FetchSGD: Communication-Efficient Federated Learning with Sketching

Daniel Rothchild* ! Ashwinee Panda*! Enayat Ullah? Nikita Ivkin3 Ion Stoica' Vladimir Braverman *

Joseph Gonzalez

Abstract

Existing approaches to federated learning suf-
fer from a communication bottleneck as well as
convergence issues due to sparse client participa-
tion. In this paper we introduce a novel algorithm,
called Fet chSGD, to overcome these challenges.
FetchSGD compresses model updates using a
Count Sketch, and then takes advantage of the
mergeability of sketches to combine model up-
dates from many workers. A key insight in the
design of Fet chSGD is that, because the Count
Sketch is linear, momentum and error accumu-
lation can both be carried out within the sketch.
This allows the algorithm to move momentum
and error accumulation from clients to the central
aggregator, overcoming the challenges of sparse
client participation while still achieving high com-
pression rates and good convergence. We prove
that Fet chSGD has favorable convergence guar-
antees, and we demonstrate its empirical effec-
tiveness by training two residual networks and a
transformer model.

1. Introduction

Federated learning has recently emerged as an important set-
ting for training machine learning models. In the federated
setting, training data is distributed across a large number
of edge devices, such as consumer smartphones, personal
computers, or smart home devices. These devices have
data that is useful for training a variety of models — for text
prediction, speech modeling, facial recognition, document
identification, and other tasks (Shi et al., 2016; Brisimi et al.,
2018; Leroy et al., 2019; Tomlinson et al., 2009). However,
data privacy, liability, or regulatory concerns may make it
difficult to move this data to the cloud for training (EU,

“Equal contribution !University of California, Berke-
ley, California, USA 2Johns Hopkins University, Baltimore,
Maryland 3Amazon. Correspondence to: Daniel Rothchild
<drothchild @berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

1

Raman Arora?

2018). Even without these concerns, training machine learn-
ing models in the cloud can be expensive, and an effective
way to train the same models on the edge has the potential
to eliminate this expense.

When training machine learning models in the federated
setting, participating clients do not send their local data to
a central server; instead, a central aggregator coordinates
an optimization procedure among the clients. At each it-
eration of this procedure, clients compute gradient-based
updates to the current model using their local data, and they
communicate only these updates to a central aggregator.

A number of challenges arise when training models in the
federated setting. Active areas of research in federated learn-
ing include solving systems challenges, such as handling
stragglers and unreliable network connections (Bonawitz
et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-
dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring
privacy of user data (Geyer et al., 2017; Hardy et al., 2017).
In this work we address a different challenge, namely that of
training high-quality models under the constraints imposed
by the federated setting.

There are three main constraints unique to the federated set-
ting that make training high-quality models difficult. First,
communication-efficiency is a necessity when training on
the edge (Li et al., 2018), since clients typically connect to
the central aggregator over slow connections (~ 1Mbps)
(Lee et al., 2010). Second, clients must be stateless, since
it is often the case that no client participates more than once
during all of training (Kairouz et al., 2019). Third, the data
collected across clients is typically not independent and
identically distributed. For example, when training a next-
word prediction model on the typing data of smartphone
users, clients located in geographically distinct regions gen-
erate data from different distributions, but enough common-
ality exists between the distributions that we may still want
to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for
federated learning, called Fet chSGD, that can train high-
quality models under all three of these constraints. The crux
of the algorithm is simple: at each round, clients compute
a gradient based on their local data, then compress the gra-
dient using a data structure called a Count Sketch before

FetchSGD: Communication-Efficient Federated Learning with Sketching

sending it to the central aggregator. The aggregator main-
tains momentum and error accumulation Count Sketches,
and the weight update applied at each round is extracted
from the error accumulation sketch. See Figure 1 for an
overview of Fet chSGD.

FetchSGD requires no local state on the clients, and we
prove that it is communication efficient, and that it con-
verges in the non-i.i.d. setting for L-smooth non-convex

1/2

functions at rates O T~ and O T~ 1/3 respectively

under two alternative assumptions — the first opaque and the
second more intuitive. Furthermore, even without maintain-
ing any local state, Fet chSGD can carry out momentum —
a technique that is essential for attaining high accuracy in
the non-federated setting — as if on local gradients before
compression (Sutskever et al., 2013). Lastly, due to prop-
erties of the Count Sketch, Fet chSGD scales seamlessly
to small local datasets, an important regime for federated
learning, since user interaction with online services tends
to follow a power law distribution, meaning that most users
will have relatively little data to contribute (Muchnik et al.,
2013).

We empirically validate our method with two image recog-
nition tasks and one language modeling task. Using models
with between 6 and 125 million parameters, we train on
non-i.i.d. datasets that range in size from 50,000 — 800,000
examples.

