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Abstract
Providing users with alternatives to choose from
is an essential component of many online plat-
forms, making the accurate prediction of choice
vital to their success. A renewed interest in learn-
ing choice models has led to improved modeling
power, but most current methods are either lim-
ited in the type of choice behavior they capture,
cannot be applied to large-scale data, or both.

Here we propose a learning framework for predict-
ing choice that is accurate, versatile, and theoreti-
cally grounded. Our key modeling point is that to
account for how humans choose, predictive mod-
els must be expressive enough to accommodate
complex choice patterns but structured enough
to retain statistical efficiency. Building on recent
results in economics, we derive a class of models
that achieves this balance, and propose a neural
implementation that allows for scalable end-to-
end training. Experiments on three large choice
datasets demonstrate the utility of our approach.

1. Introduction
One of the most prevalent activities of online users is choos-
ing. In almost any online platform, users constantly face
choices: what to purchase, who to follow, where to dine,
what to watch, and even simply where to click. As the
prominence of online services becomes ever more reliant on
such choices, the accurate prediction of choice is quickly be-
coming vital to their success. The availability of large-scale
choice data has spurred hopes of feasible individual-level
prediction, and many recent works have been devoted to the
modeling and prediction of choice (Benson et al., 2016; Ra-
gain & Ugander, 2016; Kleinberg et al., 2017b;a; Mottini &
Acuna-Agost, 2017; Shah & Wainwright, 2017; Negahban
et al., 2018; Chierichetti et al., 2018; Overgoor et al., 2018).

In a typical choice scenario, a user is presented with a set
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of items s = {x(1), . . . , x(n)}, x(i) ∈ X = Rd, called the
choice set, with s ∈ S ⊆ 2X . From the alternatives in s, the
user chooses an item y ∈ s; in economics this is known as
the problem of discrete choice (Luce, 1959). We follow the
standard machine learning setup and assume choice sets s
and choices y are drawn i.i.d. from an unknown joint dis-
tribution D. Given a set of m examples T = {(si, yi)}mi=1,
our goal is to learn a choice predictor h(s) that generalizes
well to unseen sets, i.e., has low expected error w.r.t. D.

A natural way to predict choice is to learn an item score
function f(x) from a class of score functions F and use it
to model the predicted probability of choosing x from s as
Ps(x) = ef(x)/

∑
x′∈s e

f(x′). If the learned f ∈ F scores
chosen items higher than their alternatives, then Ps(x) will
provide useful predictions. While this approach seems ap-
pealing, it is in fact constrained by an undesired artifact
known as the Independence of Irrelevant Alternatives (IIA):
Definition 1. (Luce, 1959) P is said to satisfy IIA if for all
s ∈ S and for any a, b ∈ s, it holds that

P{a,b}(a)/P{a,b}(b) = Ps(a)/Ps(b)

IIA states that the likelihood of choosing a over b should
not depend on what other alternatives are available. This
means that the prediction rule hf (s) = argmaxx∈s Ps(x)
considers items with no regard of context, i.e., the alterna-
tives available in s. IIA therefore imposes a rigid constraint
on the types of choice behavior that can be expressed by
the model—a fundamental limitation of this approach that
cannot be mitigated simply by increasing the complexity of
functions in F (e.g., adding layers or clever non-linearities).

From a practical point of view, this is discouraging, as there
is ample empirical evidence that real choice data exhibits
regular and consistent violations of IIA (see Rieskamp et al.
(2006) for an extensive survey). This has led to a surge
of interest in machine learning models that go beyond IIA
(Oh & Shah, 2014; Osogami & Otsuka, 2014; Benson et al.,
2016; Ragain & Ugander, 2016; Otsuka & Osogami, 2016;
Ragain & Ugander, 2018; Chierichetti et al., 2018; Seshadri
et al., 2019; Pfannschmidt et al., 2019).

The naı̈ve way to avoid IIA is to directly model all possi-
ble subsets, but this is likely to make learning intractable
(McFadden et al., 1977; Seshadri et al., 2019). A common
approach for resolving this difficulty is to impose structure,
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typically in the form of a probabilistic choice model en-
coding certain inter-item dependencies. While allowing for
violations of IIA, this approach presents several practical
limitations. First, explicitly modeling the dependency struc-
ture restricts how IIA can be violated, which may not nec-
essarily align with the choice patterns in the data. Second,
many of these models are designed to satisfy certain choice
axioms or asymptotic properties (e.g., consistency) rather
than to predict accurately when trained on finite-sample
data, limiting their practical effectiveness and making it
hard to theoretically reason about their predictive capabil-
ities. Finally, surprisingly few of these methods can be
applied to large-scale online choice data, where the number
of instances can be prohibitively large, choice sets rarely
appear more than once, and items can be complex structured
objects whose number is virtually unbounded.

