
FetchSGD: Communication-Efficient Federated Learning with Sketching

Daniel Rothchild∗ 1 Ashwinee Panda∗ 1 Enayat Ullah 2 Nikita Ivkin 3 Ion Stoica 1 Vladimir Braverman 2

Joseph Gonzalez 1 Raman Arora 2

Abstract

Existing approaches to federated learning suf-
fer from a communication bottleneck as well as
convergence issues due to sparse client participa-
tion. In this paper we introduce a novel algorithm,
called FetchSGD, to overcome these challenges.
FetchSGD compresses model updates using a
Count Sketch, and then takes advantage of the
mergeability of sketches to combine model up-
dates from many workers. A key insight in the
design of FetchSGD is that, because the Count
Sketch is linear, momentum and error accumu-
lation can both be carried out within the sketch.
This allows the algorithm to move momentum
and error accumulation from clients to the central
aggregator, overcoming the challenges of sparse
client participation while still achieving high com-
pression rates and good convergence. We prove
that FetchSGD has favorable convergence guar-
antees, and we demonstrate its empirical effec-
tiveness by training two residual networks and a
transformer model.

1. Introduction
Federated learning has recently emerged as an important set-
ting for training machine learning models. In the federated
setting, training data is distributed across a large number
of edge devices, such as consumer smartphones, personal
computers, or smart home devices. These devices have
data that is useful for training a variety of models – for text
prediction, speech modeling, facial recognition, document
identification, and other tasks (Shi et al., 2016; Brisimi et al.,
2018; Leroy et al., 2019; Tomlinson et al., 2009). However,
data privacy, liability, or regulatory concerns may make it
difficult to move this data to the cloud for training (EU,

*Equal contribution 1University of California, Berke-
ley, California, USA 2Johns Hopkins University, Baltimore,
Maryland 3Amazon. Correspondence to: Daniel Rothchild
<drothchild@berkeley.edu>.

Proceedings of the 37th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2018). Even without these concerns, training machine learn-
ing models in the cloud can be expensive, and an effective
way to train the same models on the edge has the potential
to eliminate this expense.

When training machine learning models in the federated
setting, participating clients do not send their local data to
a central server; instead, a central aggregator coordinates
an optimization procedure among the clients. At each it-
eration of this procedure, clients compute gradient-based
updates to the current model using their local data, and they
communicate only these updates to a central aggregator.

A number of challenges arise when training models in the
federated setting. Active areas of research in federated learn-
ing include solving systems challenges, such as handling
stragglers and unreliable network connections (Bonawitz
et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-
dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring
privacy of user data (Geyer et al., 2017; Hardy et al., 2017).
In this work we address a different challenge, namely that of
training high-quality models under the constraints imposed
by the federated setting.

There are three main constraints unique to the federated set-
ting that make training high-quality models difficult. First,
communication-efficiency is a necessity when training on
the edge (Li et al., 2018), since clients typically connect to
the central aggregator over slow connections (∼ 1Mbps)
(Lee et al., 2010). Second, clients must be stateless, since
it is often the case that no client participates more than once
during all of training (Kairouz et al., 2019). Third, the data
collected across clients is typically not independent and
identically distributed. For example, when training a next-
word prediction model on the typing data of smartphone
users, clients located in geographically distinct regions gen-
erate data from different distributions, but enough common-
ality exists between the distributions that we may still want
to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for
federated learning, called FetchSGD, that can train high-
quality models under all three of these constraints. The crux
of the algorithm is simple: at each round, clients compute
a gradient based on their local data, then compress the gra-
dient using a data structure called a Count Sketch before

FetchSGD: Communication-Efficient Federated Learning with Sketching

sending it to the central aggregator. The aggregator main-
tains momentum and error accumulation Count Sketches,
and the weight update applied at each round is extracted
from the error accumulation sketch. See Figure 1 for an
overview of FetchSGD.

FetchSGD requires no local state on the clients, and we
prove that it is communication efficient, and that it con-
verges in the non-i.i.d. setting for L-smooth non-convex
functions at rates O

�
T−1/2

�
and O

�
T−1/3

�
respectively

under two alternative assumptions – the first opaque and the
second more intuitive. Furthermore, even without maintain-
ing any local state, FetchSGD can carry out momentum –
a technique that is essential for attaining high accuracy in
the non-federated setting – as if on local gradients before
compression (Sutskever et al., 2013). Lastly, due to prop-
erties of the Count Sketch, FetchSGD scales seamlessly
to small local datasets, an important regime for federated
learning, since user interaction with online services tends
to follow a power law distribution, meaning that most users
will have relatively little data to contribute (Muchnik et al.,
2013).

