreasing and since |S| ≥ 2 and |A| ≥ 2 by assumption,

Hm∑
h=1

log(|S||A|Nm
+ (sm

h , am
h )/δ)

Nm
+ (sm

h , am
h )

≤ log(|S||A|Nm
+ (sm

1 , am
1 )/δ)

Nm
+ (sm

1 , am
1 )

+
Hm∑
h=2

log(|S||A|Nm
+ (sm

h , am
h )/δ)

Nm
+ (sm

h , am
h )

≤ log(|S||A|/δ) +
cminHm

B?
≤ log(|S||A|/δ) + 2 (Hm ≤ 2B?

cmin
by definition.)

≤ 3 log(|S||A|/δ).

Lemma B.18. For any sequence of integers z1, . . . , zn with 0 ≤ zk ≤ Zk–1 := max{1,
∑k–1

i=1 zi} and Z0 = 1, it holds that

n∑
k=1

zk

Zk–1
≤ 2 log Zn.

Proof. We use the inequality x ≤ 2 log(1 + x) for every 0 ≤ x ≤ 1 to obtain

n∑
k=1

zk

Zk–1
≤ 2

n∑
k=1

log
(

1 +
zk

Zk–1

)
= 2

n∑
k=1

log
Zk–1 + zk

Zk–1
= 2

n∑
k=1

log
Zk

Zk–1
= 2 log

n∏
k=1

Zk

Zk–1
= 2 log Zn.

B.2.8. PROOF OF THEOREM 2.4

Theorem (restatement of Theorem 2.4). Assume that Assumption 2 holds. With probability at least 1 – δ the regret of
Algorithm 2 is bounded as follows:

RK = O
(

B?|S|
√
|A|K log

KB?|S||A|
δcmin

+

√
B3
?|S|4|A|2

cmin
log2 KB?|S||A|

δcmin

)
.
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Proof. Let CM denote the cost of the learner after M intervals. First, with probability at least 1 – δ, we have Lemmas 4.2, 4.5
and 4.8 via a union bound. Now, as Ωm holds for all intervals, we have R̃M = RM for any number of intervals M. Plugging in
the bounds of Lemmas 4.4, 4.5 and 4.8 into Lemma 4.3, we have that for any number of intervals M:

CM = O
(

K · Jπ
?

(sinit) + B?

√
M|S|2|A| log2 T|S||A|

δ
+ B?|S|2|A| log2 T|S||A|

δ

)
.

We now plug in the bounds on M and T from Observation 4.1 into the bound above. First, we plug in the bound on M. As
long as the K episodes have not elapsed we have that M ≤ O

(
CM/B? + K + 2|S||A| log T + B?|S|2|A|

cmin
log B?|S||A|

δcmin

)
. This gets

after using the subadditivity of the square root to simplify the resulting expression,

CM = O
(

K · Jπ
?

(sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ

+

√
B?CM|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

)
.

From which, by solving for CM (using that x ≤ a
√

x + b implies x ≤ (a +
√

b)2 for a ≥ 0 and b ≥ 0), and simplifying the
resulting expression by applying Jπ

?

(sinit) ≤ B? and our assumptions that K ≥ |S|2|A|, |S| ≥ 2, |A| ≥ 2, we get that

CM = O
((√

B?|S|2|A| log2 T|S||A|
δ

+

√√√√K · Jπ? (sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

)2)
= O
(

B?|S|2|A| log2 T|S||A|
δ

+

√
B?|S|2|A| log2 T|S||A|

δ
·

√√√√K · Jπ? (sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

+ K · Jπ
?

(sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

)

= O
(

B?|S|2|A| log2 T|S||A|
δ

+ B?

√
K1/4|S|3|A|3/2 log3 T|S||A|

δ
+

√
B5/2
? |S|4|A|2

c1/2
min

log4 TB?|S||A|
cminδ

+ K · Jπ
?

(sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

)

= O
(

K · Jπ
?

(sinit) + B?

√
K|S|2|A| log2 T|S||A|

δ
+

√
B3
?|S|4|A|2

cmin
log4 TB?|S||A|

cminδ

)
. (19)

Note that in particular, by simplifying the bound above, we have CM = O
(√

B3
?|S|4|A|2KT/cminδ

)
. Next we combine this

with the fact, stated in Observation 4.1 that T ≤ CM/cmin. Isolating T gets T = O
(

B3
?|S|

4|A|2K
c3

minδ

)
, and plugging this bound back

into Eq. (19) and simplifying gets us

CM = O
(

K · Jπ
?

