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Abstract

Existing approaches to federated learning suf-
fer from a communication bottleneck as well as
convergence issues due to sparse client participa-
tion. In this paper we introduce a novel algorithm,
called FetchSGD, to overcome these challenges.
FetchSGD compresses model updates using a
Count Sketch, and then takes advantage of the
mergeability of sketches to combine model up-
dates from many workers. A key insight in the
design of FetchSGD is that, because the Count
Sketch is linear, momentum and error accumu-
lation can both be carried out within the sketch.
This allows the algorithm to move momentum
and error accumulation from clients to the central
aggregator, overcoming the challenges of sparse
client participation while still achieving high com-
pression rates and good convergence. We prove
that FetchSGD has favorable convergence guar-
antees, and we demonstrate its empirical effec-
tiveness by training two residual networks and a
transformer model.

1. Introduction
Federated learning has recently emerged as an important set-
ting for training machine learning models. In the federated
setting, training data is distributed across a large number
of edge devices, such as consumer smartphones, personal
computers, or smart home devices. These devices have
data that is useful for training a variety of models – for text
prediction, speech modeling, facial recognition, document
identification, and other tasks (Shi et al., 2016; Brisimi et al.,
2018; Leroy et al., 2019; Tomlinson et al., 2009). However,
data privacy, liability, or regulatory concerns may make it
difficult to move this data to the cloud for training (EU,
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2018). Even without these concerns, training machine learn-
ing models in the cloud can be expensive, and an effective
way to train the same models on the edge has the potential
to eliminate this expense.

When training machine learning models in the federated
setting, participating clients do not send their local data to
a central server; instead, a central aggregator coordinates
an optimization procedure among the clients. At each it-
eration of this procedure, clients compute gradient-based
updates to the current model using their local data, and they
communicate only these updates to a central aggregator.

A number of challenges arise when training models in the
federated setting. Active areas of research in federated learn-
ing include solving systems challenges, such as handling
stragglers and unreliable network connections (Bonawitz
et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-
dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring
privacy of user data (Geyer et al., 2017; Hardy et al., 2017).
In this work we address a different challenge, namely that of
training high-quality models under the constraints imposed
by the federated setting.

There are three main constraints unique to the federated set-
ting that make training high-quality models difficult. First,
communication-efficiency is a necessity when training on
the edge (Li et al., 2018), since clients typically connect to
the central aggregator over slow connections (∼ 1Mbps)
(Lee et al., 2010). Second, clients must be stateless, since
it is often the case that no client participates more than once
during all of training (Kairouz et al., 2019). Third, the data
collected across clients is typically not independent and
identically distributed. For example, when training a next-
word prediction model on the typing data of smartphone
users, clients located in geographically distinct regions gen-
erate data from different distributions, but enough common-
ality exists between the distributions that we may still want
to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for
federated learning, called FetchSGD, that can train high-
quality models under all three of these constraints. The crux
of the algorithm is simple: at each round, clients compute
a gradient based on their local data, then compress the gra-
dient using a data structure called a Count Sketch before
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sending it to the central aggregator. The aggregator main-
tains momentum and error accumulation Count Sketches,
and the weight update applied at each round is extracted
from the error accumulation sketch. See Figure 1 for an
overview of FetchSGD.

FetchSGD requires no local state on the clients, and we
prove that it is communication efficient, and that it con-
verges in the non-i.i.d. setting for L-smooth non-convex
functions at rates O

(
T−1/2

)
and O

(
T−1/3

)
respectively

under two alternative assumptions – the first opaque and the
second more intuitive. Furthermore, even without maintain-
ing any local state, FetchSGD can carry out momentum –
a technique that is essential for attaining high accuracy in
the non-federated setting – as if on local gradients before
compression (Sutskever et al., 2013). Lastly, due to prop-
erties of the Count Sketch, FetchSGD scales seamlessly
to small local datasets, an important regime for federated
learning, since user interaction with online services tends
to follow a power law distribution, meaning that most users
will have relatively little data to contribute (Muchnik et al.,
2013).

We empirically validate our method with two image recog-
nition tasks and one language modeling task. Using models
with between 6 and 125 million parameters, we train on
non-i.i.d. datasets that range in size from 50,000 – 800,000
examples.

2. Related Work
Broadly speaking, there are two optimization strategies that
have been proposed to address the constraints of federated
learning: Federated Averaging (FedAvg) and extensions
thereof, and gradient compression methods. We explore
these two strategies in detail in Sections 2.1 and 2.2, but as a
brief summary, FedAvg does not require local state, but it
also does not reduce communication from the standpoint of
a client that participates once, and it struggles with non-i.i.d.
data and small local datasets because it takes many local
gradient steps. Gradient compression methods, on the other
hand, can achieve high communication efficiency. However,
it has been shown both theoretically and empirically that
these methods must maintain error accumulation vectors on
the clients in order to achieve high accuracy. This is ineffec-
tive in federated learning, since clients typically participate
in optimization only once, so the accumulated error has no
chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-
ing training by carrying out multiple steps of stochastic
gradient descent (SGD) locally before sending the aggre-
gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied
since the early days of distributed model training in the data
center (Dean et al., 2012), and is referred to as FedAvg
when applied to federated learning (McMahan et al., 2016).
FedAvg has been successfully deployed in a number of
domains (Hard et al., 2018; Li et al., 2019), and is the most
commonly used optimization algorithm in the federated set-
ting (Yang et al., 2018). In FedAvg, every participating
client first downloads and trains the global model on their
local dataset for a number of epochs using SGD. The clients
upload the difference between their initial and final model
to the parameter server, which averages the local updates
weighted according to the magnitude of the corresponding
local dataset.

One major advantage of FedAvg is that it requires no lo-
cal state, which is necessary for the common case where
clients participate only once in training. FedAvg is also
communication-efficient in that it can reduce the total num-
ber of bytes transferred during training while achieving the
same overall performance. However, from an individual
client’s perspective, there is no communication savings if
the client participates in training only once. Achieving high
accuracy on a task often requires using a large model, but
clients’ network connections may be too slow or unreliable
to transmit such a large amount of data at once (Yang et al.,
2010).