We empirically validate our method with two image recog-
nition tasks and one language modeling task. Using models
with between 6 and 125 million parameters, we train on
non-i.i.d. datasets that range in size from 50,000 – 800,000
examples.

2. Related Work
Broadly speaking, there are two optimization strategies that
have been proposed to address the constraints of federated
learning: Federated Averaging (FedAvg) and extensions
thereof, and gradient compression methods. We explore
these two strategies in detail in Sections 2.1 and 2.2, but as a
brief summary, FedAvg does not require local state, but it
also does not reduce communication from the standpoint of
a client that participates once, and it struggles with non-i.i.d.
data and small local datasets because it takes many local
gradient steps. Gradient compression methods, on the other
hand, can achieve high communication efficiency. However,
it has been shown both theoretically and empirically that
these methods must maintain error accumulation vectors on
the clients in order to achieve high accuracy. This is ineffec-
tive in federated learning, since clients typically participate
in optimization only once, so the accumulated error has no
chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-
ing training by carrying out multiple steps of stochastic
gradient descent (SGD) locally before sending the aggre-
gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied
since the early days of distributed model training in the data
center (Dean et al., 2012), and is referred to as FedAvg
when applied to federated learning (McMahan et al., 2016).
FedAvg has been successfully deployed in a number of
domains (Hard et al., 2018; Li et al., 2019), and is the most
commonly used optimization algorithm in the federated set-
ting (Yang et al., 2018). In FedAvg, every participating
client first downloads and trains the global model on their
local dataset for a number of epochs using SGD. The clients
upload the difference between their initial and final model
to the parameter server, which averages the local updates
weighted according to the magnitude of the corresponding
local dataset.

One major advantage of FedAvg is that it requires no lo-
cal state, which is necessary for the common case where
clients participate only once in training. FedAvg is also
communication-efficient in that it can reduce the total num-
ber of bytes transferred during training while achieving the
same overall performance. However, from an individual
client’s perspective, there is no communication savings if
the client participates in training only once. Achieving high
accuracy on a task often requires using a large model, but
clients’ network connections may be too slow or unreliable
to transmit such a large amount of data at once (Yang et al.,
2010).

Another disadvantage of FedAvg is that taking many local
steps can lead to degraded convergence on non-i.i.d. data.
Intuitively, taking many local steps of gradient descent on
local data that is not representative of the overall data dis-
tribution will lead to local over-fitting, which will hinder
convergence (Karimireddy et al., 2019a). When training a
model on non-i.i.d. local datasets, the goal is to minimize
the average test error across clients. If clients are chosen
randomly, SGD naturally has convergence guarantees on
non-i.i.d. data, since the average test error is an expectation
over which clients participate. However, although FedAvg
has convergence guarantees for the i.i.d. setting (Wang
and Joshi, 2018), these guarantees do not apply directly
to the non-i.i.d. setting as they do with SGD. Zhao et al.
(2018) show that FedAvg, using K local steps, converges
as O (K/T) on non-i.i.d. data for strongly convex smooth
functions, with additional assumptions. In other words, con-
vergence on non-i.i.d. data could slow down as much as
proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-
formance on non-i.i.d. data. Sahu et al. (2018) propose
constraining the local gradient update steps in FedAvg by
penalizing the L2 distance between local models and the cur-
rent global model. Under the assumption that every client’s
loss is minimized wherever the overall loss function is mini-
mized, they recover the convergence rate of SGD. Karim-

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

Figure 1.Algorithm Overview . TheFetchSGD algorithm(1) computes gradients locally, and then send sketches(2) of the gradients to
the cloud. In the cloud, gradient sketches are aggregated(3), and then(4) momentum and(5) error accumulation are applied to the sketch.
The approximate top-k values are then(6) extracted and(7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updates inFedAvg to
make them point closer to the consensus gradient direction
from all clients. They achieve good convergence at the cost
of making the clients stateful.

2.2. Gradient Compression

A limitation of FedAvg is that, in each communication
round, clients must download an entire model and upload an
entire model update. Because federated clients are typically
on slow and unreliable network connections, this require-
ment makes training large models withFedAvg dif�cult.
Uploading model updates is particularly challenging, since
residential Internet connections tend to be asymmetric, with
far higher download speeds than upload speeds (Goga and
Teixeira, 2012).

An alternative toFedAvg that helps address this problem
is regular distributed SGD with gradient compression. It
is possible to compress stochastic gradients such that the
result is still an unbiased estimate of the true gradient, for
example by stochastic quantization (Alistarh et al., 2017)
or stochastic sparsi�cation (Wangni et al., 2018). However,
there is a fundamental tradeoff between increasing compres-
sion and increasing the variance of the stochastic gradient,
which slows convergence. The requirement that gradients re-
main unbiased after compression is too stringent, and these
methods have had limited empirical success.