(sinit) + B?|S|

√
|A|K log2 KB?|S||A|

cminδ
+

√
B3
?|S|4|A|2

cmin
log4 KB?|S||A|

cminδ

)
.
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Finally, we note that the bound above holds for any number of intervals M as long as K episodes do not elapse. As the
instantaneous costs in the model are positive, this means that the learner must eventually finish the K episodes from which
we derive the bound for RK claimed by the theroem.

C. Lower Bound
In this section we prove Theorem 2.7. At first glance, it is tempting to try and use the lower bound of Jaksch et al. (2010,
Theorem 5) on the regret suffered against learning average-reward MDPs by reducing any problem instance from an
average-reward MDP to an instance of SSP. However, it is unclear to us if such a reduction is possible, and if it is, how to
perform it.2 We consequently prove the theorem here directly.

By Yao’s minimax principle, in order to derive a lower bound on the learner’s regret, it suffices to show a distribution over
MDP instances that forces any deterministic learner to suffer a regret of Ω(B?

√
|S||A|K) in expectation.

To simplify our arguments, let us first consider the following simpler problem before considering the problem in its full
generality. Think of a simple MDP with two states: the initial state and a goal state. The set of actions A has a special action
a? chosen uniformly at random a-priori. Upon choosing the special action, the learner transitions to the goal state with
probability≈ 1/B? and remains at sinit with the remaining probability. Concretely P(g | a?) = 1/B? and P(sinit | a?) = 1–1/B?,
and for any other action a 6= a? we have P(g | a) = (1 – ε)/B? and P(sinit | a) = 1 – (1 – ε)/B? for some ε ∈ (0, 1/8).3 The
costs of all actions equal 1; i.e., c(sinit, a) = 1 for all a ∈ A. Clearly, the optimal policy constantly plays a? and therefore
Jπ

?

(sinit) = B?.

Fix any deterministic learning algorithm, we shall now quantify the regret of the learner during a single episode in terms of
the number of times that it chooses a?. Let Nk denote the number of steps that the learner spends in sinit during episode k,
and let N?

k be the number of times the learner plays a? at sinit during the episode. Note that Nk is also the total cost that the
learning algorithm suffered during episode k. We have the following lemma.

Lemma C.1. E
[
Nk
]

– Jπ
?

(sinit) = ε · E
[
Nk – N?

k

]
.

Proof. Let us denote by s1, s2, . . . and a1, a2, . . . the sequences of states and actions observed by the learner during the
episode. We have,

E[Nk] =
∞∑
t=1

P[st = sinit]

= 1 +
∞∑
t=2

P[st = sinit]

= 1 +
∞∑
t=2

P[st = sinit | st–1 = sinit, at–1 = a?]P[st–1 = sinit, at–1 = a?]

+
∞∑
t=2

P[st = sinit | st–1 = sinit, at–1 6= a?]P[st–1 = sinit, at–1 6= a?]

= 1 +
∞∑
t=2

(
1 –

1
B?

)
P[st–1 = sinit, at–1 = a?] +

∞∑
t=2

(
1 –

1 – ε
B?

)
P[st–1 = sinit, at–1 6= a?]

= 1 +
(

1 –
1

B?

) ∞∑
t=1

P[st = sinit, at = a?] +
(

1 –
1 – ε
B?

) ∞∑
t=1

P[st = sinit, at 6= a?]

= 1 +
(

1 –
1

B?

)
E[N?

k ] +
(

1 –
1 – ε
B?

)
E[Nk – N?

k ].

Rearranging using Jπ
?

(sinit) = B? gives the Lemma’s statement.

2Even though a reduction in the reverse direction is fairly straight-forward in the unit-cost case (Tarbouriech et al., 2020).
3For ease of notation and since there is only one state other than g, we do not write this state as the origin state in the definition of the

transition function.
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By Lemma C.1 the overall regret of the learner over K episodes is: E[RK] = ε · E
[
N – N?