Another disadvantage of FedAvg is that taking many local
steps can lead to degraded convergence on non-i.i.d. data.
Intuitively, taking many local steps of gradient descent on
local data that is not representative of the overall data dis-
tribution will lead to local over-fitting, which will hinder
convergence (Karimireddy et al., 2019a). When training a
model on non-i.i.d. local datasets, the goal is to minimize
the average test error across clients. If clients are chosen
randomly, SGD naturally has convergence guarantees on
non-i.i.d. data, since the average test error is an expectation
over which clients participate. However, although FedAvg
has convergence guarantees for the i.i.d. setting (Wang
and Joshi, 2018), these guarantees do not apply directly
to the non-i.i.d. setting as they do with SGD. Zhao et al.
(2018) show that FedAvg, using K local steps, converges
as O (K/T) on non-i.i.d. data for strongly convex smooth
functions, with additional assumptions. In other words, con-
vergence on non-i.i.d. data could slow down as much as
proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-
formance on non-i.i.d. data. Sahu et al. (2018) propose
constraining the local gradient update steps in FedAvg by
penalizing the L2 distance between local models and the cur-
rent global model. Under the assumption that every client’s
loss is minimized wherever the overall loss function is mini-
mized, they recover the convergence rate of SGD. Karim-
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Figure 1. Algorithm Overview. The FetchSGD algorithm (1) computes gradients locally, and then send sketches (2) of the gradients to
the cloud. In the cloud, gradient sketches are aggregated (3), and then (4) momentum and (5) error accumulation are applied to the sketch.
The approximate top-k values are then (6) extracted and (7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updates in FedAvg to
make them point closer to the consensus gradient direction
from all clients. They achieve good convergence at the cost
of making the clients stateful.

2.2. Gradient Compression

A limitation of FedAvg is that, in each communication
round, clients must download an entire model and upload an
entire model update. Because federated clients are typically
on slow and unreliable network connections, this require-
ment makes training large models with FedAvg difficult.
Uploading model updates is particularly challenging, since
residential Internet connections tend to be asymmetric, with
far higher download speeds than upload speeds (Goga and
Teixeira, 2012).

An alternative to FedAvg that helps address this problem
is regular distributed SGD with gradient compression. It
is possible to compress stochastic gradients such that the
result is still an unbiased estimate of the true gradient, for
example by stochastic quantization (Alistarh et al., 2017)
or stochastic sparsification (Wangni et al., 2018). However,
there is a fundamental tradeoff between increasing compres-
sion and increasing the variance of the stochastic gradient,
which slows convergence. The requirement that gradients re-
main unbiased after compression is too stringent, and these
methods have had limited empirical success.

Biased gradient compression methods, such as top-k spar-
sification (Lin et al., 2017) or signSGD (Bernstein et al.,
2018), have been more successful in practice. These meth-
ods rely, both in theory and in practice, on the ability to
locally accumulate the error introduced by the compression
scheme, such that the error can be re-introduced the next
time the client participates (Karimireddy et al., 2019b). Un-
fortunately, carrying out error accumulation requires local
client state, which is often infeasible in federated learning.

2.3. Optimization with Sketching

This work advances the growing body of research applying
sketching techniques to optimization. Jiang et al. (2018) pro-
pose using sketches for gradient compression in data center
training. Their method achieves empirical success when gra-
dients are sparse, but it has no convergence guarantees, and
it achieves little compression on dense gradients (Jiang et al.,
2018, §B.3). The method also does not make use of error
accumulation, which more recent work has demonstrated
is necessary for biased gradient compression schemes to be
successful (Karimireddy et al., 2019b). Ivkin et al. (2019b)
also propose using sketches for gradient compression in data
center training. However, their method requires a second
round of communication between the clients and the param-
eter server, after the first round of transmitting compressed
gradients completes. Using a second round is not practical
in federated learning, since stragglers would delay comple-
tion of the first round, at which point a number of clients
that had participated in the first round would no longer be
available (Bonawitz et al., 2016). Furthermore, the method
in (Ivkin et al., 2019b) requires local client state for both
momentum and error accumulation, which is not possible
in federated learning. Spring et al. (2019) also propose
using sketches for distributed optimization. Their method
compresses auxiliary variables such as momentum and per-
parameter learning rates, without compressing the gradients
themselves. In contrast, our method compresses the gradi-
ents, and it does not require any additional communication
at all to carry out momentum.

Konecny et al. (2016) propose using sketched updates to
achieve communication efficiency in federated learning.
However, the family of sketches they use differs from the
techniques we propose in this paper: they apply a combina-
tion of subsampling, quantization and random rotations.
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3. FetchSGD
3.1. Federated Learning Setup

Consider a federated learning scenario with C clients. Let
Z be the data domain and let {Pi}C

i=1 be C possibly un-
related probability distributions over Z . For supervised
learning, Z = X × Y , where X is the feature space and
Y is the label space; for unsupervised learning, Z = X is
the feature space. The ith client has Di samples drawn i.i.d.
from the Pi. LetW be the hypothesis class parametrized
by d dimensional vectors. Let L :W ×Z → R be a loss
function. The goal is to minimize the weighted average Ê

of client risks:

f (w)= Ê fi(w)=
1

∑C
i=1 Di

C

∑
i=1

Di E
z∼Pi
L(w, z) (1)

Assuming that all clients have an equal number of data
points, this simplifies to the average of client risks:

f (w) = Ê fi(w) =
1
C

C

∑
i=1

E
z∼Pi
L(w, z). (2)

For simplicity of presentation, we consider this unweighted
average (eqn. 2), but our theoretical results directly extend
to the the more general setting (eqn. 1).

In federated learning, a central aggregator coordinates an
iterative optimization procedure to minimize f with respect
to the model parameters w. In every iteration, the aggre-
gator chooses W clients uniformly at random,1 and these
clients download the current model, determine how to best
update the model based on their local data, and upload a
model update to the aggregator. The aggregator then com-
bines these model updates to update the model for the next
iteration. Different federated optimization algorithms use
different model updates and different aggregation schemes
to combine these updates.

3.2. Algorithm

At each iteration in FetchSGD, the ith participating client
computes a stochastic gradient gt

i using a batch of (or all
of) its local data, then compresses gt

i using a data structure
called a Count Sketch. Each client then sends the sketch
S(gt

i) to the aggregator as its model update.

A Count Sketch is a randomized data structure that can com-
press a vector by randomly projecting it several times to
lower dimensional spaces, such that high-magnitude ele-
ments can later be approximately recovered. We provide
more details on the Count Sketch in Appendix C, but here

1In practice, the clients may not be chosen randomly, since
often only devices that are on wifi, charging, and idle are allowed
to participate.

we treat it simply as a compression operator S(·), with the
special property that it is linear:

S(g1 + g2) = S(g1) + S(g2).

Using linearity, the server can exactly compute the sketch
of the true minibatch gradient gt = ∑i gt

i given only the
S(gt

i):

∑
i
S(gt

i) = S
(

∑
i

gt
i

)
= S(gt).

Another useful property of the Count Sketch is that, for a
sketching operator S(·), there is a corresponding decom-
pression operator U (·) that returns an unbiased estimate of
the original vector, such that the high-magnitude elements
of the vector are approximated well (see Appendix C for
details):

Top-k(U (S(g))) ≈ Top-k(g).

Briefly, U (·) approximately “undoes” the projections com-
puted by S(·), and then uses these reconstructions to esti-
mate the original vector. See Appendix C for more details.