Biased gradient compression methods, such as top-k spar-
si�cation (Lin et al., 2017) or signSGD (Bernstein et al.,
2018), have been more successful in practice. These meth-
ods rely, both in theory and in practice, on the ability to
locally accumulate the error introduced by the compression
scheme, such that the error can be re-introduced the next
time the client participates (Karimireddy et al., 2019b). Un-
fortunately, carrying out error accumulation requires local
client state, which is often infeasible in federated learning.

2.3. Optimization with Sketching

This work advances the growing body of research applying
sketching techniques to optimization. Jiang et al. (2018) pro-
pose using sketches for gradient compression in data center
training. Their method achieves empirical success when gra-
dients are sparse, but it has no convergence guarantees, and
it achieves little compression on dense gradients (Jiang et al.,
2018,xB.3). The method also does not make use of error
accumulation, which more recent work has demonstrated
is necessary for biased gradient compression schemes to be
successful (Karimireddy et al., 2019b). Ivkin et al. (2019b)
also propose using sketches for gradient compression in data
center training. However, their method requires a second
round of communication between the clients and the param-
eter server, after the �rst round of transmitting compressed
gradients completes. Using a second round is not practical
in federated learning, since stragglers would delay comple-
tion of the �rst round, at which point a number of clients
that had participated in the �rst round would no longer be
available (Bonawitz et al., 2016). Furthermore, the method
in (Ivkin et al., 2019b) requires local client state for both
momentum and error accumulation, which is not possible
in federated learning. Spring et al. (2019) also propose
using sketches for distributed optimization. Their method
compresses auxiliary variables such as momentum and per-
parameter learning rates, without compressing the gradients
themselves. In contrast, our method compresses the gradi-
ents, and it does not require any additional communication
at all to carry out momentum.

Konecny et al. (2016) propose using sketched updates to
achieve communication ef�ciency in federated learning.
However, the family of sketches they use differs from the
techniques we propose in this paper: they apply a combina-
tion of subsampling, quantization and random rotations.

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

3. FetchSGD

3.1. Federated Learning Setup

Consider a federated learning scenario withC clients. Let
Z be the data domain and letfP igC

i= 1 be C possibly un-
related probability distributions overZ . For supervised
learning,Z = X � Y , whereX is the feature space and
Y is the label space; for unsupervised learning,Z = X is
the feature space. Thei th client hasD i samples drawn i.i.d.
from thePi . Let W be the hypothesis class parametrized
by d dimensional vectors. LetL : W � Z ! R be a loss
function. The goal is to minimize the weighted averagebE
of client risks:

f (w)= bE fi (w)=
1

å C
i= 1 D i

C

å
i= 1

D i E
z�P i

L (w, z) (1)

Assuming that all clients have an equal number of data
points, this simpli�es to the average of client risks:

f (w) = bE fi (w) =
1
C

C

å
i= 1

E
z�P i

L (w, z). (2)

For simplicity of presentation, we consider this unweighted
average (eqn. 2), but our theoretical results directly extend
to the the more general setting (eqn. 1).

In federated learning, a central aggregator coordinates an
iterative optimization procedure to minimizef with respect
to the model parametersw. In every iteration, the aggre-
gator choosesW clients uniformly at random,1 and these
clients download the current model, determine how to best
update the model based on their local data, and upload a
model update to the aggregator. The aggregator then com-
bines these model updates to update the model for the next
iteration. Different federated optimization algorithms use
different model updates and different aggregation schemes
to combine these updates.

3.2. Algorithm

At each iteration inFetchSGD, thei th participating client
computes a stochastic gradientgt

i using a batch of (or all
of) its local data, then compressesgt

i using a data structure
called a Count Sketch. Each client then sends the sketch
S(gt

i) to the aggregator as its model update.

A Count Sketch is a randomized data structure that can com-
press a vector by randomly projecting it several times to
lower dimensional spaces, such that high-magnitude ele-
ments can later be approximately recovered. We provide
more details on the Count Sketch in Appendix C, but here

1In practice, the clients may not be chosen randomly, since
often only devices that are on wi�, charging, and idle are allowed
to participate.

we treat it simply as a compression operatorS(�), with the
special property that it is linear:

S(g1 + g2) = S(g1) + S(g2).

Using linearity, the server can exactly compute the sketch
of the true minibatch gradientgt = å i gt

i given only the
S(gt

i):

å
i

S(gt
i) = S

å
i

gt
i

!