2. Related Work

Broadly speaking, there are two optimization strategies that
have been proposed to address the constraints of federated
learning: Federated Averaging (FedAvg) and extensions
thereof, and gradient compression methods. We explore
these two strategies in detail in Sections 2.1 and 2.2, but as a
brief summary, FedAvg does not require local state, but it
also does not reduce communication from the standpoint of
a client that participates once, and it struggles with non-i.i.d.
data and small local datasets because it takes many local
gradient steps. Gradient compression methods, on the other
hand, can achieve high communication efficiency. However,
it has been shown both theoretically and empirically that
these methods must maintain error accumulation vectors on
the clients in order to achieve high accuracy. This is ineffec-
tive in federated learning, since clients typically participate
in optimization only once, so the accumulated error has no
chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-
ing training by carrying out multiple steps of stochastic
gradient descent (SGD) locally before sending the aggre-
gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied
since the early days of distributed model training in the data
center (Dean et al., 2012), and is referred to as FedAvg
when applied to federated learning (McMahan et al., 2016).
FedAvg has been successfully deployed in a number of
domains (Hard et al., 2018; Li et al., 2019), and is the most
commonly used optimization algorithm in the federated set-
ting (Yang et al., 2018). In FedAvg, every participating
client first downloads and trains the global model on their
local dataset for a number of epochs using SGD. The clients
upload the difference between their initial and final model
to the parameter server, which averages the local updates
weighted according to the magnitude of the corresponding
local dataset.

One major advantage of FedAvg is that it requires no lo-
cal state, which is necessary for the common case where
clients participate only once in training. FedAvgq is also
communication-efficient in that it can reduce the total num-
ber of bytes transferred during training while achieving the
same overall performance. However, from an individual
client’s perspective, there is no communication savings if
the client participates in training only once. Achieving high
accuracy on a task often requires using a large model, but
clients’ network connections may be too slow or unreliable
to transmit such a large amount of data at once (Yang et al.,
2010).

Another disadvantage of FedAvg is that taking many local
steps can lead to degraded convergence on non-i.i.d. data.
Intuitively, taking many local steps of gradient descent on
local data that is not representative of the overall data dis-
tribution will lead to local over-fitting, which will hinder
convergence (Karimireddy et al., 2019a). When training a
model on non-i.i.d. local datasets, the goal is to minimize
the average test error across clients. If clients are chosen
randomly, SGD naturally has convergence guarantees on
non-i.i.d. data, since the average test error is an expectation
over which clients participate. However, although FedAvg
has convergence guarantees for the i.i.d. setting (Wang
and Joshi, 2018), these guarantees do not apply directly
to the non-i.i.d. setting as they do with SGD. Zhao et al.
(2018) show that FedAvg, using K local steps, converges
as O (K/T) on non-i.i.d. data for strongly convex smooth
functions, with additional assumptions. In other words, con-
vergence on non-i.i.d. data could slow down as much as
proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-
formance on non-i.i.d. data. Sahu et al. (2018) propose
constraining the local gradient update steps in FedAvg by
penalizing the L2 distance between local models and the cur-
rent global model. Under the assumption that every client’s
loss is minimized wherever the overall loss function is mini-
mized, they recover the convergence rate of SGD. Karim-

FetchSGD: Communication-Ef cient Federated Learning with Sketching

Figure 1.Algorithm Overview. TheFetchSGD algorithm(1) computes gradients locally, and then send sket(®jesf the gradients to
the cloud. In the cloud, gradient sketches are aggred8)eend ther(4) momentum and5) error accumulation are applied to the sketch.
The approximate top-k values are th@) extracted and7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updatesi@dAvg to 2.3. Optimization with Sketching

make them point closer to the consensus gradient directio hi K ad th ina body of h Vi
from all clients. They achieve good convergence at the cos IS work advances the growing body of research applying

of making the clients stateful. sketchin_g techniques to optimization. Jiang et ai. (2018) pro-
pose using sketches for gradient compression in data center
training. Their method achieves empirical success when gra-
dients are sparse, but it has no convergence guarantees, and
A limitation of FedAvg is that, in each communication it achieves little compression on dense gradients (Jiang et al.,
round, clients must download an entire model and upload a?018,xB.3). The method also does not make use of error
entire model update. Because federated clients are typicalgccumulation, which more recent work has demonstrated
on slow and unreliable network connections, this requireis necessary for biased gradient compression schemes to be
ment makes training large models wiedAvg dif cult. successful (Karimireddy et al., 2019b). Ivkin et al. (2019b)
Uploading model updates is particularly challenging, sincealso propose using sketches for gradient compression in data
residential Internet connections tend to be asymmetric, witleenter training. However, their method requires a second
far higher download speeds than upload speeds (Goga ati@und of communication between the clients and the param-
Teixeira, 2012). eter server, after the rst round of transmitting compressed