With the S(gt
i) in hand, the central aggregator could update

the global model with Top-k
(
U (∑i S(gt

i))
)
≈ Top-k

(
gt).

However, Top-k(gt) is not an unbiased estimate of gt, so
the normal convergence of SGD does not apply. Fortunately,
Karimireddy et al. (2019b) show that biased gradient com-
pression methods can converge if they accumulate the error
incurred by the biased gradient compression operator and
re-introduce the error later in optimization. In FetchSGD,
the bias is introduced by Top-k rather than by S(·), so the
aggregator, instead of the clients, can accumulate the error,
and it can do so into a zero-initialized sketch Se instead of
into a gradient-like vector:

St =
1

W

W

∑
i=1
S(gt

i )

∆t = Top-k(U (ηSt + St
e)))

St+1
e = ηSt + St

e − S(∆t)

wt+1 = wt − ∆t,

where η is the learning rate and ∆t ∈ Rd is k-sparse.

In contrast, other biased gradient compression methods in-
troduce bias on the clients when compressing the gradients,
so the clients themselves must maintain individual error
accumulation vectors. This becomes a problem in federated
learning, where clients may participate only once, giving
the error no chance to be reintroduced in a later round.

Viewed another way, because S(·) is linear, and because er-
ror accumulation consists only of linear operations, carrying
out error accumulation on the server within Se is equivalent
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to carrying out error accumulation on each client, and up-
loading sketches of the result to the server. (Computing the
model update from the accumulated error is not linear, but
only the server does this, whether the error is accumulated
on the clients or on the server.) Taking this a step further, we
note that momentum also consists of only linear operations,
and so momentum can be equivalently carried out on the
clients or on the server. Extending the above equations with
momentum yields

St =
1

W

W

∑
i=1
S(gt

i )

St+1
u = ρSt

u + St

∆ = Top-k(U (ηSt+1
u + St

e)))

St+1
e = ηSt+1

u + St
e − S(∆)

wt+1 = wt − ∆.

FetchSGD is presented in full in Algorithm 1.

Algorithm 1 FetchSGD
Input: number of model weights to update each round k
Input: learning rate η
Input: number of timesteps T
Input: momentum parameter ρ, local batch size `
Input: Number of clients selected per round W
Input: Sketching and unsketching functions S , U

1: Initialize S0
u and S0

e to zero sketches
2: Initialize w0 using the same random seed on the clients and

aggregator
3: for t = 1, 2, · · · T do
4: Randomly select W clients c1, . . . cW
5: loop {In parallel on clients {ci}W

i=1}
6: Download (possibly sparse) new model weights wt −

w0

7: Compute stochastic gradient gt
i on batch Bi of size `:

gt
i =

1
` ∑l

j=1∇wL(wt, zj)

8: Sketch gt
i : St

i = S(gt
i ) and send it to the Aggregator

9: end loop
10: Aggregate sketches St = 1

W ∑W
i=1 St

i
11: Momentum: St

u = ρSt−1
u + St

12: Error feedback: St
e = ηSt

u + St
e

13: Unsketch: ∆t = Top-k(U (St
e))

14: Error accumulation: St+1
e = St

e − S(∆t)
15: Update wt+1 = wt − ∆t

16: end for
Output:

{
wt}T

t=1

4. Theory
This section presents convergence guarantees for
FetchSGD. First, Section 4.1 gives the convergence of
FetchSGD when making a strong and opaque assumption
about the sequence of gradients. Section 4.2 instead makes
a more interpretable assumption about the gradients, and
arrives at a weaker convergence guarantee.

4.1. Scenario 1: Contraction Holds

To show that compressed SGD converges when using some
biased gradient compression operator C(·), existing meth-
ods (Karimireddy et al., 2019b; Zheng et al., 2019; Ivkin
et al., 2019b) appeal to Stich et al. (2018), who show that
compressed SGD converges when C is a τ-contraction:

‖C(x)− x‖ ≤ (1− τ) ‖x‖
Ivkin et al. (2019b) show that it is possible to satisfy this con-
traction property using Count Sketches to compress gradi-
ents. However, their compression method includes a second
round of communication: if there are no high-magnitude
elements in et, as computed from S(et), the server can
query clients for random entries of et. On the other hand,
FetchSGD never computes the et

i , or et, so this second
round of communication is not possible, and the analysis of
Ivkin et al. (2019b) does not apply. In this section, we as-
sume that the updates have heavy hitters, which ensures that
the contraction property holds along the optimization path.

Assumption 1 (Scenario 1). Let {wt}T
t=1 be the sequence

of models generated by FetchSGD. Fixing this model se-
quence, let {ut}T

t=1 and {et}T
t=1 be the momentum and

error accumulation vectors generated using this model se-
quence, had we not used sketching for gradient compression
(i.e. if S and U are identity maps). There exists a con-
stant 0 < τ < 1 such that for any t ∈ [T], the quantity
qt := η(ρut−1 + gt−1) + et−1 has at least one coordinate
i s.t. (qt

i)
2 ≥ τ

∥∥qt
i

∥∥2.

Theorem 1 (Scenario 1). Let f be an L-smooth 2 non-
convex function and let the norm of stochastic gradients of f
be upper bounded by G. Under Assumption 1, FetchSGD,
with step size η = 1−ρ

2L
√

T
, in T iterations, returns {wt}T

t=1,
such that, with probability at least 1− δ over the sketching
randomness:

1. min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 4L( f (w0)− f ∗) + G2)√
T

+ 2(1+τ)2G2

(1−τ)τ2T .

2. The sketch uploaded from each participating client to
the parameter server is O (log (dT/δ) /τ) bytes per
round.

The expectation in part 1 of the theorem is over the random-
ness of sampling minibatches. For large T, the first term
dominates, so the convergence rate in Theorem 1 matches
that of uncompressed SGD.

Intuitively, Assumption 1 states that, at each time step, the
descent direction – i.e., the scaled negative gradient, in-
cluding momentum – and the error accumulation vector
must point in sufficiently the same direction. This assump-
tion is rather opaque, since it involves all of the gradient,

2A differentiable function f is L-smooth if
‖∇ f (x)−∇ f (y)‖ ≤ L ‖x− y‖ ∀ x, y ∈ dom( f ).
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momentum, and error accumulation vectors, and it is not
immediately obvious that we should expect it to hold. To
remedy this, the next section analyzes FetchSGD under a
simpler assumption that involves only the gradients. Note
that this is still an assumption on the algorithmic path, but it
presents a clearer understanding.