= S(gt).

Another useful property of the Count Sketch is that, for a
sketching operatorS(�), there is a corresponding decom-
pression operatorU(�) that returns an unbiased estimate of
the original vector, such that the high-magnitude elements
of the vector are approximated well (see Appendix C for
details):

Top-k(U(S(g))) � Top-k(g).

Brie�y, U(�) approximately “undoes” the projections com-
puted byS(�), and then uses these reconstructions to esti-
mate the original vector. See Appendix C for more details.

With theS(gt
i) in hand, the central aggregator could update

the global model withTop-k
�
U(å i S(gt

i))
�

� Top-k
�
gt

�
.

However,Top-k(gt) is not an unbiased estimate ofgt , so
the normal convergence of SGD does not apply. Fortunately,
Karimireddy et al. (2019b) show that biased gradient com-
pression methods can converge if they accumulate the error
incurred by the biased gradient compression operator and
re-introduce the error later in optimization. InFetchSGD,
the bias is introduced byTop-k rather than byS(�), so the
aggregator, instead of the clients, can accumulate the error,
and it can do so into a zero-initialized sketchSe instead of
into a gradient-like vector:

St =
1
W

W

å
i= 1

S(gt
i)

Dt = Top-k(U(hSt + St
e)))

St+ 1
e = hSt + St

e � S (Dt)

w t+ 1 = w t � Dt ,

whereh is the learning rate andDt 2 Rd is k-sparse.

In contrast, other biased gradient compression methods in-
troduce bias on the clients when compressing the gradients,
so the clients themselves must maintain individual error
accumulation vectors. This becomes a problem in federated
learning, where clients may participate only once, giving
the error no chance to be reintroduced in a later round.

Viewed another way, becauseS(�) is linear, and because er-
ror accumulation consists only of linear operations, carrying
out error accumulation on the server withinSe is equivalent

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

to carrying out error accumulation on each client, and up-
loading sketches of the result to the server. (Computing the
model update from the accumulated error is not linear, but
only the server does this, whether the error is accumulated
on the clients or on the server.) Taking this a step further, we
note that momentum also consists of only linear operations,
and so momentum can be equivalently carried out on the
clients or on the server. Extending the above equations with
momentum yields

St =
1
W

W

å
i= 1

S(gt
i)

St+ 1
u = r St

u + St

D = Top-k(U(hSt+ 1
u + St

e)))

St+ 1
e = hSt+ 1

u + St
e � S (D)

w t+ 1 = w t � D.

FetchSGD is presented in full in Algorithm 1.

Algorithm 1 FetchSGD

Input: number of model weights to update each roundk
Input: learning rateh
Input: number of timestepsT
Input: momentum parameterr , local batch sizè
Input: Number of clients selected per roundW
Input: Sketching and unsketching functionsS, U
1: InitializeS0

u andS0
e to zero sketches

2: Initialize w0 using the same random seed on the clients and
aggregator

3: for t = 1, 2,� � � T do
4: Randomly selectW clientsc1, . . .cW

5: loop f In parallel on clientsf ci g
W
i= 1g

6: Download (possibly sparse) new model weightsw t �
w0

7: Compute stochastic gradientgt
i on batchBi of size` :

gt
i = 1

` å l
j= 1 r w L (w t , zj)

8: Sketchgt
i : St

i = S(gt
i) and send it to the Aggregator

9: end loop
10: Aggregate sketchesSt = 1

W å W
i= 1 St

i
11: Momentum:St

u = r St � 1
u + St

12: Error feedback:St
e = hSt

u + St
e

13: Unsketch:Dt = Top-k(U(St
e))

14: Error accumulation:St+ 1
e = St

e � S(Dt)
15: Updatew t+ 1 = w t � Dt

16: end for
Output:

�
w t 	 T

t= 1

4. Theory

This section presents convergence guarantees for
FetchSGD. First, Section 4.1 gives the convergence of
FetchSGD when making a strong and opaque assumption
about the sequence of gradients. Section 4.2 instead makes
a more interpretable assumption about the gradients, and
arrives at a weaker convergence guarantee.

4.1. Scenario 1: Contraction Holds

To show that compressed SGD converges when using some
biased gradient compression operatorC(�), existing meth-
ods (Karimireddy et al., 2019b; Zheng et al., 2019; Ivkin
et al., 2019b) appeal to Stich et al. (2018), who show that
compressed SGD converges whenC is at -contraction:

kC(x) � xk � (1 � t) kxk

Ivkin et al. (2019b) show that it is possible to satisfy this con-
traction property using Count Sketches to compress gradi-
ents. However, their compression method includes a second
round of communication: if there are no high-magnitude
elements inet , as computed fromS(et), the server can
query clients for random entries ofet . On the other hand,
FetchSGD never computes theet

i , or et , so this second
round of communication is not possible, and the analysis of
Ivkin et al. (2019b) does not apply. In this section, we as-
sume that the updates have heavy hitters, which ensures that
the contraction property holds along the optimization path.