To complement these works, and motivated by the growing
need for choice models that are accurate and scalable, here
we propose a framework for learning context-dependent
choice models that are directly optimized for accuracy. Our
framework is based on the idea of set-dependent aggregation
(SDA), a principled approach in economics for modeling
set-dependent choice (Ambrus & Rozen, 2015), that to the
best of our knowledge has not yet been considered from
a machine learning perspective. As we show, aggregation
provide a means for aligning model complexity with the
behavioral complexity of the underlying choice patterns,
letting the data determine how and to what extent IIA should
be relaxed.

The key challenge in designing a good choice model lies in
properly balancing its expressivity and efficiency. On the
one hand, the model must be flexible enough to capture the
ways in which set-dependence is expressed in the data; on
the other hand, it must be structured enough so that learning
can be carried out efficiently. In this paper, we show that
set-dependent aggregation achieves both. Our framework
makes the following contributions:

• Efficient and scalable discriminative training. Our
approach is geared towards predictive performance:
it directly optimizes for accuracy, can be efficiently
trained end-to-end, and scales well to realistically large
and complex choice-prediction scenarios.

• Behavioral inductive bias. We propose a novel class
of parametric aggregators, based on key principles from
behavioral decision theory and implemented with a
novel neural architecture. Empirically, our models are
both more accurate and more compact than alternatives.

• Rigorous error analysis. Our theoretical results in-
clude bounds for two types of errors. For approximation
error, our bound quantifies the capacity of aggregation
to relax IIA as a function of model complexity. For

estimation error, we give concise generalization bounds,
thus establishing the learnability of aggregation.

• Thorough empirical evaluation. We conduct experi-
ments on three large choice datasets—flight itineraries,
hotel reservations, and news recommendations—
demonstrating the utility of our approach. Our analysis
gives insight as to how aggregation improves perfor-
mance, complementing and supporting our theoretical
results.

Overall, our work presents a practical and theoretically-
grounded approach for predicting choice.

Paper organization. Our paper considers aggregation
across multiple levels of granularity; we begin with a very
general functional form, proceed by proposing a concrete
structured model, and conclude with a practical neural im-
plementation. After reviewing the related literature (Sec.
1.1), in Sec. 2 we introduce our model of set-dependent
aggregation in gradually-increasing detail. The rest of the
paper follows this structure: Our main theoretical results,
given in Sec. 3, include an approximation error bound (Sec.
3.1) that applies to very general aggregators and estima-
tion error bounds (Sec. 3.2) that apply to a large family of
structured models. In Sec. 4 we present an experimental
evaluation of our neurally-implemented aggregation model.
We end with concluding remarks in Sec. 5.

1.1. Related material

IIA begins with Luce’s Axiom of Choice (Luce, 1959),
which for a certain noise distribution, induces the popular
Multinomial Logit model (MNL) (McFadden et al., 1973;
Train, 2009). Two common extensions, Nested MNL (Mc-
Fadden, 1978) and Mixed MNL (McFadden & Train, 2000),
relax IIA by grouping items via a tree structure or mod-
eling a mixture population, respectively. These, however,
impose restrictive assumptions on the nature of violations,
require elaborate hand-coded auxiliary inputs, and are in
many cases intractable. Although recent progress has allevi-
ated some difficulties (Oh & Shah, 2014; Benson et al., 2016;
Chierichetti et al., 2018), applying these models in practice
remains difficult. Recent works have proposed other proba-
bilistic models that deviate from IIA, by modeling pairwise
utilities (Ragain & Ugander, 2018), kth-order interactions
(Ragain & Ugander, 2016; Seshadri et al., 2019), and gen-
eral subset relations (Benson et al., 2018). These, however,
do not optimize for predictive accuracy, and rarely apply to
complex choice settings with many items and sparse choice
sets. Others suggest discriminative solutions, but these in-
clude models that tend to be either overly-specific or overly-
general (Mottini & Acuna-Agost, 2017; Pfannschmidt et al.,
2019) and provide no guarantees as to how IIA is relaxed.
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Our work draws on the literature of utility aggregation
(or “multi-self” models), studied extensively in economics
(Kalai et al., 2002; Fudenberg & Levine, 2006; Manzini &
Mariotti, 2007; Green & Hojman, 2009; Ambrus & Rozen,
2015), psychology (Tversky, 1972; Shafir et al., 1993; Tver-
sky & Simonson, 1993), and marketing (Kivetz et al., 2004).
Whereas most models of this type focus on mathemati-
cal tractability or behavioral plausibility, our focus is on
statistical and computational aspects relevant to machine
learning. Our work is largely inspired by recent results in
economics on the expressivity of aggregation (Ambrus &
Rozen, 2015). While they give worst-case guarantees for
a finite-item non-parametric setting under a realizability
assumption, we consider the statistical aspects of learning
parametric aggregators from data, in theory and in practice.