An al tive tFedAvd that hel dd hi bl gradients completes. Using a second round is not practical
h alternative ta-edAvg that helps address this problem i, tojerateq learning, since stragglers would delay comple-

?S regul_ar distributed SGD with g_radient_compression. tion of the rst round, at which point a number of clients
is possible to compress stochastic gradients such that t Rat had participated in the rst round would no longer be
result is still an unbiased estimate of the true gradient, foL, ailable (Bonawitz et al., 2016). Furthermore, the method
example by stochastic quantization (Alistarh et al., 2017}, yyin et al., 2019b) requires local client state for both
or stochastic sparsi cation (Wangni et al., 2018). However, ;) smentum and error accumulation, which is not possible

tiiere is a_fundam_ental trade_off between increasin_g COMPIeR; foderated learning. Spring et al. (2019) also propose
ston and increasing the variance Of_ the stochastic g_rad'erl'ising sketches for distributed optimization. Their method
Wh'.c h SIO\{VS convergence. The .reql_iirementlthat gradients r(E'ompresses auxiliary variables such as momentum and per-
ma'?] u(;ibiﬁsedﬁft(;a{_ C‘?mgress'Pi‘ ISI too stringent, and thesﬁarameter learning rates, without compressing the gradients
methods have had limited empirical success. themselves. In contrast, our method compresses the gradi-
Biased gradient compression methods, such ak&gar- €ents, and it does not require any additional communication
si cation (Lin et al., 2017) or signSGD (Bernstein et al., at all to carry out momentum.

2318),|ha\t/)e i;gen rr;nore suc&:gssful in. practicer.] ThE,SI? metﬁbnecny et al. (2016) propose using sketched updates to
ods rely, both In theory and in practice, on the ability 10 5 ohjeve communication ef ciency in federated learning.
locally accumulate the error introduced by the COMPIeSSION o vever, the family of sketches they use differs from the

s_cher;]ie, fUCh tha_t ihe erroli Can_bed(rje-intr(?d;%el(;kt)heune chniques we propose in this paper: they apply a combina-
time the client paitimpates(arimire ye_t al., £u-)- Mtion of subsampling, quantization and random rotations.
fortunately, carrying out error accumulation requires local

client state, which is often infeasible in federated learning.

2.2. Gradient Compression

FetchSGD: Communication-Ef cient Federated Learning with Sketching

3. FetchSGD we treat it simply as a compression operdgr), with the
) special property that it is linear:

3.1. Federated Learning Setup

Consider a federated learning scenario v@thlients. Let S(91+ g2) = S(91) + S(92).

Z be the data domain and I&® igiczl be C possibly un- Using li v th | he sketch
related probability distributions ovét. For supervised USNg linearity, the server can exactly compute the sketc

7) e
learning,Z = X Y , whereX is the feature space and of the true minibatch gradierf’ = &; g; given only the

Y is the label space; %)runsupervised learnigs X is S(90): !

the feature space. Th@ client hasD; samples drawn i.i.d. o o

from theP;. Let W be the hypothesis class parametrized a S(g)) = S a g = S(g).

by d dimensional vectors. Ldt : W Z! R be aloss

function. The goal is to minimize the weighted aver#ge Another useful property of the Count Sketch is that, for a

of client risks: sketching operato®(), there is a corresponding decom-
1 c pression operatdd() that returns an unbiased estimate of

f(w)= Efi(w): —— é D; E L(w,2) (1) the original vector, such that the high-magnitude elements
aiz1Dij=1 zP i of the vector are approximated well (see Appendix C for
details):
Assuming that all clients have an equal number of data Top-k(U(S(g))) Top-k(g).

points, this simpli es to the average of client risks:
Briey, U() approximately “undoes” the projections com-
) puted byS(), and then uses these reconstructions to esti-
mate the original vector. See Appendix C for more details.

f(w) = Bfi(w) =

Olx
1 Qon

ZE iL(W,z).

i=1

With the S(g}) in hand, the central aggregator could update

For simplicity of presentation, we consider this unweightedthe global model wittfop-k U(&;S(g{)) Top-k g .
average (eqgn. 2), but our theoretical results directly extenéHowever,Top-k(g') is not an unbiased estimate gff, so
to the the more general setting (eqn. 1). the normal convergence of SGD does not apply. Fortunately,

In federated learning, a central aggregator coordinates alﬁarlmlreddy et al. (2019b) show that biased gradient com-