Assumption 1(Scenario 1). Let f w tg
T
t= 1 be the sequence

of models generated byFetchSGD. Fixing this model se-
quence, letf utgT

t= 1 and f etgT
t= 1 be the momentum and

error accumulation vectors generated using this model se-
quence, had we not used sketching for gradient compression
(i.e. if S and U are identity maps). There exists a con-
stant0 < t < 1 such that for anyt 2 [T], the quantity
qt := h(r ut � 1 + gt � 1) + et � 1 has at least one coordinate

i s.t. (qt
i)

2 � t

 qt

i

 2.

Theorem 1 (Scenario 1). Let f be an L-smooth2 non-
convex function and let the norm of stochastic gradients off
be upper bounded byG. Under Assumption 1,FetchSGD,
with step sizeh = 1� r

2L
p

T
, in T iterations, returnsf w tgT

t= 1,
such that, with probability at least1 � d over the sketching
randomness:

1. min
t= 1���T

E

 r f (w t)

 2 � 4L(f (w0)� f �) + G2)p

T
+ 2(1+ t)2G2

(1� t)t 2T .

2. The sketch uploaded from each participating client to
the parameter server isO (log (dT/ d) / t) bytes per
round.

The expectation in part 1 of the theorem is over the random-
ness of sampling minibatches. For largeT, the �rst term
dominates, so the convergence rate in Theorem 1 matches
that of uncompressed SGD.

Intuitively, Assumption 1 states that, at each time step, the
descent direction –i.e., the scaled negative gradient, in-
cluding momentum – and the error accumulation vector
must point in suf�ciently the same direction. This assump-
tion is rather opaque, since it involves all of the gradient,

2A differentiable function f is L-smooth if
kr f (x) � r f (y)k � L kx � yk 8 x, y 2 dom(f).

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

momentum, and error accumulation vectors, and it is not
immediately obvious that we should expect it to hold. To
remedy this, the next section analyzesFetchSGD under a
simpler assumption that involves only the gradients. Note
that this is still an assumption on the algorithmic path, but it
presents a clearer understanding.

4.2. Scenario 2: Sliding Window Heavy Hitters

Gradients taken along the optimization path have been ob-
served to contain heavy coordinates (Shi et al., 2019; Li
et al., 2019). However, it would be overly optimistic to
assume thatall gradients contain heavy coordinates, since
this might not be the case in some �at regions of parameter
space. Instead, we introduce a much milder assumption:
namely that there exist heavy coordinates in a sliding sum
of gradient vectors:

De�nition 1. [(I , t)-sliding heavy3]
A stochastic process

�
gt

	
t2N is (I , t)-sliding heavy if with

probability at least1 � d, at every iterationt, the gradient
vectorgt can be decomposed asgt = gt

N + gt
S, wheregt

S
is “signal” and gt

N is “noise” with the following properties:

1. [Signal] For every non-zero coordinatej of vectorgt
S,

9t1, t2 with t1 � t � t2, t2 � t1 � I s.t.j å t2
t1

gt
j j >

t k å t2
t1

gtk.

2. [Noise] gt
N is mean zero, symmetric and when nor-

malized by its norm, its second moment bounded as

E kgt
N k2

kgt k2 � b.

Intuitively, this de�nition states that, if we sum up toI con-
secutive gradients, every coordinate in the result will either
be ant -heavy hitter, or will be drawn from some mean-zero
symmetric noise. WhenI = 1, part 1 of the de�nition re-
duces to the assumption that gradients always contain heavy
coordinates. Our assumption for general, constantI is sig-
ni�cantly weaker, as it requires the gradients to have heavy
coordinates in a sequence ofI iterations rather than in every
iteration. The existence of heavy coordinates spread across
consecutive updates helps to explains the success of error
feedback techniques, which extract signal from a sequence
of gradients that may be indistinguishable from noise in any
one iteration. Note that both the signal and the noise scale
with the norm of the gradient, so both adjust accordingly as
gradients become smaller later in optimization.

Under this de�nition, we can use Count Sketches to capture
the signal, since Count Sketches can approximate heavy
hitters. Because the signal is spread over sliding windows
of size I , we need a sliding window error accumulation

3Technically, this de�nition is also parametrized byd andb.
However, in the interest of brevity, we use the simpler term “(I , t)-
sliding heavy” throughout the manuscript. Note thatd in Theorem
2 refers to the samed as in De�nition 1.