4.2. Scenario 2: Sliding Window Heavy Hitters

Gradients taken along the optimization path have been ob-
served to contain heavy coordinates (Shi et al., 2019; Li
et al., 2019). However, it would be overly optimistic to
assume that all gradients contain heavy coordinates, since
this might not be the case in some flat regions of parameter
space. Instead, we introduce a much milder assumption:
namely that there exist heavy coordinates in a sliding sum
of gradient vectors:
Definition 1. [(I, τ)-sliding heavy3 ]
A stochastic process

{
gt}

t∈N
is (I, τ)-sliding heavy if with

probability at least 1− δ, at every iteration t, the gradient
vector gt can be decomposed as gt = gt

N + gt
S, where gt

S
is “signal” and gt

N is “noise” with the following properties:

1. [Signal] For every non-zero coordinate j of vector gt
S,

∃t1, t2 with t1 ≤ t ≤ t2, t2 − t1 ≤ I s.t.|∑t2
t1

gt
j | >

τ‖∑t2
t1

gt‖.
2. [Noise] gt

N is mean zero, symmetric and when nor-
malized by its norm, its second moment bounded as

E
‖gt

N‖2

‖gt‖2 ≤ β.

Intuitively, this definition states that, if we sum up to I con-
secutive gradients, every coordinate in the result will either
be an τ-heavy hitter, or will be drawn from some mean-zero
symmetric noise. When I = 1, part 1 of the definition re-
duces to the assumption that gradients always contain heavy
coordinates. Our assumption for general, constant I is sig-
nificantly weaker, as it requires the gradients to have heavy
coordinates in a sequence of I iterations rather than in every
iteration. The existence of heavy coordinates spread across
consecutive updates helps to explains the success of error
feedback techniques, which extract signal from a sequence
of gradients that may be indistinguishable from noise in any
one iteration. Note that both the signal and the noise scale
with the norm of the gradient, so both adjust accordingly as
gradients become smaller later in optimization.

Under this definition, we can use Count Sketches to capture
the signal, since Count Sketches can approximate heavy
hitters. Because the signal is spread over sliding windows
of size I, we need a sliding window error accumulation

3Technically, this definition is also parametrized by δ and β.
However, in the interest of brevity, we use the simpler term “(I, τ)-
sliding heavy” throughout the manuscript. Note that δ in Theorem
2 refers to the same δ as in Definition 1.
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Figure 2. Sliding window error accumulation

scheme to ensure that we capture whatever signal is present.
Vanilla error accumulation is not sufficient to show conver-
gence, since vanilla error accumulation sums up all prior
gradients, so signal that is present only in a sum of I consec-
utive gradients (but not in I + 1, or I + 2, etc.) will not be
captured with vanilla error accumulation. Instead, we can
use a sliding window error accumulation scheme, which can
capture any signal that is spread over a sequence of at most I
gradients. One simple way to accomplish this is to maintain
I error accumulation Count Sketches, as shown in Figure
2 for I = 4. Each sketch accumulates new gradients every
iteration, and beginning at offset iterations, each sketch is ze-
roed out every I iterations before continuing to accumulate
gradients (this happens after line 15 of Algorithm 1). Under
this scheme, at every iteration there is a sketch available that
contains the sketched sum of the prior I′ gradients, for all
I′ ≤ I. We prove convergence in Theorem 2 when using
this sort of sliding window error accumulation scheme.

In practice, it is too expensive to maintain I error accumula-
tion sketches. Fortunately, this “sliding window” problem
is well studied (Datar et al., 2002; Braverman and Ostro-
vsky, 2007; Braverman et al., 2014; 2015; 2018b;a), and it is
possible to identify heavy hitters with only log (I) error ac-
cumulation sketches. Additional details on sliding window
Count Sketch are in Appendix D. Although we use a sliding
window error accumulation scheme to prove convergence,
in all experiments we use a single error accumulation sketch,
since we find that doing so still leads to good convergence.
Assumption 2 (Scenario 2). The sequence of gradients en-
countered during optimization form an (I, τ)-sliding heavy
stochastic process.
Theorem 2 (Scenario 2). Let f be an L-smooth non-convex
function and let gi denote stochastic gradients of fi such
that ‖gi‖2 ≤ G2. Under Assumption 2, FetchSGD, using

a sketch size Θ
(

log(dT/δ)
τ2

)
, with step size η = 1

G
√

LT2/3

and ρ = 0 (no momentum), in T iterations, with probability
at least 1− 2δ, returns {wt}T

t=1 such that

1. min
t=1···T

E
∥∥∇ f (wt)

∥∥2≤ G
√

L( f (w0)− f ∗)+2(2−τ)
T1/3 +G

√
L

T2/3 +
2I2

T4/3

2. The sketch uploaded from each participating client to
the parameter server is Θ

(
log(dT/δ)

τ2

)
bytes per round.

As in Theorem 1, the expectation in part 1 of the theorem is
over the randomness of sampling minibatches.



FetchSGD: Communication-Efficient Federated Learning with Sketching

Remarks:
1. These guarantees are for the non-i.i.d. setting – i.e. f

is the average risk with respect to potentially unrelated
distributions (see eqn. 2).

2. The convergence rates bound the objective gradient norm
rather than the objective itself.

3. The convergence rate in Theorem 1 matches that of un-
compressed SGD, while the rate in Theorem 2 is worse.

4. The proof uses the virtual sequence idea of Stich et al.
(2018), and can be generalized to other class of functions
like smooth, (strongly) convex etc. by careful averaging
(proof in Appendix B.2).

5. Evaluation
We implement and compare FetchSGD, gradient sparsifi-
cation (local top-k), and FedAvg using PyTorch (Paszke
et al., 2019).4 In contrast to our theoretical assumptions,
we use neural networks with ReLU activations, whose loss
surfaces are not L-smooth. In addition, although Theorem 2
uses a sliding window Count Sketch for error accumulation,
in practice we use a vanilla Count Sketch. Lastly, we use
non-zero momentum, which Theorem 1 allows but Theorem
2 does not. We also make two changes to Algorithm 1. For
all methods, we employ momentum factor masking (Lin
et al., 2017). And on line 14 of Algorithm 1, we zero out the
nonzero coordinates of S(∆t) in St

e instead of subtracting
S(∆t); empirically, doing so stabilizes the optimization.

We focus our experiments on the regime of small local
datasets and non-i.i.d. data, since we view this as both an
important and relatively unsolved regime in federated learn-
ing. Gradient sparsification methods, which sum together
the local top-k gradient elements from each worker, do a
worse job approximating the true top-k of the global gra-
dient as local datasets get smaller and more unlike each
other. And taking many steps on each client’s local data,
which is how FedAvg achieves communication efficiency,
is unproductive since it leads to immediate local overfitting.
However, real-world users tend to generate data with sizes
that follow a power law distribution (Goyal et al., 2017), so
most users will have relatively small local datasets. Real
data in the federated setting is also typically non-i.i.d.