. . R Lo pression methods can converge if they accumulate the error
iterative optimization procedure to minimiZewith respect . . . -

. . incurred by the biased gradient compression operator and
to the model parameterg. In every iteration, the aggre-

gator chooseW clients uniformly at randord.and these re-introduce the error later in optimization. FetchSGD,

clients download the current model, determine how to bes&he bias is introduced biop-krather than by5(), so the

update the model based on their local data, and upload %ggr_egator, mste_ad of the cl!e_nfcs,_ can accum_ulate the error,
and it can do so into a zero-initialized sketshinstead of
model update to the aggregator. The aggregator then com-,

bines these model updates to update the model for the ne&qto a gradient-like vector:
iteration. Different federated optimization algorithms use

different model updates and different aggregation schemes g = 1 g S(a))

to combine these updates. W,

3.2. Algorithm D' = Top-KU(hS + S)))
+1_ \s

At each iteration irfFetchSGD, thei'" participating client &t=hs+g S (D)

computes a stochastic gradigtusing a batch of (or all wtht=wt D,

of) its local data, then compressgisusing a data structure)) . 4
called a Count Sketch. Each client then sends the sketc/hereh is the learning rate and 2 R% is k-sparse.

t i
S(g;) to the aggregator as its model update. In contrast, other biased gradient compression methods in-

A Count Sketch is a randomized data structure that can confroduce bias on the clients when compressing the gradients,
press a vector by randomly projecting it several times tcS0 the clients themselves must maintain individual error
lower dimensional spaces, such that high-magnitude el@ccumulation vectors. This becomes a problem in federated
ments can later be approximately recovered. We providéearning, where clients may participate only once, giving
more details on the Count Sketch in Appendix C, but herdhe error no chance to be reintroduced in a later round.

1in practice, the clients may not be chosen randomly, sincev'("wed anothgr way, pecause() 'S_ linear, and pecause e.r-
often only devices that are on wi, charging, and idle are allowed '0r accumulation consists only of linear operations, carrying
to participate. out error accumulation on the server witl8ais equivalent

FetchSGD: Communication-Ef cient Federated Learning with Sketching

to carrying out error accumulation on each client, and up4.1. Scenario 1: Contraction Holds
loading sketches of the result to the server. (Computing th .
model update from the accumulated error is not linear, buE(.) show that. compressed S.GD Converges vyhgn using some
only the server does this, whether the error is accumulate lased gra@ent compression o.perdt()r), existing mgth— .
on the clients or on the server.) Taking this a step further, w ds (Karimireddy et al., 2919b, Zheng et al., 2019; Ivkin
note that momentum also consists of only linear operationse,t al., 2019b) appeal to Stich et a_I. (2018), th sh.ow that
and so momentum can be equivalently carried out on thgompressed SGD converges whgis at -contraction:

clients or on the server. Extending the above equations with kC(x) xk (1 t)kxk
momentum yields
1w Ivkin et al. (2019b) show that it is possible to satisfy this con-
g = W a s(dh) traction property using Count Sketches to compress gradi-
i=1 ents. However, their compression method includes a second
Sfl=rg,+¢ round of communication: if there are no high-magnitude
D = Top-k(U(hSF 1+) eIement; ine!, as computed fronS(et), the server can
$l=hsrle s S (D) query clients for random entries ef. On the other hand,

FetchSGD never computes thel, or €', so this second

w*ht=w' D round of communication is not possible, and the analysis of
Ivkin et al. (2019b) does not apply. In this section, we as-
FetchSGD is presented in full in Algorithm 1. sume that the updates have heavy hitters, which ensures that
the contraction property holds along the optimization path.
Algorithm 1 FetchSGD Assumption 1(Scenario 1) Letf wyg,_ , be the sequence
Input: number of model weights to update each rond of models generated ByetchSGD . Fixing this model se-
Input: learning rateh quence, lefu'gl ; andfe'gl; be the momentum and

Input: number of timestep¥
Input: momentum parameter, local batch sizé
Input: Number of clients selected per rouwid

error accumulation vectors generated using this model se-
guence, had we not used sketching for gradient compression

Input: Sketching and unsketching functioBs U (i.e. if S andU are identity maps). There exists a con-
1: Initialize) and <Y to zero sketches stant0 < t < 1 such that for anyt 2 [T], the quantity
2: Initialize w© using the same random seed on the clients andyf := h(rut 1+ g' 1)+ €' 1 has atleast one coordinate
. 2
3 forto 1z, Tdo ist(d)? td "
4: Randomly seledlV clientscy, . . .cy Theorem 1 (Scenario 1) Let f be anL-smooth? non-
5: loopfIn parallel on clientd cig}"z’ 19 convex function and let the norm of stochastic gradients of
6