Figure 2.Sliding window error accumulation

scheme to ensure that we capture whatever signal is present.
Vanilla error accumulation is not suf�cient to show conver-
gence, since vanilla error accumulation sums upall prior
gradients, so signal that is present only in a sum ofI consec-
utive gradients (but not inI + 1, or I + 2, etc.) will not be
captured with vanilla error accumulation. Instead, we can
use a sliding window error accumulation scheme, which can
capture any signal that is spread over a sequence of at mostI
gradients. One simple way to accomplish this is to maintain
I error accumulation Count Sketches, as shown in Figure
2 for I = 4. Each sketch accumulates new gradients every
iteration, and beginning at offset iterations, each sketch is ze-
roed out everyI iterations before continuing to accumulate
gradients (this happens after line 15 of Algorithm 1). Under
this scheme, at every iteration there is a sketch available that
contains the sketched sum of the priorI0gradients, for all
I0 � I . We prove convergence in Theorem 2 when using
this sort of sliding window error accumulation scheme.

In practice, it is too expensive to maintainI error accumula-
tion sketches. Fortunately, this “sliding window” problem
is well studied (Datar et al., 2002; Braverman and Ostro-
vsky, 2007; Braverman et al., 2014; 2015; 2018b;a), and it is
possible to identify heavy hitters with onlylog (I) error ac-
cumulation sketches. Additional details on sliding window
Count Sketch are in Appendix D. Although we use a sliding
window error accumulation scheme to prove convergence,
in all experiments we use a single error accumulation sketch,
since we �nd that doing so still leads to good convergence.

Assumption 2(Scenario 2). The sequence of gradients en-
countered during optimization form an(I , t)-sliding heavy
stochastic process.

Theorem 2(Scenario 2). Let f be anL-smooth non-convex
function and letgi denote stochastic gradients offi such
that kgik

2 � G2. Under Assumption 2,FetchSGD, using

a sketch sizeQ
�

log(dT/ d)
t 2

�
, with step sizeh = 1

G
p

LT2/3

andr = 0 (no momentum), inT iterations, with probability
at least1 � 2d, returnsf w tgT

t= 1 such that

1. min
t= 1���T

E

 r f (w t)

 2 � G

p
L(f (w0)� f �)+ 2(2� t)

T1/3 + G
p

L
T2/3 + 2I2

T4/3

2. The sketch uploaded from each participating client to

the parameter server isQ
�

log(dT/ d)
t 2

�
bytes per round.

As in Theorem 1, the expectation in part 1 of the theorem is
over the randomness of sampling minibatches.

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

Remarks:

1. These guarantees are for the non-i.i.d. setting – i.e.f
is the average risk with respect to potentially unrelated
distributions (see eqn. 2).

2. The convergence rates bound the objective gradient norm
rather than the objective itself.

3. The convergence rate in Theorem 1 matches that of un-
compressed SGD, while the rate in Theorem 2 is worse.

4. The proof uses the virtual sequence idea of Stich et al.
(2018), and can be generalized to other class of functions
like smooth, (strongly) convex etc. by careful averaging
(proof in Appendix B.2).

5. Evaluation

We implement and compareFetchSGD, gradient sparsi�-
cation (local top-k), andFedAvg using PyTorch (Paszke
et al., 2019).4 In contrast to our theoretical assumptions,
we use neural networks with ReLU activations, whose loss
surfaces are notL-smooth. In addition, although Theorem 2
uses a sliding window Count Sketch for error accumulation,
in practice we use a vanilla Count Sketch. Lastly, we use
non-zero momentum, which Theorem 1 allows but Theorem
2 does not. We also make two changes to Algorithm 1. For
all methods, we employ momentum factor masking (Lin
et al., 2017). And on line 14 of Algorithm 1, we zero out the
nonzero coordinates ofS(Dt) in St

e instead of subtracting
S(Dt); empirically, doing so stabilizes the optimization.

We focus our experiments on the regime of small local
datasets and non-i.i.d. data, since we view this as both an
important and relatively unsolved regime in federated learn-
ing. Gradient sparsi�cation methods, which sum together
the local top-k gradient elements from each worker, do a
worse job approximating the true top-k of the global gra-
dient as local datasets get smaller and more unlike each
other. And taking many steps on each client's local data,
which is howFedAvg achieves communication ef�ciency,
is unproductive since it leads to immediate local over�tting.
However, real-world users tend to generate data with sizes
that follow a power law distribution (Goyal et al., 2017), so
most users will have relatively small local datasets. Real
data in the federated setting is also typically non-i.i.d.