2. Proposed Model
At the core of our approach is the idea of set-dependent
aggregation (SDA), where a collection of ` item-wise score
functions f = (f1, . . . , f`), fi ∈ F , are combined to pro-
duce a single set-wise score function gf (x|s), which we
will refer to as an aggregator. Aggregation in itself is an
established concept in machine learning (e.g., bagging or
boosting), but to express choice that deviates from IIA, ag-
gregation must be done in a set-dependent manner.1 We
propose to consider aggregators of the form:

gf (x|s;ψ) =
∑̀
i=1

ψ(fi(x)|fi(s)) (1)

where ψ : R × 2R → R is an aggregation mechanism re-
mapping each score fi(x) conditional on the scores of all
alternatives fi(s) = {fi(x′)}x′∈s. With a slight overload
of notation, we can think of f as embedding items x in an
`-dimensional latent space via f(x) = x̃ ∈ R`, x̃i = fi(x)
(and in accordance s̃ = {x̃}x∈s and s̃i = {x̃i}x∈s). Eq. (1)
therefore introduces set-dependence by applying to each
dimension in the embedded space the set-dependent operator
ψ(x̃i|s̃i), independently and uniformly, and aggregating.

We can now define the class of functions we would like to
learn, which we refer to as the aggregator class:

G = {gf (x|s;ψ) : f ∈ F`, ψ ∈ Ψ} (2)

where Ψ is a (possibly parameterized) class of mechanisms.
We will refer to ` as the dimension of aggregation, and to the
item-wise score function class F as the base class. Given G,
our goal in learning will be to jointly learn score functions
f ∈ F` and mechanism ψ ∈ Ψ whose corresponding g
provides good predictions via the decision rule:

ŷ = hgf (s) = argmax
x∈s

gf (x|s;ψ) (3)

1Specifically, any method based on linear aggregation (i.e.,∑
i wifi(x)), such as bagging or boosting, is inherently IIA.

2.1. Inductive Bias

The ability of functions in G to capture set-dependent choice
relies on the expressive power of Ψ. Our first result in
Sec. 3.1 demonstrates that even simple mechanisms can
express intricate deviations from IIA. However, for practical
purposes, it is important to add structure to g, which we
do by encoding inductive bias into ψ. From Sec. 3.2 and
thereafter we consider aggregation mechanisms of the form:

ψ(x̃i|s̃i) = w(s̃i)µ (x̃i − r(s̃i)) (4)

Here, w : 2R → R and r : 2R → R are set functions (i.e.,
permutation invariant) and µ : R → R is an asymmetric
s-shaped function, all of which are shared across dimensions
and learned. Together, these give our primary model:

gf (x|s;w, r, µ) =
∑̀
i=1

w(s̃i)µ (x̃i − r(s̃i)) (5)

Our design choices follow from four key principles elicited
from the literature on behavioral decision making, describ-
ing how users perceive value. First, users consider value
across multiple (perhaps latent) dimensions (Tversky, 1972).
These are captured in Eq. (5) by the different fi. Second,
within each dimension, value is relative, and is considered in
relation to a set-dependent reference point (Tversky & Kah-
neman, 1991). In the model, reference points are determined
by r, and the relative value in dimension i is x̃i − r(s̃i).
Third, the perception of losses and gains is a-symmetric and
diminishing, resulting in loss aversion—the cornerstone of
Prospect Theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992). This is modeled using the s-shaped µ.
Finally, the degree to which each valuation dimension con-
tributes to the overall perceived value is also set-dependent
(Tversky, 1969; Tversky & Simonson, 1993). In Eq. (5),
the importance of each dimension is determined by w. Ap-
pendix A includes a simple illustration of these principles.

The above construction generalizes many choice models
from economics, psychology, and marketing:

Claim 1. The aggregation model in Eq. (5) subsumes the
choice models of Tversky (1969); McFadden et al. (1973);
McFadden (1978); Kaneko & Nakamura (1979); Kalai et al.
(2002); Kivetz et al. (2004), and Orhun (2009).

In the above models, w and r are simple and fixed set oper-
ations (e.g., max, min, average; details in Appendix A). In
contrast, in Sec. 4 we will parameterize these elements using
flexible neural components, that with end-to-end training
provide a significant boost in accuracy.