FetchSGD has a key advantage over prior methods in this
regime because our compression operator is linear. Small
local datasets pose no difficulties, since executing a step
using only a single client with N data points is equivalent to
executing a step using N clients, each of which has only a
single data point. By the same argument, issues arising from
non-i.i.d. data are partially mitigated by random client selec-
tion, since combining the data of participating clients leads

4Code available at https://github.com/
kiddyboots216/CommEfficient. Git commit at the
time of camera-ready: 833ca44.

to a more representative sample of the full data distribution.

For each method, we report the compression achieved rela-
tive to uncompressed SGD in terms of total bytes uploaded
and downloaded.5 One important consideration not captured
in these numbers is that in FedAvg, clients must download
an entire model immediately before participating, because
every model weight could get updated in every round. In
contrast, local top-k and FetchSGD only update a limited
number of parameters per round, so non-participating clients
can stay relatively up to date with the current model, reduc-
ing the number of new parameters that must be downloaded
immediately before participating. This makes upload com-
pression more important than download compression for
local top-k and FetchSGD. Download compression is also
less important for all three methods since residential Internet
connections tend to reach far higher download than upload
speeds (Goga and Teixeira, 2012). We include results here
of overall compression (including upload and download),
but break up the plots into separate upload and download
components in the Appendix, Figure 6.

In all our experiments, we tune standard hyperparameters
on the uncompressed runs, and we maintain these same
hyperparameters for all compression schemes. Details on
which hyperparameters were chosen for each task can be
found in Appendix A. FedAvg achieves compression by
reducing the number of iterations carried out, so for these
runs, we simply scale the learning rate schedule in the it-
eration dimension to match the total number of iterations
that FedAvg will carry out. We report results for each com-
pression method over a range of hyperparameters: for local
top-k, we adjust k; and for FetchSGD we adjust k and the
number of columns in the sketch (which controls the com-
pression rate of the sketch). We tune the number of local
epochs and federated averaging batch size for FedAvg, but
do not tune the learning rate decay for FedAvg because we
find that FedAvg does not approach the baseline accuracy
on our main tasks for even a small number of local epochs,
where the learning rate decay has very little effect.

In the non-federated setting, momentum is typically crucial
for achieving high performance, but in federating learning,
momentum can be difficult to incorporate. Each client could
carry out momentum on its local gradients, but this is inef-
fective when clients participate only once or a few times.
Instead, the central aggregator can carry out momentum
on the aggregated model updates. For FedAvg and local
top-k, we experiment with (ρg = 0.9) and without (ρg = 0)
this global momentum. For each method, neither choice
of ρg consistently performs better across our tasks, reflect-
ing the difficulty of incorporating momentum. In contrast,

5We only count non-zero weight updates when computing how
many bytes are transmitted. This makes the unrealistic assumption
that we have a zero-overhead sparse vector encoding scheme.

https://github.com/kiddyboots216/CommEfficient
https://github.com/kiddyboots216/CommEfficient
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Figure 3. Test accuracy achieved on CIFAR10 (left) and CIFAR100 (right). “Uncompressed” refers to runs that attain compression by
simply running for fewer epochs. FetchSGD outperforms all methods, especially at higher compression. Many FedAvg and local top-k
runs are excluded from the plot because they failed to converge or achieved very low accuracy.

FetchSGD incorporates momentum seamlessly due to the
linearity of our compression operator (see Section 3.2); we
use a momentum parameter of 0.9 in all experiments.

In all plots of performance vs. compression, each point
represents a trained model, and for clarity, we plot only
the Pareto frontier over hyperparameters for each method.
Figures 7 and 9 in the Appendix show results for all runs
that converged.

5.1. CIFAR (ResNet9)

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are im-
age classification datasets with 60,000 32× 32px color im-
ages distributed evenly over 10 and 100 classes respectively
(50,000/10,000 train/test split). They are benchmark com-
puter vision datasets, and although they lack a natural non-
i.i.d. partitioning, we artificially create one by giving each
client images from only a single class. For CIFAR10 (CI-
FAR100) we use 10,000 (50,000) clients, yielding 5 (1)
images per client. Our 7M-parameter model architecture,
data preprocessing, and most hyperparameters follow Page
(2019), with details in Appendix A.1. We report accuracy
on the test datasets.

Figure 3 shows test accuracy vs. compression for CIFAR10
and CIFAR100. FedAvg and local top-k both struggle to
achieve significantly better results than uncompressed SGD.
Although we ran a large hyperparameter sweep, many runs
simply diverge, especially for higher compression (local top-
k) or more local iterations (FedAvg). We expect this setting
to be challenging for FedAvg, since running multiple gra-
dient steps on only one or a few data points, especially
points that are not representative of the overall distribution,
is unlikely to be productive. And although local top-k can
achieve high upload compression, download compression
is reduced to almost 1×, since summing sparse gradients
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Figure 4. Test accuracy on FEMNIST. The dataset is not very non-
i.i.d., and has relatively large local datasets, but FetchSGD is still
competitive with FedAvg and local top-k for lower compression.

from many workers, each with very different data, leads to
a nearly dense model update each round.

5.2. FEMNIST (ResNet101)

The experiments above show that FetchSGD significantly
outperforms competing methods in the regime of very small
local datasets and non-i.i.d. data. In this section we intro-
duce a task designed to be more favorable for FedAvg, and
show that FetchSGD still performs competitively.

Federated EMNIST is an image classification dataset with
62 classes (upper- and lower-case letters, plus digits) (Cal-
das et al., 2018), which is formed by partitioning the EM-
NIST dataset (Cohen et al., 2017) such that each client in
FEMNIST contains characters written by a single person.
Experimental details, including our 40M-parameter model
architecture, can be found Appendix A.2. We report final
accuracies on the validation dataset. The baseline run trains
for a single epoch (i.e., each client participates once).
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Figure 5. Left: Validation perplexity achieved by finetuning GPT2-small on PersonaChat. FetchSGD achieves 3.9× compression
without loss in accuracy over uncompressed SGD, and it consistently achieves lower perplexity than FedAvg and top-k runs with similar
compression. Right: Training loss curves for representative runs. Global momentum hinders local top-k in this case, so local top-k runs
with ρg = 0.9 are omitted here to increase legibility.

FEMNIST was introduced as a benchmark dataset for
FedAvg, and it has relatively large local datasets (∼ 200
images per client). The clients are split according to the
person who wrote the character, yielding a data distribution
closer to i.i.d. than our per-class splits of CIFAR10. To main-
tain a reasonable overall batch size, only three clients partic-
ipate each round, reducing the need for a linear compression
operator. Despite this, FetchSGD performs competitively
with both FedAvg and local top-k for some compression
values, as shown in Figure 4.

For low compression, FetchSGD actually outperforms the
uncompressed baseline, likely because updating only k pa-
rameters per round regularizes the model. Interestingly,
local top-k using global momentum significantly outper-
forms other methods on this task, though we are not aware
of prior work suggesting this method for federated learning.
Despite this surprising observation, local top-k with global
momentum suffers from divergence and low accuracy on
our other tasks, and it lacks any theoretical guarantees.