]
, where N =

∑K
k=1 Nk and

N? =
∑K

k=1 N?k . In words, the regret of the learner is ε times the expected number of visits to sinit in which the learner did not
play a?.

In the remainder of the proof we lower bound N in expectation and upper bound the expected value of N?. To upper bound
N?, we use standard techniques from lower bounds of multi-armed bandits (Auer et al., 2002) that bound the total variation
distance between the distribution of the sequence of states traversed by the learner in the original MDP and that generated in
a “uniform MDP” in which all actions are identical. However, we cannot apply this argument directly since it requires N? to
be bounded almost surely, yet here N? depends on the total length of all K episodes which is unbounded in general. We fix
this issue by looking only on the first T steps (where T is to be determined) and showing that the regret is large even in these
T steps.

Formally, we view the run of the K episodes as a continuous process in which when the learner reaches the goal state we
transfer it to sinit (at no cost) and let it restart from there. Furthermore, we cap the learning process to consist of exactly
T steps as follows. If the K episodes are completed before T steps are elapsed, the learner remains in g (until completing
T steps) without suffering any additional cost, and otherwise we stop the learner after T steps before it completes its K
episodes. In this capped process, we denote the number of visits in sinit by N– and the number of times the learner played a?

in sinit by N?
– . We have

E[RK] ≥ ε ·
(
E
[
N–
]

– E
[
N?

–

])
. (20)

The number of visits to sinit under this capping is lower bounded by the following lemma.

Lemma C.2. For any deterministic learner, if T ≥ 2KB? then we have that E
[
N–
]
≥ KB?/4.

Proof. If the capped learner finished its K episodes then N– = N. Otherwise, it visits the goal state less than K times and
therefore N– ≥ T – K. Hence E

[
N–
]
≥ E

[
min{T – K, N}

]
≥
∑K

k=1 E
[
min{T/K – 1, Nk}

]
. Since T ≥ 2KB?, the lemma

will follow if we show that Nk ≥ B? with probability at least 1/4. We lower bound the probability that Nk ≥ B? by the
probability of staying at sinit for B? steps and picking a? in the first B? – 1 steps. Indeed, using (1 – 1/x)x–1 ≥ 1/e for x ≥ 1,
we get that P[Nk ≥ B?] ≥

(
1 – 1

B?

)B?–1 ≥ 1
4 .

We now introduce an additional distribution of the transitions which call Punif. Punif is identical to P as defined above, except
that P(g | a) = (1 – ε)/B? for all actions a. We denote expectations over Punif by Eunif. The following lemma uses standard
lower bound techniques used for multi-armed bandits (see, e.g., Jaksch et al., 2010, Theorem 13) to bound the difference in
the expectation of N?

– when the learner plays in P compared to when it plays in Punif.

Lemma C.3. For any deterministic learner we have that E
[
N?

–

]
≤ Eunif

[
N?

–

]
+ εT

√
Eunif[N?

– ]/B.

Proof. Fix any deterministic learner. Let us denote by s(t) the sequence of states observed by the learner up to time t and
including. Now, as N?

– ≤ T and the fact that N?
– is a function of s(T), E

[
N?

–

]
≤ Eunif

[
N?

–

]
+ T · TV(Punif[s(T)],P[s(T)]), and

Pinsker’s inequality yields

TV(Punif[s(T)],P[s(T)]) ≤
√

1
2

KL(Punif[s(T)] ‖ P[s(T)]). (21)

Next, the chain rule of the KL divergence obtains

KL(Punif[s(T)] ‖ P[s(T)]) =
T∑

t=1

∑
s(t–1)

Punif[s(t–1)] · KL(Punif[st | s(t–1)] ‖ P[st | s(t–1)]).

Observe that at any time, since the learning algorithm is deterministic, the learner chooses an action given s(t–1) regardless of
whether s(t–1) was generated under P or under Punif. Thus, the KL(Punif[st | s(t–1)] ‖ P[st | s(t–1)]) is zero if at–1 6= a?, and
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otherwise

KL(Punif[st | s(t–1)] ‖ P[st | s(t–1)]) =
∑
s∈S

Punif[st | st–1 = sinit, at–1 = a?] log
Punif[st | st–1 = sinit, at–1 = a?]
P[st | st–1 = sinit, at–1 = a?]