2.2. Interpretation

One interpretation of Eq. (5) is that g is a linear model
operating on learned feature representations, wherein both
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(a) No set dependence (IIA):
g(x|s) = 〈v,φ(x)〉

(b) Set-dependent weights:

g(x|s) = 〈w(s),φ(x)〉
(c) Set-dependent representations:

g(x|s) = 〈v,φ(x|s)〉

Figure 1: An illustration of how set-dependent aggregation can relax IIA. Points represent an embedding of items in R` with ` = 2. Two
sets are shown: s and s′ = s \ {x} for some x ∈ s, with corresponding predictions ŷs and ŷs′ . (a) IIA dictates that removing x from s
must not change the prediction, i.e., ŷs = ŷs′ . This is the case for linear aggregation g(x|s) = 〈v,φ(x)〉, where neither weights v ∈ R`

nor representations φ(x) depend on s. (b) When aggregation includes set-dependent weightsw(s), removing an item can change the
scoring direction. (c) When aggregation includes set-dependent representations φ(x|s), removing an item can change the spatial position
of items. Both forms of set-dependence allow s and s′ to have different maximizing items, and hence different predictions (i.e., ŷs 6= ŷs′ ).

weight vector and representations vary with the choice set.
To see this, denote φ(x̃i|s̃i) = µ(x̃i − r(s̃i)), and set:

φ(x|s) = (φ(x̃1|s̃1), . . . , φ(x̃`|s̃`)) (6)
w(s) = (w(s̃1), . . . , w(s̃`))

As both φ and w map into R`, Eq. (5) can be rewritten as:

gf (x|s;w, r, µ) = 〈w(s),φ(x|s)〉 (7)

suggesting that predicted items ŷ = hg(s) are those whose
(set-dependent) representation φ(x|s) maximizes the inner
product with the (set-dependent) weight vector w(s).

Eq. (7) reveals two means by which set-dependent aggre-
gation can support violations of IIA. Consider the removal
of an item x 6= ŷ from some choice set s. A direct conse-
quence of IIA is that if ŷ is predicted for s, then it is also
predicted for any subset of s containing ŷ, and in particular
for s′ = s \ x. Set-dependent aggregation can mitigate
this constraint in two ways. First, removing an item can
change the feature representation of all other items, i.e.,
φ(x′|s) 6= φ(x′|s′) for x′ ∈ s′. In this way, supposing w
is kept fixed, removing an item can reposition items in rep-
resentation space, resulting in a possibly different argmax
of the inner product with w. Second, removing an item can
change the linear separator, i.e.,w(s) 6= w(s′). Hence, sup-
posing φ is kept fixed, the scoring direction can rotate and
the prediction can change. Fig. 1 illustrates these effects.

3. Theoretical Analysis
The complexity of G is controlled by three elements: the
base class F , the mechanism class Ψ, and the dimension `.
In the next sections we consider how these effect learning.

The goal of learning is to find some g ∈ G that minimizes
the expected risk over the data distribution D:

ε(g) = E(s,y)∼D[∆(y, hg(s))] (8)

where ∆(y, ŷ) = 1{y 6=ŷ} is the 0/1 loss. In practice, learn-
ing typically involves minimizing the empirical risk (or a
proxy thereof) over the sample set T = {(si, yi)}mi=1:

ε̂(g) =
1

m

m∑
i=1

∆̃(yi, hg(si)) (9)

where ∆̃ is a proxy for ∆, and possibly under some form of
regularization. A good function class is therefore one that
balances between being able to fit the data well in principle
(i.e., having a low optimal ε(g)) and in practice (i.e., having
a low optimal ε̂(g) and a guarantee on its distance from the
corresponding ε(g)). This can be seen by decomposing the
expected risk into two error types—approximation error
and estimation error:

ε(g) = ε(g∗)︸ ︷︷ ︸
approx.

+ ε(g)− ε(g∗)︸ ︷︷ ︸
estimation

, g∗ = argmin
g′∈G

ε(g′)

In this section we bound both types of errors. For approx-
imation error, we show how the best achievable error is
controlled by the capacity of functions in G to relax IIA. For
estimation error, we give generalization bounds establishing
the learnability of a large family of aggregators.

3.1. Approximation Error

Our goal in this section is to bound the approximation er-
ror ε(g∗), and more specifically, to reason about how it
decreases as the complexity of G grows. We focus on ` as
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the main handle on complexity, allowing for fairly arbitrary
F and targeting a broad class of “natural” aggregators (of
the general form in Eq. (1)) whose mechanism ψ satisfies
rudimentary properties from choice theory (see Ambrus &
Rozen (2015)). These ensure that g ∈ G are consistent (if
` = 1 then gf predicts like f ) and scale invariant (scaling
all f ∈ f by a constant α ∈ R does not change predictions).

Without clear structural assumptions on ψ, however, directly
analyzing the optimal error is challenging. Our approach
will be to express the error of g∗ in terms of optimal (con-
ditional) errors of the aggregated fi. This is useful since
optimal errors are established for many classes of item-wise
functions. Specifically, the bound partitions the space of
all sets S into k + 1 regions C0, . . . , Ck, and within each
Ci, bounds the error of g∗ using the conditional error of the
optimal fi, denoted ε(fi|Ci) = ED[∆(y, hfi(s))|s ∈ Ci].
The bound holds for any partition that is “appropriate”; see
Definition 2 below.