D8wn|oad (possibly sparse) new model weights be upper bounded b@. Under Assumption FetchSGD,

w . . 1.r . . .
7: Compute stochastic gradieg‘[ton batchB; of size: with step SIZ.¢1 = ﬁ in T iterations, returnsf thtT=_l’
gt=1 5}:1r wl(wt,z) such that, with probability at least d over the sketching
8: Sketchg': § = S(g!) and send it to the Aggregator randomness:
9: end loop 0 , 2
10: Aggregate sketche& = L 3V, o 1. Min_E 1 fwt) 2 Al)pff)+ &) o 2((11+tt))tzGT :
11: Momentums, =rg, 1+ & o .
12: Error feedbacks, = hs, + S, 2. The sketch uploaded from each participating client to
13: UnsketchD! = Top-k(U(SL) the parameter server i® (log (dT/ d) / t) bytes per
14: Error accumulationsi™t = § S(DY) round.
igf eng?:ratem“ t=wh D The expectation in part 1 of the theorem is over the random-
- ¢ T ness of sampling minibatches. For lafgethe rst term
Output: w' ,_, domi -
ominates, so the convergence rate in Theorem 1 matches
that of uncompressed SGD.
4. Theory Intuitively, Assumption 1 states that, at each time step, the

This section presents convergence guarantees féjresqent direction +e, the scaled negative gragient, in-
FetchSGD. First, Section 4.1 gives the convergence Ofcludmg _momentum — and the error acpumulgtlon vector
FetchSGD when making a strong and opaque assumptior{nusF pointin suf ciently .the same direction. This assump-
about the sequence of gradients. Section 4.2 instead makggn is rather opague, since it involves all of the gradient,
a more interpretable assumption about the gradients, and 2a (ifferentiable function f is L-smooth if
arrives at a weaker convergence guarantee. kr f(x) r f(y)k Lkx yk 8x,y 2 dom(f).

FetchSGD: Communication-Ef cient Federated Learning with Sketching

momentum, and error accumulation vectors, and it is not
immediately obvious that we should expect it to hold. To
remedy this, the next section analyfetchSGD under a
simpler assumption that involves only the gradients. Note
that this is still an assumption on the algorithmic path, but it
presents a clearer understanding.

4.2. Scenario 2: Sliding Window Heavy Hitters Figure 2.Sliding window error accumulation

Gradients taken along the optimization path have been Ol%’cheme to ensure that we capture whatever signal is present.

served to contain heavy.coordmates (Shi et aI_., .20_19; I‘\/anilla error accumulation is not suf cient to show conver-
et al., 2019). However, it would be overly optimistic to

thaall dient tain h dinat "=~ gence, since vanilla error accumulation sumsaligprior
assume gradients contain heavy coordinates, SiNC&q jjants, so signal that is present only in a surh@dnsec-

this might not be the case in some at regions of paramete tive gradients (but not ih+ 1, or | + 2, etc.) will not be

space. Instead, we _mtroduce a mu_ch mllt_zler assgmpho%'aptured with vanilla error accumulation. Instead, we can
namely that there exist heavy coordinates in a sliding SUNlse a sliding window error accumulation scheme, which can
of gradient vectors: capture any signal that is spread over a sequence of atimost
De nition 1. [(I,t)-sliding heavy] gradients. One simple way to accomplish this is to maintain
A stochastic processg' ,, is (1,t)-sliding heavy if with | error accumulation Count Sketches, as shown in Figure
probability at leastl d, at every iteratiort, the gradient 2 for | = 4. Each sketch accumulates new gradients every
vectorg' can be decomposed g5= g}, + g§, wheregy teration, and beginning at offset iterations, each sketch is ze-
is “signal” and g‘N is “noise” with the following properties: roed out every iterations before continuing to accumulate
) o gradients (this happens after line 15 of Algorithm 1). Under
1. [Signal] For every non-zero coordinajeof vectorgs, this scheme, at every iteration there is a sketch available that
Oty,tawitht; t tp tz tp | st éﬁ gii> contains the sketched sum of the prigradients, for all
t ké:i gik. 19 1. We prove convergence in Theorem 2 when using

: t _ this sort of sliding window error accumulation scheme.
2. [Noise] gy, is mean zero, symmetric and when nor-

malized by its norm, its second moment bounded a¥ practice, it is too expensive to maintdirerror accumula-
E kat, k* b tion sketches. Fortunately, this “sliding window” problem
kgtk? ' is well studied (Datar et al., 2002; Braverman and Ostro-
vsky, 2007; Braverman et al., 2014; 2015; 2018b;a), and it is
e'possible to identify heavy hitters with onlgg (1) error ac-
cumulation sketches. Additional details on sliding window

symmetric noise. Wheh= 1, part 1 of the de nition re- Cpunt Sketch are in App(_and|x D. Although we use a sliding
. . . window error accumulation scheme to prove convergence,
duces to the assumption that gradients always contain hea