=
1 – ε
B?
· log(1 – ε) +

(
1 –

1 – ε
B?

)
log
(

1 +
ε

B? – 1

)
≤ ε2

B? – 1
. (using log(1 + x) ≤ x for all x > 0)

Plugging the above back into Eq. (21) and using B? ≥ 2 gives the lemma.

In the following result, we combine the lemma above with standard techniques from lower bounds of multi-armed bandits
(see Jaksch et al., 2010, Thm. 5 for example).

Theorem C.4. Suppose that B? ≥ 2, ε ∈ (0, 1
8 ) and |A| ≥ 16. For the problem described above we have that

E[RK] ≥ εKB?

(
1
8

– 2ε

√
2K
|A|

)
.

Proof of Theorem C.4. Note that as under Punif the transition distributions are identical for all actions, we have that

∑
a∈A|a?=a

Eunif
[
N?

–

]
= Eunif

[ ∑
a∈A|a?=a

N?
–

]
= Eunif

[
N–
]
≤ T . (22)

Suppose that a? is sampled uniformly at random before the game starts. Denote the probability and expectation with respect
to the distribution induced by a specific choice of a? = a by Pa and Ea respectively. Then for T = 2KB?,

E[RK] =
1
|A|
∑
a∈A

Ea[RK]

≥ 1
|A|
∑
a∈A

Ea[N– – N?
– ] (Eq. (20))

≥ 1
|A|

∑
a∈A|a?=a

(
KB?

4
– Eunif[N?

– ] – εT

√
Eunif[N?

– ]
B?

)
(Lemmas C.2 and C.3)

≥ KB?
4

–
1
|A|

∑
a∈A|a?=a

Eunif[N?
– ] – εT

√√√√ 1
B?
· 1
|A|

∑
a∈A|a?=a

Eunif[N?
– ] (Jensen’s inequality)

≥ KB?
4

–
T
|A|

– εT

√
T

B?|A|
(Eq. (22))

= ε
(

KB?
4

–
2KB?
|A|

– 2εKB?

√
2KB?
|A|B?

)

= εKB?

(
1
4

–
2
|A|

– 2ε

√
2K
|A|

)
.

The theorem follows from |A| ≥ 16 and by rearranging.

Proof of Theorem 2.7. Consider the following MDP. Let S be the set of states disregarding g. The initial state is sampled
uniformly at random from S. Each s ∈ S has its own special action a?s . The transition distributions are defined P(g | a?s , s) =
1/B?, P(s | a?s , s) = 1 – 1/B?, and P(g | a, s) = (1 – ε)/B?, P(s | a, s) = 1 – (1 – ε)/B? for any other action a ∈ A\{a?s }.
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Note that for each s ∈ S, the learner is faced with a simple problem as the one described above from which it cannot learn
about from other states s′ 6= s. Therefore, we can apply Theorem C.4 for each s ∈ S separately and lower bound the learner’s
expected regret the sum of the regrets suffered at each s ∈ S, which would depend on the number of times s ∈ S is drawn as
the initial state. Since the states are chosen uniformly at random there are many states (constant fraction) that are chosen
Θ(K/|S|) times. Summing the regret bounds of Theorem C.4 over only these states and choosing ε appropriately gives the
sought-after bound.

Denote by Ks the number of episodes that start in each state s ∈ S.

E[RK] ≥
∑
s∈S

E
[
εKsB?

(
1
8

– 2ε

√
2Ks

|A|

)]
=
εKB?

8
– 2ε2B?

√
2
|A|
∑
s∈S

E[K3/2
s ]. (23)

Taking expectation over the initial states and applying Cauchy-Schwartz inequality gives∑
s∈S

E
[
K3/2

s

]
≤
∑
s∈S

√
E[Ks]

√
E[K2

s ] =
∑
s∈S

√
E[Ks]

√
E[Ks]2 + V[Ks] =

∑
s∈S

√
K
|S|

√
K2

|S|2
+

K(|S| – 1)
|S|2

≤ K

√
2K
|S|

,

where we have used the expectation and variance formulas of the Binomial distribution. The lower bound is now given by
applying the inequality above in Eq. (23) and choosing ε = 1

64

√
|A||S|/K.