5.3. PersonaChat (GPT2)

In this section we consider GPT2-small (Radford et al.,
2019), a transformer model with 124M parameters that is
used for language modeling. We finetune a pretrained GPT2
on the PersonaChat dataset, a chit-chat dataset consisting
of conversations between Amazon Mechanical Turk work-
ers who were assigned faux personalities to act out (Zhang
et al., 2018). The dataset has a natural non-i.i.d. partition-
ing into 17,568 clients based on the personality that was
assigned. Our experimental procedure follows Wolf (2019).
The baseline model trains for a single epoch, meaning that
no local state is possible, and we report the final perplexity
(a standard metric for language models; lower is better) on
the validation dataset in Figure 5.

Figure 5 also plots loss curves (negative log likelihood)
achieved during training for some representative runs. Some-
what surprisingly, all the compression techniques outper-
form the uncompressed baseline early in training, but most
saturate too early, when the error introduced by the com-
pression starts to hinder training.

Sketching outperforms local top-k for all but the highest
levels of compression, because local top-k relies on local
state for error feedback, which is impossible in this setting.
We expect this setting to be challenging for FedAvg, since
running multiple gradient steps on a single conversation
which is not representative of the overall distribution is
unlikely to be productive.

6. Discussion
Federated learning has seen a great deal of research interest
recently, particularly in the domain of communication effi-
ciency. A considerable amount of prior work focuses on de-
creasing the total number of communication rounds required
to converge, without reducing the communication required
in each round. In this work, we complement this body of
work by introducing FetchSGD, an algorithm that reduces
the amount of communication required each round, while
still conforming to the other constraints of the federated
setting. We particularly want to emphasize that FetchSGD
easily addresses the setting of non-i.i.d. data, which often
complicates other methods. The optimal algorithm for many
federated learning settings will no doubt combine efficiency
in number of rounds and efficiency within each round, and
we leave an investigation into optimal ways of combining
these approaches to future work.
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Andrade Jr, Shlomo Havlin, and Hernán A Makse. Ori-
gins of power-law degree distribution in the heterogeneity
of human activity in social networks. Scientific reports, 3
(1):1–8, 2013.

Shanmugavelayutham Muthukrishnan et al. Data streams:
Algorithms and applications. Foundations and Trends R©
in Theoretical Computer Science, 1(2):117–236, 2005.

David Page. How to train your resnet, Nov
2019. URL https://myrtle.ai/
how-to-train-your-resnet/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
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The Appendix is organized as follows:

• Appendix A lists hyperparameters and model architectures used in all experiments, and includes plots with additional
experimental data, including results broken down into upload, download and overall compression.

• Appendix B gives full proofs of convergence for FetchSGD.

• Appendix C describes the Count Sketch data structure and how it is used in FetchSGD.

• Appendix D provides the high level idea of the sliding window model and describes how to extend a sketch data
structure to the sliding window setting.

A. Experimental Details
We run all experiments on commercially available NVIDIA Pascal, Volta and Turing architecture GPUs.

A.1. CIFAR

In all non-FedAvg experiments we train for 24 epochs, with 1% of clients participating each round, for a total of 2400
iterations. We use standard train/test splits of 50000 training datapoints and 10000 validation. We use a triangular learning
rate schedule which peaks at epoch 5. We use the maximum peak learning rate for which the uncompressed runs converge:
0.3 for CIFAR10, and 0.2 for CIFAR100. We use this learning rate schedule for all compressed runs. FedAvg runs for
fewer than 24 epochs, so we compress the learning rate schedule in the iteration dimension accordingly. We do not tune the
learning rate separately for any of the compressed runs.

We split the datasets into 10,000 (CIFAR10) and 50,000 (CIFAR100) clients, each of which has 5 (CIFAR10) and 1
(CIFAR100) data point(s) from a single target class. In each round, 1% of clients participate, leading to a total batch size of
500 for both datasets (100 clients with 5 data points for CIFAR10, and 500 clients with 1 data point for CIFAR100). We
augment the data during training with random crops and random horizontal flips, and we normalize the images by the dataset
mean and standard deviation during training and testing. We use a modified ResNet9 architecture with 6.5M parameters for
CIFAR10, and 6.6M parameters for CIFAR100. We do not use batch normalization in any experiments, since it is ineffective
with the very small local batch sizes we use. Most of these training procedures, and the modified ResNet9 architecture we
use, are drawn from the work of Page (2019).

FetchSGD, FedAvg and local top-k each have unique hyperparameters that we search over. For FetchSGD, we try a
grid of values for k and the number of columns in the sketch. For k we try values of [10, 25, 50, 75, 100] ×103. For the
number of columns we try values of [325, 650, 1300, 2000, 3000] ×103. We also tune k for local top-k, trying values of
[325, 650, 1300, 2000, 3000, 5000] ×103. We present results for local top-k with and without global momentum, but not
with local momentum: with such a low participation rate, we observe anecdotally that local momentum performs poorly,
since the momentum is always stale, and maintaining local momentum and error accumulation vectors for the large number
of clients we experiment with is computationally expensive. The two hyperparameters of interest in FedAvg are the total
number of global epochs to run (which determines the compression), and the number of local epochs to perform. We run a
grid search over global epochs of [6, 8, 12] (corresponding to 4×, 3×, and 2× compression), and local epochs of [2,3,5].

Figure 6 shows the Pareto frontier of results with each method for CIFAR10 and CIFAR100 broken down into upload,
download, and overall compression. Figure 7 shows all runs that converged for the two datasets. For CIFAR10, 1 FetchSGD
run, 3 local top-k runs, and all FedAvg runs using global momentum diverged. For CIFAR100, 1 local top-k run and all
FedAvg runs using global momentum diverged.

A.2. FEMNIST

The dataset consists of 805,263 28 × 28 pixel grayscale images distributed unevenly over 3,550 classes/users,
with an average of 226.83 datapoints per user and standard deviation of 88.94. We further pre-
process the data using the preprocessing script provided by the LEAF repository, using the command:
./preprocess.sh -s niid --sf 1.0 -k 0 -t sample. This results in 706,057 training samples and 80,182
validation samples over 3,500 clients. 6

6Leaf repository: https://tinyurl.com/u2w3twe
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We train a 40M-parameter ResNet101 with layer norm instead of batch norm, using an average batch size of ≈ 600 (but
varying depending on which clients participate) with standard data augmentation via image transformations and a triangular
learning rate schedule. When we train for 1 epoch, the pivot epoch of the learning rate schedule is 0.2, and the peak learning
rate is 0.01. When we train for fewer epochs in FedAvg, we compress the learning rate schedule accordingly.