! : L ¥ all experiments we use a single error accumulation sketch,
coordinates. Our assumption for general, constassig-

) ; . . since we nd that doing so still leads to good convergence.
ni cantly weaker, as it requires the gradients to have heavy 9 9 9

coordinates in a sequenceloiterations rather than in every ASSumption 2(Scenario 2) The sequence of gradients en-
iteration. The existence of heavy coordinates spread acro&Quntered during optimization form &, t)-sliding heavy
consecutive updates helps to explains the success of errsfochastic process.

feedback techniques, which extract signal from a sequenceheorem 2(Scenario 2) Let f be anL-smooth non-convex
of gradients that may be indistinguishable from noise in anyfunction and leig; denote stochastic gradients §fsuch
one iteration. Note that both the signal and the noise scalthat kgik2 G?. Under Assumption FetchSGD, using
with the norm of the gradient, so both adjust accordingly as; gketch siz€ |0@J(tdzT/ a) , with step sizér = —p-L

i i imizati G LT28
gradients become smaller later in optimization. andr = 0 (no momentum), iff iterations, with probability

Under this de nition, we can use Count Sketches to captureat leastl 2d, returnsf wtgtT: 1 such that

the signal, since Count Sketches can approximate heav min E r f(wb) 2 G L(f(wY) f)+22 1), Gpt+ 212
hitters. Because the signal is spread over sliding windows™ t=1 T T T TR

of size |, we need a sliding window error accumulation 2- The sketch uploaded from each participating client to
the parameter server iQ 'Og(tﬂ bytes per round.

Intuitively, this de nition states that, if we sum up focon-
secutive gradients, every coordinate in the result will eith
be ant -heavy hitter, or will be drawn from some mean-zero

3Technically, this de nition is also parametrized byandb.

However, in the interest of brevity, we use the simpler tetint)- . o)
sliding heavy” throughout the manuscript. Note ttan Theorem ~ AS in Theorem 1, the expectation in part 1 of the theorem is

2 refers to the samééas in De nition 1. over the randomness of sampling minibatches.

FetchSGD: Communication-Ef cient Federated Learning with Sketching

Remarks: to a more representative sample of the full data distribution.

1. These guarantees are for the non-i.i.d. setting —i.€. For each method, we report the compression achieved rela-
is the average risk with respect to potentially unrelatedjye to uncompressed SGD in terms of total bytes uploaded

distributions (see eqn. 2). and downloaded.One important consideration not captured
2. The convergence rates bound the objective gradient norrim these numbers is that FedAvg, clients must download
rather than the objective itself. an entire model immediately before participating, because

3. The convergence rate in Theorem 1 matches that of u@very model weight could get updated in every round. In
compressed SGD, while the rate in Theorem 2 is worsecontrast, local togeandFetchSGD only update a limited

4. The proof uses the virtual sequence idea of Stich et ahumber of parameters per round, so non-participating clients
(2018), and can be generalized to other class of function§an stay relatively up to date with the current model, reduc-
like smooth, (strongly) convex etc. by careful averagingind the number of new parameters that must be downloaded

(proof in Appendix B.2). immediately before participating. This makes upload com-
pression more important than download compression for
5. Evaluation local topk andFetchSGD . Download compression is also

less important for all three methods since residential Internet
ion (local dFedA "o PvTorch K connections tend to reach far higher download than upload
cation (local topk), andFedAvg using PyTorch (Paszke speeds (Goga and Teixeira, 2012). We include results here

et al., 2019): In contrast to our theoretical assumptions, j¢ oo o1 compression (including upload and download),

we use neural networks with Re.L.U activations, whose IOSEbut break up the plots into separate upload and download
surfaces are ndt-smooth. In addition, although Theorem 2 components in the Appendix, Figure 6

uses a sliding window Count Sketch for error accumulation,
in practice we use a vanilla Count Sketch. Lastly, we usdn all our experiments, we tune standard hyperparameters
non-zero momentum, which Theorem 1 allows but TheorenPn the uncompressed runs, and we maintain these same
2 does not. We also make two changes to Algorithm 1. Fohyperparameters for all compression schemes. Details on
all methods, we employ momentum factor masking (Linwhich hyperparameters were chosen for each task can be
etal., 2017). And on line 14 of Algorithm 1, we zero out the found in Appendix A.FedAvg achieves compression by
nonzero coordinates &(D') in S} instead of subtracting reducing the number of iterations carried out, so for these
S(DY); empirically, doing so stabilizes the optimization. runs, we simply scale the learning rate schedule in the it-