D. Concentration inequalities
Theorem D.1 (Anytime Azuma). Let (Xn)∞n=1 be a martingale difference sequence with respect to the filtration (Fn)∞n=0 such
that |Xn| ≤ B almost surely. Then with probability at least 1 – δ,∣∣∣∣ n∑

i=1

Xi

∣∣∣∣ ≤ B

√
n log

2n
δ

, ∀n ≥ 1.

Theorem D.2 (Weissman et al., 2003). Let p(·) be a distribution over m elements, and let p̄t(·) be the empirical distribution
defined by t iid samples from p(·). Then, with probability at least 1 – δ,

‖p̄t(·) – p(·)‖1 ≤ 2

√
m log 1

δ

t
.

Theorem D.3 (Anytime Bernstein). Let (Xn)∞n=1 be a sequence of i.i.d. random variables with expectation µ. Suppose that
0 ≤ Xn ≤ B almost surely. Then with probability at least 1 – δ, the following holds for all n ≥ 1 simultaneously:∣∣∣∣ n∑

i=1

(Xi – µ)
∣∣∣∣ ≤ 2

√
Bµn log

2n
δ

+ B log
2n
δ

. (24)

∣∣∣∣ n∑
i=1

(Xi – µ)
∣∣∣∣ ≤ 2

√√√√B
n∑

i=1

Xi log
2n
δ

+ 7B log
2n
δ

. (25)

Proof. Fix some n ≥ 1. By Bernstein’s concentration inequality (see for example, Cesa-Bianchi & Lugosi, 2006, Corollary
A.3), we have with probability at least 1 – δ

2n2 that Eq. (24) holds. By a union bound, the inequality holds with probability at
least 1 – δ for all n ≥ 1 simultaneously.

To show Eq. (25), note that in particular we have

µ · n –
n∑

i=1

Xi ≤ 2

√
Bµn log

2n
δ

+ B log
2n
δ

that is a quadratic inequality in µ. This implies that

√
µ ≤

√√√√1
n

n∑
i=1

Xi + 3

√
B log 2n

δ

n
.

Plugging this inequality back into the RHS of Eq. (24) gets us Eq. (25).
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Lemma D.4. Let (Xn)∞n=1 be a sequence of random variables with expectation adapted to the filtration (Fn)∞n=0. Suppose that
0 ≤ Xn ≤ B almost surely. Then with probability at least 1 – δ, the following holds for all n ≥ 1 simultaneously:

n∑
i=1

E[Xi | Fi–1] ≤ 2
n∑

i=1

Xi + 4B log
2n
δ

. (26)

Proof. For all n ≥ 1, we have

E[e–Xn/B | Fn–1] ≤ E
[

1 –
Xn

B
+

X2
n

2B2

∣∣∣ Fn–1

]
(e–x ≤ 1 – x + x2

2 for all x ≥ 0)

≤ 1 –
E[Xn | Fn–1]

B
+
E[Xn | Fn–1]

2B
(Xn ≤ B)

= 1 –
E[Xn | Fn–1]

2B
≤ e–E[Xn|Fn–1]/2B. (1 – x ≤ e–x for all x)

Hence, fix some n ≥ 1, then

E
[

exp
(

1
B

n∑
i=1

(
1
2
E[Xi | Fi–1] – Xi

))]

= E
[

exp
(

1
B

n–1∑
i=1

(
1
2
E[Xi | Fi–1] – Xi

))
· E
[

exp
(

1
B

(
1
2
E[Xn | Fn–1] – Xn

) ∣∣∣∣ Fn–1

]
︸ ︷︷ ︸

≤1

]

≤ E
[

exp
(

1
B

n–1∑
i=1

(
1
2
E[Xi | Fi–1] – Xi

))]
≤ 1. (by repeating the last argument inductively.)

Therefore,

P
[ n∑

i=1

(
1
2
E[Xi | Fi–1] – Xi

)
> 2B log

2n
δ

]
≤ P

[
exp
(

1
B

n∑
i=1

(
1
2
E[Xi | Fi–1] – Xi

))
>

2n2

δ

]

≤ E
[

exp
(

1
B

n∑
i=1

(
1
2
E[Xi | Fi–1] – Xi

))]
· δ

2n2 (Markov inequality)

≤ δ

2n2 .

Hence the above holds for all n ≥ 1 via a union bound which provides the lemma.