For FetchSGD we grid-search values for k and the number of columns. For FetchSGD we search over k in [50, 100,
200] ×103. and the number of sketch columns in [1, 2, 5, 10] ×106. For local top-k we search over k in [10, 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000, 20000] ×103. We do not use local momentum for local top-k, since each client only
participates once. For FedAvg, we search over the number of global epochs in [0.125, 0.1667, 0.25, 0.5], the number of
local epochs in [1,2,5], and the local batch size in [10,20,50]. Figure 8 shows the Pareto frontier of results for each method,
broken down into upload, download, and overall compression. Figure 9 shows all results that converged.
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Figure 10. Validation perplexity on PersonaChat for a range of k using true top-k. For k ≈ 106, true top-k provides some regularization,
increasing performance over the uncompressed baseline. For larger k, the use of momentum factor masking degrades performance.

A.3. PersonaChat

The non-i.i.d. nature of PersonaChat comes from the fact that different Mechanical Turk workers were provided with
different “personalities,” which are short snippets, written in English, containing a few salient characteristics of a fictional
character. We preprocess the dataset by creating additional tokens denoting the persona, context, and history, and feed these
as input to a 124M-parameter GPT2 (Radford et al., 2019) model created by HuggingFace (Wolf et al., 2019) based on
the Generative Pretrained Transformer architecture proposed by OpenAI (Radford et al., 2019). We further augment the
PersonaChat dataset by randomly shuffling the order of the personality sentences, doubling the size of the local datasets.

We use a linearly decaying learning rate of 0.16, with a total minibatch size of ≈ 64 including the personality augmentation.
This can vary depending on which workers participate, as the local datasets are unbalanced.

FetchSGD, FedAvg and local top-k each have unique hyperparameters which we need to search over. For FetchSGD
we try 6 points in a grid of values for k and the number of columns. For FetchSGD, we search over k in [10, 25, 50,
100, 200] ×103, and over the number of sketch columns in [1240, 12400] ×103. For local top-k, we search over k in [50,
200, 1240, 5000] ×103. For FedAvg, we search over the number of global epochs in [0.1, 0.2, 0.5] (10×, 5×, and 2×
compression) and the number of local epochs in [2,5,10]. We always use the entire local dataset for each local iteration.

We report the perplexity, which is the average per word branching factor, a standard metric for language models. Although
we use the experimental setup and model from Wolf et al. (2019), our perplexities cannot be directly compared due to the
modifications made to the choice of optimizer, learning rate, and dataset augmentation strategy. Table 1 shows perplexities,
with standard deviations over three runs, for representative runs for each compression method. Learning curves for these
runs are shown in Figure 5. Local top-k consistently performs worse on this task when using global momentum (see Figure
5), so we only include results without momentum. Local momentum is not possible, since each client participates only once.

Plots of perplexity vs. compression, broken down into upload, download, and overall compression, can be found in Figure 8.

We note that FetchSGD approximates an algorithm where clients send their full gradients, and the server sums those
gradients but only updates the model with the k highest-magnitude elements, saving the remaining elements in an error
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accumulation vector. We explore this method, called true top-k, briefly in Figure 10, which shows the method’s performance
as a function of k. For intermediate values of k, true top-k actually out-performs the uncompressed baseline, likely because
it provides some regularization. For large k, performance reduces because momentum factor masking inhibits momentum.

Method k PPL Download Upload Total
Compression Compression Compression

Uncompressed – 14.9± 0.02 1× 1× 1×
Local Top-k 50,000 19.3± 0.05 30.3× 2490× 60×
Local Top-k 500,000 17.1± 0.02 3.6× 248× 7.1×

FedAvg (2 local iters) – 16.3± 0.2 2× 2× 2×
FedAvg (5 local iters) – 20.1± 0.02 5× 5× 5×

Sketch (1.24M cols) 25,000 15.8 ± 0.007 3.8× 100× 7.3×
Sketch (12.4M cols) 50,000 14.8 ± 0.002 2.4× 10× 3.9×

Table 1. Validation perplexities, with standard deviations measured over three different random seeds, for representative runs with
FetchSGD, local top-k, and FedAvg on GPT2. Loss curves for these hyperparameter settings can be found in Figure 5.
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Figure 6. Upload (top), download (middle), and overall (bottom) compression for CIFAR10 (left) and CIFAR100 (right). To increase
readability, each plot shows only the Pareto frontier of runs for the compression type shown in that plot. All runs that converged are shown
in Figure 7.
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Figure 7. Upload (top), download (middle), and overall (bottom) compression for CIFAR10 (left) and CIFAR100 (right).



FetchSGD: Communication-Efficient Federated Learning with Sketching

0 10 20 30 40 50
Upload Compression

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y
FEMNIST 3/3500 non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(a) FEMNIST Upload Compression

100 101 102 103

Upload Compression

14

16

18

20

22

24

26

Va
lid

at
io

n 
PP

L

GPT 4W/17,568C non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(b) PersonaChat Upload Compression

2 4 6 8 10
Download Compression

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

FEMNIST 3/3500 non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(c) FEMNIST Download Compression

100 101

Download Compression

14

16

18

20

22

24

26

Va
lid

at
io

n 
PP

L

GPT 4W/17,568C non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(d) PersonaChat Download Compression

2 4 6 8 10
Overall Compression

0.60

0.65

0.70

0.75

0.80

Te
st

 A
cc

ur
ac

y

FEMNIST 3/3500 non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(e) FEMNIST Overall Compression

100 101

Overall Compression

14

16

18

20

22

24

26

Va
lid

at
io

n 
PP

L

GPT 4W/17,568C non-iid

FetchSGD
Local Top-k (ρg = 0.9)
Local Top-k (ρg = 0)
FedAvg (ρg = 0.9)
FedAvg (ρg = 0)
Uncompressed

(f) PersonaChat Overall Compression

Figure 8. Upload (top), download (middle), and overall (bottom) compression for FEMNIST (left) and PersonaChat (right). To increase
readability, each plot shows only the Pareto frontier of runs for the compression type shown in that plot. All results are shown in Figure 9.
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Figure 9. Upload (top), download (middle), and overall (bottom) compression for FEMNIST (left) and PersonaChat (right).
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B. Theoretical properties
Theorems 1 and 2 both rely on the concept of `2

2-heavy hitters; in Theorem 1, heavy hitters appear in the quantity
qt = η(ρut−1 + gt−1) + et−1, and in Theorem 2, they appear in sums of consecutive gradients gt. for g ∈ Rd, gi is a
(τ, `2

2)-heavy hitter (or τ-heavy) if g2
i ≥ τ‖g‖2. Given this definition, Assumption 1 can be rephrased as saying that at every

timestep, qt contains at least one (τ, `2
2)-heavy hitter. And Assumption 2 can be rephrased to say that sums of consecutive g

vectors contain (τ, `2
2)-heavy hitters, with all remaining values in the gradients drawn from mean-zero symmetric noise

distributions.