FetchSGD has a key advantage over prior methods in this
regime because our compression operator is linear. Small
local datasets pose no dif�culties, since executing a step
using only a single client withN data points is equivalent to
executing a step usingN clients, each of which has only a
single data point. By the same argument, issues arising from
non-i.i.d. data are partially mitigated by random client selec-
tion, since combining the data of participating clients leads

4Code available at https://github.com/
kiddyboots216/CommEfficient . Git commit at the
time of camera-ready: 833ca44.

to a more representative sample of the full data distribution.

For each method, we report the compression achieved rela-
tive to uncompressed SGD in terms of total bytes uploaded
and downloaded.5 One important consideration not captured
in these numbers is that inFedAvg , clients must download
an entire model immediately before participating, because
every model weight could get updated in every round. In
contrast, local top-k andFetchSGD only update a limited
number of parameters per round, so non-participating clients
can stay relatively up to date with the current model, reduc-
ing the number of new parameters that must be downloaded
immediately before participating. This makes upload com-
pression more important than download compression for
local top-k andFetchSGD. Download compression is also
less important for all three methods since residential Internet
connections tend to reach far higher download than upload
speeds (Goga and Teixeira, 2012). We include results here
of overall compression (including upload and download),
but break up the plots into separate upload and download
components in the Appendix, Figure 6.

In all our experiments, we tune standard hyperparameters
on the uncompressed runs, and we maintain these same
hyperparameters for all compression schemes. Details on
which hyperparameters were chosen for each task can be
found in Appendix A.FedAvg achieves compression by
reducing the number of iterations carried out, so for these
runs, we simply scale the learning rate schedule in the it-
eration dimension to match the total number of iterations
thatFedAvg will carry out. We report results for each com-
pression method over a range of hyperparameters: for local
top-k, we adjustk; and forFetchSGD we adjustk and the
number of columns in the sketch (which controls the com-
pression rate of the sketch). We tune the number of local
epochs and federated averaging batch size forFedAvg , but
do not tune the learning rate decay forFedAvg because we
�nd that FedAvg does not approach the baseline accuracy
on our main tasks for even a small number of local epochs,
where the learning rate decay has very little effect.

In the non-federated setting, momentum is typically crucial
for achieving high performance, but in federating learning,
momentum can be dif�cult to incorporate. Each client could
carry out momentum on its local gradients, but this is inef-
fective when clients participate only once or a few times.
Instead, the central aggregator can carry out momentum
on the aggregated model updates. ForFedAvg and local
top-k, we experiment with (r g = 0.9) and without (r g = 0)
this global momentum. For each method, neither choice
of r g consistently performs better across our tasks, re�ect-
ing the dif�culty of incorporating momentum. In contrast,

5We only count non-zero weight updates when computing how
many bytes are transmitted. This makes the unrealistic assumption
that we have a zero-overhead sparse vector encoding scheme.

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

Figure 3.Test accuracy achieved on CIFAR10 (left) and CIFAR100 (right). “Uncompressed” refers to runs that attain compression by
simply running for fewer epochs.FetchSGD outperforms all methods, especially at higher compression. ManyFedAvg and local top-k
runs are excluded from the plot because they failed to converge or achieved very low accuracy.

FetchSGD incorporates momentum seamlessly due to the
linearity of our compression operator (see Section 3.2); we
use a momentum parameter of 0.9 in all experiments.

In all plots of performance vs. compression, each point
represents a trained model, and for clarity, we plot only
the Pareto frontier over hyperparameters for each method.
Figures 7 and 9 in the Appendix show results for all runs
that converged.

5.1. CIFAR (ResNet9)

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are im-
age classi�cation datasets with 60,00032 � 32px color im-
ages distributed evenly over 10 and 100 classes respectively
(50,000/10,000 train/test split). They are benchmark com-
puter vision datasets, and although they lack a natural non-
i.i.d. partitioning, we arti�cially create one by giving each
client images from only a single class. For CIFAR10 (CI-
FAR100) we use 10,000 (50,000) clients, yielding 5 (1)
images per client. Our 7M-parameter model architecture,
data preprocessing, and most hyperparameters follow Page
(2019), with details in Appendix A.1. We report accuracy
on the test datasets.