Theorem 1. Let G be a natural class of aggregators of
dimension ` = 5k + 1 for some k ≥ 0. Then for any
appropriate partition C0, . . . , Ck of S,

min
g∈G

ε(g) ≤
k∑
i=0

pi min
fi∈F

ε(fi|Ci) (10)

where pi = PD[s ∈ Ci].

Theorem 1 states that the optimal aggregator g∗ is as good
as the locally best fi within each Ci (note that

∑k
i=0 pi =

1). This sheds light on how the capacity of g to express
violations of IIA can increase with `: When ` = 1, g acts
like a single f , and so cannot express violations of IIA. If
the data exhibits violations, then g will err with frequency
that is at least the frequency of violations. As ` grows, g
can account for violations by “carving out” regions of S
to which different item score functions are applied locally.
This can break the prediction-inheritance property of IIA:
for s′ ⊂ s, if s′ ∈ Ci but s ∈ Cj , then ŷ′ = hg(s

′) =
hfi(s

′) can differ from ŷ = hg(s) = hfj (s), even if ŷ ∈ s′
(whereas IIA would dictate a shared prediction, i.e., ŷ′ = ŷ).

Interestingly, the partitions considered in Theorem 1 depend
on the base class F as well.

Definition 2. A partition C0, . . . , Ck of S is appropriate if
there exist f ′1, . . . , f

′
k, f ′i ∈ F , such that for i = 1, . . . , k:

Ci = {s : f ′i(s) > 0} \ Ci+1 ∪ · · · ∪ Ck

where f ′(s) > 0 is true if f ′(x) > 0 ∀x ∈ s, and all
remaining choice sets are in C0 = S \ C1 ∪ · · · ∪ Ck.

Thus, functions inF are used not only to score items but also
to partition choice sets, and what partitions are attainable
depends on what regularities in Ci the f ′i can capture. This

dual role is key to our proof, but requires that G be defined
over a function class that is slightly more expressive than F .
We now give a short proof sketch, deferring further details
and the full proof to Appendix B.

Proof sketch. The proof is constructive. For any f0, . . . , fk
and f ′1, . . . , f

′
k, we construct an aggregator g that agrees (i.e.,

induces the same item ranking) with fi onCi (as determined
by f ′i ). The first step is to construct for each i = 1, . . . , k a
small module g(i), based on fi and f ′i , that agrees with fi
on all s for which f ′i(s) > 0, and is “indifferent” otherwise.
The main lemma shows that such g(i) can be constructed by
having it implement certain objects called triple bases—the
main building block of Ambrus & Rozen (2015), whose
key result is that triple bases exist for the type of aggregator
classes we consider. The next step is to combine the modules
into a single predictor g =

∑k
i=0 αig

(i), where αi ∈ R
and g(0) includes only f0. Our choice of αi determines an
order of precedence of the modules over choice sets, thus
preventing collisions and ensuring that g agrees with g(i) on
all s ∈ Ci (and only on those). The final step is to conclude
that the optimal g is at least as good as the locally-best fi
on any appropriate partition C0, . . . , Ck.

Theorem 1 carries two practical implications. First, the
dimension ` acts as a budget on the model’s capacity to relax
IIA. As a handle on complexity, it allows the practitioner
to align the complexity of the model with the “behavioral”
complexity of the observed choice patterns. The coverage-
like nature of Ci implies that increasing ` has a diminishing
returns property—an effect we observe empirically in the
experiments in Sec. 4. The second implication concerns
the dual role of the base class F . In standard settings, the
choice of F considers whether it is likely to include score
functions capable of identifying chosen items. Our result
reveals an additional consideration, unique to aggregation:
to perform well, F must also include functions capable of
targeting choice sets, an in particular, those violating IIA.

Theorem 1 quantifies how the approximation error decreases
as the complexity of G increases. Our next results quantifies
how this trades off with estimation error.

3.2. Estimation Error

In this section we establish the learnability of aggregators,
and in particular, those presented in Sec. 2.1. Our results in-
clude generalization bounds for two large families of aggre-
gators, showing how the error of learning with G decreases
with the number of samples m and as a function of ` and
properties of ψ and F . The proofs make use of Rademacher
generalization bounds, which can control the estimation
error in many learning settings (see Shalev-Shwartz & Ben-
David (2014)). Our main contribution is the analysis of the
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Rademacher complexity of aggregators, which we derive by
utilizing their compositional structure (see Appendix C).