. _ eration dimension to match the total number of iterations
We focus our exp§r|ments on the regime of-small IocalthatFedAvg will carry out. We report results for each com-
datasets and non-i.i.d. data, since we view this as both %‘ression method over a range of hyperparameters: for local

important and relatively unsolved regime in federated Iearnt-op_k we adjusk; and forFetchSGD we adjustk and the
ing. Gradient sparsi cation methods, which sum together ’)

. number of columns in the sketch (which controls the com-
the local topk gradient elements from each worker, do a

iob S h f the alobal pression rate of the sketch). We tune the number of local
worse job approximating the true tépef the global gra- gﬁochs and federated averaging batch siz&é&atAvg, but

dient as local datasets get smaller and more unlike eac not tune the learning rate decay RedAvg because we

otr?e; .Aﬂd tik'gg manyh'steps on each_cllgnts Ifoqal data’nd that FedAvg does not approach the baseline accuracy
which Is howFedAvg achieves communication ef ciency, on our main tasks for even a small number of local epochs,

is unproductive since it leads to immediate local over tting.Where the learning rate decay has very little effect
However, real-world users tend to generate data with sizes '

that follow a power law distribution (Goyal et al., 2017), so In the non-federated setting, momentum is typically crucial
most users will have relatively small local datasets. Reafor achieving high performance, but in federating learning,
data in the federated setting is also typically non-i.i.d. momentum can be dif cult to incorporate. Each client could

FetchSGD h kev ad . hods in thi carry out momentum on its local gradients, but this is inef-
et as a key advantage over prior methods in tiseg . iy/e when clients participate only once or a few times.

regime because our compression operator is linear. qu stead, the central aggregator can carry out momentum

local datasets pose no dif culties, since executing a steR), the aggregated model updates. FedAvg and local
using only a single client wittN data points is equivalent to top, we experiment withr(y = 0.9) énd without ¢ = 0)

executing a step using clients, each of which has only a this global momentum. For each method, neither choice

single data point. By the same argument, issues arising fror’Bf r g consistently performs better across our tasks, re ect-

non-i.i.d. data are partially mitigated by random client selec-Ing the dif culty of incorporating momentum. In contrast,

tion, since combining the data of participating clients leads

We implement and compafetchSGD, gradient sparsi -

2 . o 5We only count non-zero weight updates when computing how
Code available ~ at https://github.com/ many bytes are transmitted. This makes the unrealistic assumption

kiddyboots216/CommEfficient . Git commit at the thatwe have a zero-overhead sparse vector encoding scheme.
time of camera-ready: 833ca44.

FetchSGD: Communication-Ef cient Federated Learning with Sketching

Figure 3.Test accuracy achieved on CIFAR10 (left) and CIFAR100 (right). “Uncompressed” refers to runs that attain compression by
simply running for fewer epoch$&etchSGD outperforms all methods, especially at higher compression. Waadyvg and local topk
runs are excluded from the plot because they failed to converge or achieved very low accuracy.

FetchSGD incorporates momentum seamlessly due to the
linearity of our compression operator (see Section 3.2); we
use a momentum parameter of 0.9 in all experiments.

In all plots of performance vs. compression, each point
represents a trained model, and for clarity, we plot only
the Pareto frontier over hyperparameters for each method.
Figures 7 and 9 in the Appendix show results for all runs
that converged.

5.1. CIFAR (ResNet9)

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are im-
age classi cation datasets with 60,082 32px color im-
ages distributed evenly over 10 and 100 classes respectively
(50'00(.)/.10’000 trainftest split). They are benchmark CorT]figure 4 Test accuracy on FEMNIST. The dataset is not very non-
p_uter V'S'_O_n d_atasets, and, although they lack &} natural nori].i'.d., and has relatively large local datasets, BetchSGD is still
L.i.d. partitioning, we arti cially create one by giving each .y etitive withFedAvg and local topk for lower compression.
client images from only a single class. For CIFAR10 (ClI-

FAR100) we use 10,000 (50,000) clients, yielding 5 (1)from many workers, each with very different data, leads to
images per client. Our 7M-parameter model architectures nearly dense model update each round.

data preprocessing, and most hyperparameters follow Page

(2019), with details in Appendix A.1. We report accuracy 2. FEMNIST (ResNet101)
on the test datasets. The experiments above show tlratchSGD signi cantly
utperforms competing methods in the regime of very small