Figure 3 shows test accuracy vs. compression for CIFAR10
and CIFAR100.FedAvg and local top-k both struggle to
achieve signi�cantly better results than uncompressed SGD.
Although we ran a large hyperparameter sweep, many runs
simply diverge, especially for higher compression (local top-
k) or more local iterations (FedAvg). We expect this setting
to be challenging forFedAvg , since running multiple gra-
dient steps on only one or a few data points, especially
points that are not representative of the overall distribution,
is unlikely to be productive. And although local top-k can
achieve high upload compression, download compression
is reduced to almost1� , since summing sparse gradients

Figure 4.Test accuracy on FEMNIST. The dataset is not very non-
i.i.d., and has relatively large local datasets, butFetchSGD is still
competitive withFedAvg and local top-k for lower compression.

from many workers, each with very different data, leads to
a nearly dense model update each round.

5.2. FEMNIST (ResNet101)

The experiments above show thatFetchSGD signi�cantly
outperforms competing methods in the regime of very small
local datasets and non-i.i.d. data. In this section we intro-
duce a task designed to be more favorable forFedAvg , and
show thatFetchSGD still performs competitively.

Federated EMNIST is an image classi�cation dataset with
62 classes (upper- and lower-case letters, plus digits) (Cal-
das et al., 2018), which is formed by partitioning the EM-
NIST dataset (Cohen et al., 2017) such that each client in
FEMNIST contains characters written by a single person.
Experimental details, including our 40M-parameter model
architecture, can be found Appendix A.2. We report �nal
accuracies on the validation dataset. The baseline run trains
for a single epoch (i.e., each client participates once).

FetchSGD: Communication-Ef�cient Federated Learning with Sketching

Figure 5.Left: Validation perplexity achieved by �netuning GPT2-small on PersonaChat.FetchSGD achieves3.9� compression
without loss in accuracy over uncompressed SGD, and it consistently achieves lower perplexity thanFedAvg and top-k runs with similar
compression. Right: Training loss curves for representative runs. Global momentum hinders local top-k in this case, so local top-k runs
with r g = 0.9are omitted here to increase legibility.

FEMNIST was introduced as a benchmark dataset for
FedAvg , and it has relatively large local datasets (� 200
images per client). The clients are split according to the
person who wrote the character, yielding a data distribution
closer to i.i.d. than our per-class splits of CIFAR10. To main-
tain a reasonable overall batch size, only three clients partic-
ipate each round, reducing the need for a linear compression
operator. Despite this,FetchSGD performs competitively
with bothFedAvg and local top-k for some compression
values, as shown in Figure 4.

For low compression,FetchSGD actually outperforms the
uncompressed baseline, likely because updating onlyk pa-
rameters per round regularizes the model. Interestingly,
local top-k using global momentum signi�cantly outper-
forms other methods on this task, though we are not aware
of prior work suggesting this method for federated learning.
Despite this surprising observation, local top-k with global
momentum suffers from divergence and low accuracy on
our other tasks, and it lacks any theoretical guarantees.

5.3. PersonaChat (GPT2)

In this section we consider GPT2-small (Radford et al.,
2019), a transformer model with 124M parameters that is
used for language modeling. We �netune a pretrained GPT2
on the PersonaChat dataset, a chit-chat dataset consisting
of conversations between Amazon Mechanical Turk work-
ers who were assigned faux personalities to act out (Zhang
et al., 2018). The dataset has a natural non-i.i.d. partition-
ing into 17,568 clients based on the personality that was
assigned. Our experimental procedure follows Wolf (2019).
The baseline model trains for a single epoch, meaning that
no local state is possible, and we report the �nal perplexity
(a standard metric for language models; lower is better) on
the validation dataset in Figure 5.

Figure 5 also plots loss curves (negative log likelihood)
achieved during training for some representative runs. Some-
what surprisingly, all the compression techniques outper-
form the uncompressed baseline early in training, but most
saturate too early, when the error introduced by the com-
pression starts to hinder training.

Sketching outperforms local top-k for all but the highest
levels of compression, because local top-k relies on local
state for error feedback, which is impossible in this setting.
We expect this setting to be challenging forFedAvg , since
running multiple gradient steps on a single conversation
which is not representative of the overall distribution is
unlikely to be productive.

6. Discussion

Federated learning has seen a great deal of research interest
recently, particularly in the domain of communication ef�-
ciency. A considerable amount of prior work focuses on de-
creasing the total number of communication rounds required
to converge, without reducing the communication required
in each round. In this work, we complement this body of
work by introducingFetchSGD, an algorithm that reduces
the amount of communication required each round, while
still conforming to the other constraints of the federated
setting. We particularly want to emphasize thatFetchSGD
easily addresses the setting of non-i.i.d. data, which often
complicates other methods. The optimal algorithm for many
federated learning settings will no doubt combine ef�ciency
in number of rounds and ef�ciency within each round, and
we leave an investigation into optimal ways of combining
these approaches to future work.