To simplify the analysis, we focus on set operations and on
a linear base class:

Fρlin = {f(x) = x>Θ : Θ ∈ Rd×`, ‖Θ‖ρ ≤ 1}

where ‖· ‖ρ is the induced ρ-norm. This suffices to cover
all subsumed models from Claim 1.2 For any function q,
we denote its Lipschitz constant by λq when it is scalar-
valued and by λρq when it is vector valued and with respect
to the ρ-norm. We also use c = maxx∈X ‖x‖∞. Both the-
orems invoke the Rademacher-based generalization bound
in (Bartlett & Mendelson, 2002), which assumes that ∆̃
dominates ∆, is 1-Lipschitz, and onto [0, 1]. However, since
our main result here is the Rademacher characterizations of
aggregator classes, other bounds can similarly be applied.

The first bound applies to aggregators whose mechanism
relies on set-dependent weights.
Theorem 2. Let G be a class of aggregators over F∞lin of
the form g(x|s) = 〈w(s),φ(x)〉. Then for any D and any
δ ∈ [0, 1], it holds that for all g ∈ G,

ε(g) ≤ ε̂(g) + 4c2λρw

√
2 log 2d

m
+O

(√ log(1/δ)

m

)
with probability of at least 1− δ.

The second bound applies to aggregators whose mechanism
relies on set-dependent representations.
Theorem 3. Let G be a class of aggregators over F1

lin of the
form g(x|s) = 〈v,φ(x|s)〉 where v ∈ R`, ‖v‖1 ≤ 1, and
φ(x|s) is defined as in Eq. (6). Then for any D and any
δ ∈ [0, 1], it holds that for all g ∈ G,

ε(g) ≤ ε̂(g) + 4cλµ(1 + λρr)

√
2 log 2d

m
+O

(√ log(1/δ)

m

)
with probability of at least 1− δ.

In Theorems 2 and 3, the dimension ` enters only through
the linear dependence on the set-operation Lipschitz con-
stants. This suggests that the estimation error of aggregation
scales well in `, and in particular when compared to that
of the base class (a special case for which ` = 1 and the
Lipschitz constants vanish). To the best of our knowledge,
these are the first generalization bounds for choice models.
Together with Theorem 1, they show how aggregation can
effectively balance expressivity and statistical efficiency.

4. Experiments
We now present our experimental evaluation on real choice
data. Our goal here is to show that aggregation performs
well and at scale, and to support our results from Sec. 3.

2All except for one of the models of Kivetz et al. (2004).

Figure 2: The proposed SDA architecture

Datasets. We evaluate our method on three large datasets:
flight itineraries from Amadeus3, hotel reservations from
Expedia4, and news recommendations from Outbrain5. Each
dataset includes a collection of choice sets presented to users
and their corresponding choices. We focus on examples
where users chose (i.e., clicked on) exactly one item, which
compose the vast majority of the data. Features describe
items (e.g., price, quality, or category), context (e.g., query,
date and time), and users (although for reasons of privacy,
very little user information is available). Further details and
dataset statistics are given in Appendix D.1.

Aggregation models. For our set-dependent aggregation
approach (SDA), we use the model proposed in Sec. (2.1):

SDA: gf (x|s;w, r, µ) =
∑̀
i=1

w(s̃i)µ (x̃i − r(s̃i))

where as before x̃i = fi(x) and s̃i = {x̃i}x∈s. We imple-
ment the above SDA model using a novel neural architecture
(see Figure 2) in which the components w, r, and µ are pa-
rameterized as follows. Both set functions w and r are small
permutation-invariant neural networks (Zaheer et al., 2017),
each having 2 hidden layers of 16 units each with tanh ac-
tivations and mean pooling. Motivated by the success of
inner-product reference models (e.g., Vaswani et al. (2017)),
we also experiment with a variant of SDA, referred to as
SDA+, having vector-valued score functions F : X → Rk
and reference points r : 2R → Rk that are compared using
an inner product (see Appendix D.4 for details).

In both models, the loss aversion term µ is implemented as
a ‘kinked’ tanh with slope parameter c:

µ(z; c) = tanh(z)(c1{z<0} + 1{z≥0}), c ≥ 1

We set the base class F to include linear functions to allow
for a clean differential comparison to other baselines. Our
main results use ` = 24, which strikes a good balance
between performance and runtime (in general larger ` are
better). For a comprehensive analysis of the contribution of
each model component see the ablation study in Appendix
D.6. Learned parameters include those in w, r, µ, and f ,

3See Mottini & Acuna-Agost (2017)
4www.kaggle.com/c/expedia-personalized-sort
5www.kaggle.com/c/outbrain-click-prediction

www.kaggle.com/c/expedia-personalized-sort
www.kaggle.com/c/outbrain-click-prediction
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Table 1: Main results. Values are averaged over 10 random splits (standard errors in small font).