Figure 3 shows test accuracy vs. compression for CIFAR1 ocal datasets and non-i.i.d. data. In this section we intro-

and_ CIFA_Rl_OO.FedAvg and local topk both struggle to uce a task designed to be more favorablé=edAvg , and
achieve signi cantly better results than uncompressed SGD, . ..

show thatFetchSGD still performs competitively.
Although we ran a large hyperparameter sweep, many runs

simply diverge, especially for higher compression (local topFederated EMNIST is an image classi cation dataset with
k) or more local iterationdedAvg). We expect this setting 62 classes (upper- and lower-case letters, plus digits) (Cal-
to be challenging foFedAvg, since running multiple gra- das et al., 2018), which is formed by partitioning the EM-
dient steps on only one or a few data points, especiallNIST dataset (Cohen et al., 2017) such that each client in
points that are not representative of the overall distributionFEMNIST contains characters written by a single person.
is unlikely to be productive. And although local téggan Experimental details, including our 40M-parameter model
achieve high upload compression, download compressioarchitecture, can be found Appendix A.2. We report nal
is reduced to almost , since summing sparse gradients accuracies on the validation dataset. The baseline run trains
for a single epochife., each client participates once).

FetchSGD: Communication-Ef cient Federated Learning with Sketching

Figure 5.Left: Validation perplexity achieved by netuning GPT2-small on PersonaChatchSGD achieves3.9 compression
without loss in accuracy over uncompressed SGD, and it consistently achieves lower perplextgdhag and topk runs with similar
compression. Right: Training loss curves for representative runs. Global momentum hinders lddal tiig-case, so local top+uns
with rg = 0.9are omitted here to increase legibility.

FEMNIST was introduced as a benchmark dataset foFigure 5 also plots loss curves (negative log likelihood)
FedAvg, and it has relatively large local datasets200 achieved during training for some representative runs. Some-
images per client). The clients are split according to thevhat surprisingly, all the compression techniques outper-
person who wrote the character, yielding a data distributiorform the uncompressed baseline early in training, but most
closer toi.i.d. than our per-class splits of CIFAR10. To main-saturate too early, when the error introduced by the com-
tain a reasonable overall batch size, only three clients partigression starts to hinder training.

ipate each round, reducing the need for a linear compressi
operator. Despite thigetchSGD performs competitively
with bothFedAvg and local topk for some compression
values, as shown in Figure 4.

0§ke’[ching outperforms local tdpfor all but the highest
levels of compression, because local topelies on local
state for error feedback, which is impossible in this setting.
We expect this setting to be challenging feedAvg, since

For low compressior;etchSGD actually outperforms the running multiple gradient steps on a single conversation
uncompressed baseline, likely because updatinglopbs which is not representative of the overall distribution is
rameters per round regularizes the model. Interestinglynlikely to be productive.

local topk using global momentum signi cantly outper- . .
forms other methods on this task, though we are not awar@- Discussion

of prior work suggesting this method for federated leamingregerated learning has seen a great deal of research interest
Despite this surprising observation, local topith global recently, particularly in the domain of communication ef -
momentum suffers from divergence and low accuracy ORjency. A considerable amount of prior work focuses on de-
our other tasks, and it lacks any theoretical guarantees. ¢reasing the total number of communication rounds required
5.3. PersonaChat (GPT2) to converge, without reducing the communication required

. . . in each round. In this work, we complement this body of
In this section we consider G_PT2-smaII (Radford et al.'Work by introducingFetchSGD, an algorithm that reduces
ﬁgigi’oflgr?njf;mn?ggﬁgel Wéh nleztﬁg/legar?e?:ﬁ; tglitlexhe amount of communication required each round, while
the P 9 gCh t dat g't hit-ch tg taset . t.still conforming to the other constraints of the federated
OP r?v ;arst(i) nr? batw a ﬁS:n’] azc nl I;/IC ah :} aﬁ_ ?ﬁrx'srk'ggtting. We particularly want to emphasize thatchSGD
erCSvhc?;:reoa:sigeneg?aux pgrsoonali?i?a sato (:cl:t OL:H (Zﬁan'gasily addresses the setting of non-i.i.d. data, which often
et al., 2018). The dataset has a natural non-i.i.d. partitio omplicates other methods. The optimal algorithm for many

o . ; Tederated learning settings will no doubt combine ef cienc
N9 .|nto 17,568 C"ef?ts based on the personality that Was, humber of rour?ds andgef ciency within each round anéll
assigned. Our experimental procedure follows Wolf (2019)We leave an investigation into optimal ways of combining
The baseline model trains for a single epoch, meaning th%ese approaches to future work

no local state is possible, and we report the nal perplexity
(a standard metric for language models; lower is better) on
the validation dataset in Figure 5.