Amadeus Expedia Outbrain

Top-1 Top-5 MRR Top-1 Top-5 MRR Top-1 Top-5 MRR

O
ur

s SDA+ 45.42±0.5 93.37±0.0 64.57±0.3 31.49±0.2 86.91±0.2 53.05±0.1 38.04±0.3 94.54±0.1 59.66±0.2

SDA 45.26±0.4 93.23±0.2 64.68±0.3 31.48±0.2 86.73±0.2 53.05±0.1 37.00±0.3 94.66±0.1 59.45±0.2

II
A

MNL (McFadden et al., 1973) 38.42±0.5 91.02±0.3 59.53±0.4 30.06±0.2 86.34±0.1 51.81±0.2 37.74±0.3 94.52±0.2 59.41±0.2

SVMRank (Joachims, 2006) 40.27±0.4 91.94±0.3 60.91±0.3 31.28±0.2 86.24±0.1 52.68±0.2 37.68±0.3 94.46±0.1 59.65±0.2

RankNet (Burges et al., 2005) 37.44±0.7 84.67±1.7 54.51±1.6 23.82±0.5 81.85±0.6 46.28±0.5 35.32±0.8 91.55±0.7 57.56±0.5

no
n-

II
A Mixed MNL (Train, 2009) 37.96±0.3 90.40±0.3 59.03±0.3 27.28±0.6 84.24±0.3 50.21±0.1 37.72±0.3 94.42±0.1 59.53±0.2

AdaRank (Xu & Li, 2007) 37.27±0.4 72.34±0.3 41.02±0.3 26.70±0.2 83.21±0.2 48.74±0.2 37.47±0.3 94.40±0.2 59.45±0.2

Deep Sets (Zaheer et al., 2017) 40.36±0.5 91.92±0.3 62.40±0.5 29.87±0.3 86.26±0.2 51.66±0.2 37.51±0.3 94.30±0.1 59.15±0.2

ba
si

c Price/Quality 36.44±0.3 87.23±0.2 43.44±0.3 17.92±0.1 77.67±0.1 31.71±0.2 24.17±0.1 25.08±0.1 31.49±0.1

Random 25.15±0.5 32.87±0.6 45.46±0.4 14.13±0.1 32.35±0.2 27.65±0.2 22.21±0.1 23.10±0.1 29.69±0.2

which were trained to optimize the cross-entropy loss using
Adam with step-wise exponential decay (see Appendix D.3).

Baselines. We consider baselines that can be applied to
large-scale data, falling into one of three categories: (i) IIA
models, (ii) non-IIA models, either with or without struc-
tural assumptions, and (iii) all aggregation models from
Claim 1. For IIA methods, we use Multinomial Logit (MNL)
(McFadden et al., 1973; Train, 2009), SVMRank (Joachims,
2006), and RankNet (Burges et al., 2005). These all con-
sider a single item-wise score function, but differ in the way
they are optimized. For non-IIA methods, we use a dis-
crete Mixed MNL model (Train, 2009), AdaRank (Xu & Li,
2007), and Deep Sets (Zaheer et al., 2017). These differ in
how they consider item dependencies: Mixed MNL relaxes
IIA by modeling a mixture of user populations, ListNet
captures set dependencies via the loss function, and Deep
Sets attempts to universally approximate general set func-
tions using a permutation-invariant architecture. We also
add simple baselines based on price, quality, and random
predictions. For details see Appendix D.2.

Setup. Results are based on averaging 10 random 50:25:25
train-validation-test splits. The methods we consider vary
in their expressive power and computational requirements.
Hence, for a fair comparison (and reasonable train times),
each trial includes 10,000 randomly sampled examples. Per-
formance measures include top-1 accuracy, top-5 accuracy,
and mean reciprocal rank (MRR). For all methods we tuned
regularization, dropout, and learning rate (when applicable)
using Bayesian optimization. Default values were used for
other hyper-parameters. For optimization we used Adam
with step-wise exponential decay. Details in Appendix D.3.

4.1. Results

Our main results are presented in Table 1 which shows the
performance of all methods for choice sets having at most
10 items (12 for Outbrain). As can be seen, SDA outper-

forms other baselines in all settings, with SDA+ achieving
slightly improved performance over SDA. These results are
consistent across datasets and performance measures for
other choice set sizes as well (see Appendix D.5).6 While
some methods perform adequately in some settings, they
are generally inconsistent across datasets (e.g., Deep Sets),
measures (e.g., SVMRank), or both (e.g., MNL).

Focusing on the Amadeus dataset, note that a simple base-
line based on the cheapest price achieves a top-1 accuracy
of 36.4. The performance of MNL, which is a special case
of SDA wherein ` = 1 and w, r, and µ are degenerate, im-
proves performance by 2.0 accuracy points (5.4% increase).
Introducing set-dependence using SDA improves perfor-
mance by a considerable accuracy 8.8 points (24.2%), with
SDA+ improving further (9.0 points, 24.6%).

The above models present an increase in accuracy but also
an increase in model complexity. Simply using more com-
plex models, however, does not guarantee improvement: the
optimal Deep Sets model has roughly 20-fold more parame-
ters than SDA, but under-performs by a significant margin,
indicating the importance of infusing models with appro-
priate inductive bias. Meanwhile, inductive bias alone does
not suffice either. Figure 3 (left) compares SDA to the ag-
gregation models from Claim 1, all of which are special
cases of SDA having lightly or non-parameterized com-
ponents. As can be seen, across all values of `, the neural
parameterization of SDA provides flexibility that is crucial
for accuracy.

4.2. Analysis

Accuracy and model complexity. Figure 3 (right) presents
the accuracy of SDA for increasing values of `. Results show
that accuracy steadily increases, but at a diminishing rate,

6All results are significant (p < 10−5) under a Friedman test,
and all comparisons to SDA are significant (p < 0.007) under a
post-hoc pairwise signed-rank test (with Hochberg adjustment).
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Figure 3: Left: Accuracy of SDA vs. the choice models it general-
izes (Claim 1), demonstrating the benefit of replacing simple fixed
operators with flexible neural components. Right: Accuracy (blue)
and violation capacity κ (red) are highly correlated, suggesting
that SDA improves by increasingly accounting for violations of
IIA. Gains are diminishing, reaching 90% improvement by ` = 4.

with roughly 90% of the gain achieved as early as ` = 4.
This aligns well with our conclusions from Sec. 3.1.

Theorem 1 implies that increasing ` can improve perfor-
mance by allowing the model to better adapt to choice pat-
terns deviating from IIA. To empirically verify this, we
propose a measure of violation capacity that quantifies the
capacity of a model to change its prediction when an item is
removed from a choice set (here ŷ = hg(s)):

κ(g) =
1

m

∑
s∈T

1

|s| − 1

∑
x∈s\{ŷ}

1{hg(s\{x}) 6=ŷ} (11)

Figure 3 (left) reveals a tight correlation between accuracy
and violation capacity κ, suggesting that performance im-
proves through the model’s ability to increasingly relax IIA.

Targeted flexibility. One interpretation of the proof of
Theorem 1 is that aggregators consist of one primary item-
wise score function (f0) whose decisions can be overruled
by other score functions (f1, . . . , fk) on certain regions of
S (namely C1, . . . , Ck). Empirically, this implies that κ
should vary across choice sets: high κ on sets in targeted
regions, and low κ on all other sets.

To validate this, we compare SDA in detail to MNL and
Deep Sets. The main diagram in Figure 4 presents the
overlap in correct predictions across methods. For each
method, the smaller diagrams present its violation capacity
κ on each cross-section. As expected, MNL has κ = 0
in all sections. Deep Sets, meanwhile, shows extremely
high κ values in most sections, suggesting it “overfits” in its
set-dependent predictive flexibility. For SDA, we observe
a mixed pattern: low κ on sections joint with MNL, and
sufficiently (though not excessively) high κ on sections joint
with Deep Sets. These results suggests that SDA targets not
only the appropriate “amount” of relaxation of IIA, but also
targets the appropriate choice sets for which IIA is relaxed.

Figure 4: Diagram of overlap in correct predictions, colored by
violation capacity (κ) per method per cross-section. MNL and
Deep Sets represent two extremes: inability to express violations
of IIA (κ = 0, dark blue), and over-flexible set-dependence (κ = 1,
dark red), respectively. SDA strikes middle ground by properly
allocating its violation “budget”, focusing mostly on choice sets
on which MNL errs (average κ, light red).

5. Conclusions
In this work, we propose set-dependent aggregation as a
framework for predicting human choice. There is a grow-
ing need for choice models that are accurate, scalable, and
insightful. But the behavioral patterns of human choice
are complex and intricate, requiring models to effectively
balance expressivity and specificity. Our results suggest
that aggregation achieves this balance, both in theory and in
practice, and shed light on how this balance is achieved.

There are three main avenues in which our work can extend.
First, our work focuses on a rudimentary choice task: choos-
ing one item from a given set. There are, however, many
other important choice tasks, of a sequential or combina-
torial nature, each posing intriguing modeling challenges.
Second, our theoretical results touch upon a connection be-
tween generalization and violation of IIA. We conjecture
that this connection runs deep, and that a formal notion
of “violation complexity” could be useful in characterizing
the learnability of choice models in general. Third, our
view of aggregation as a set-dependent linear model in a
set-dependent latent space hints at the prospect of inter-
pretability. Since our model is designed to capture in these
latent representations the dimensions of perceived utility, an
understanding of how aggregation relaxes IIA in latent space
could contribute to our understanding of human choice at
large. We leave these notions for future work.
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