With this definition in mind, the following two sections present proofs of Theorems 1 and 2, respectively.

B.1. Scenario 1:

In Scenario 1, we assume that a contraction property holds during all of training (Assumption 1). To be consistent with
our experimental evaluation, we show that FetchSGD converges (Theorem 1) when using a vanilla Count Sketch for
error accumulation, and when recovering the k highest-magnitude elements from the error accumulation sketch instead of
recovering only τ-heavy hitters.

Proof of Theorem 1. We first verify that the stochastic gradients constructed are stochastic gradients with respect to the
empirical mixture 1

C ∑C
j=1 Pi, and we calculate its second moment bound. At a given iterate w, we sample B ⊆ [C], |B| = W,

a set of W clients uniformly from C clients at every iteration, and compute g = 1
W ∑W

i=1 gi, where gi are stochastic gradients
with respect to the distribution Pi on client i. This stochastic gradient is unbiased, as shown below.

Eg = ÊE[g|i] = 1
W

1

(C
W)

(
C− 1
W − 1

) C

∑
i=1

E
Pi

gi =
1
C

C

∑
i=1
∇ fi(w).

The norm of the stochastic gradient is bounded:

E‖g‖2 = ÊE

∥∥∥∥∥∥ 1
W ∑

i∈B,|B|=W
gi
∣∣ B

∥∥∥∥∥∥
2

≤ 1

(C
W)

1
W2 W

(
C− 1
W − 1

) C

∑
i=1

E
Pi
‖gi‖2 ≤ G2

This proof follows the analysis of compressed SGD with error feedback in Karimireddy et al. (2019b), with additional momen-
tum. Let C(x) = Top-k(U (S(x))), the error accumulation then is S(et+1) = S(η(ρut−1 + gt) + et)− S(C(η(ρut−1 +
gt) + et)). Consider the virtual sequence w̃t = wt − et − ηρ

1−ρ ut−1. Upon expanding, we get

w̃t = wt−1 − C(η(ρut−2 + gt−1) + et−1) + C(η(ρut−2 + gt−1) + et−1)− η(ρut−2 + gt−1)− et−1 − ηρ

1− ρ
ut−1

= wt−1 − et−1 − ηgt−1 − ηρut−2 − ηρ

1− ρ
(ρut−2 + gt−1)

= wt−1 − et−1 − η

(
1 +

ρ

1− ρ

)
gt−1 − ηρ

(
1 +

ρ

1− ρ

)
ut−2

= wt−1 − et−1 − ηρ

1− ρ
ut−2 − η

1− ρ
gt−1

= w̃t−1 − η

1− ρ
gt−1
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So this reduces to an SGD-like update but with a scaled learning rate. Applying L-smoothness of f , we get,

E f (w̃t+1) ≤ E

[
f (w̃t) +

〈
∇ f (w̃t), w̃t+1 − w̃t

〉
+

L
2

∥∥∥w̃t+1 − w̃t
∥∥∥2
]

≤ E f (w̃t)− η

(1− ρ)
E
〈
∇ f (w̃t), gt〉+ Lη2

2(1− ρ)2 E
∥∥gt∥∥2

≤ E f (w̃t)− η

(1− ρ)
E
〈
∇ f (w̃t),∇ f (wt)

〉
+

Lη2

2(1− ρ)2 E
∥∥gt∥∥2

≤ E f (w̃t)− η

(1− ρ)
E
∥∥∇ f (wt)

∥∥2
+

η

2(1− ρ)

(
E
∥∥∇ f (wt)

∥∥2
+ E

∥∥∇ f (w̃t)−∇ f (wt)
∥∥2
)
+

Lη2G2

2(1− ρ)2

≤ E f (w̃t)− η

2(1− ρ)
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2(1− ρ)
E
∥∥w̃t −wt∥∥2

+
Lη2G2

2(1− ρ)2

= E f (w̃t)− η

2(1− ρ)
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2(1− ρ)
E

∥∥∥∥et +
ηρ

1− ρ
ut−1

∥∥∥∥2
+

Lη2G2

2(1− ρ)2 (3)

We now need to bound
∥∥∥et + ηρ

1−ρ ut−1
∥∥∥2

. However, we never compute or store et or ut, since the algorithm only maintains

sketches of et and ut. Instead, we will bound
∥∥∥S(et) + ηρ

1−ρS(ut−1)
∥∥∥2

. This is sufficient because (1 − τ) ‖x‖ ≤
‖S(x)‖ ≤ (1 + τ) ‖x‖, for a user-specified constant τ (which we will see later that it holds with high-probability due to

the sketch size we use). Note that
∥∥∥S
(

et + ηρ
1−ρ ut−1

)∥∥∥2
≤ 2

(∥∥S(et)
∥∥2

+
(

ηρ
1−ρ

)2 ∥∥S(ut−1)
∥∥2
)

because of linearity

of sketching and the numerical inequality (a + b)2 ≤ 2(a2 + b2). We bound
∥∥S(ut−1)

∥∥ first:

∥∥∥S(ut−1)
∥∥∥2

=

∥∥∥∥∥t−1

∑
i=1

ρiS(gi)

∥∥∥∥∥
2

≤
(

t−1

∑
i=1

ρi
∥∥∥S(gi)

∥∥∥)2

≤
(

t−1

∑
i=1

ρi(1 + τ)G

)2

≤
(
(1 + τ)G

1− ρ

)2

where the first inequality follows by application of triangle inequality for norms, and the second follows from ‖S(x)‖ ≤
(1 + τ) ‖x‖, and the bound on the gradients. By definition of error accumulation, we have

∥∥S(et)
∥∥2

=
∥∥∥η(ρS(ut−1) + S(gt−1)) + S(et−1))− S(Top-k(U (η(ρS(ut−1) + S(gt−1)) + S(et−1))))

∥∥∥2

By Assumption 1, qt = η(ρut−1 + gt−1) + et−1 contains at least one τ-heavy coordinate. All such coordinates will be
successfully recovered by the unsketching procedure Top-k(U (·)) with probability at least 1− δ (depending on the size of
Count Sketch, as discussed below), thus reducing the norm as follows:

∥∥S(et)
∥∥2 ≤ (1− τ)

∥∥∥η(ρS(ut−1) + S(gt−1)) + S(et−1)
∥∥∥2

≤ (1− τ)

(
(1 + γ)

∥∥∥S(et−1)
∥∥∥2

+ (1 + 1/γ)η2 ∥∥S(ut)
∥∥2
)

≤ (1− τ)

(
(1 + γ)

∥∥∥S(et−1)
∥∥∥2

+
(1 + 1/γ)(1 + τ)2η2G2

(1− ρ)2

)
≤

∞

∑
i=0

(1 + τ)2((1− τ)(1 + γ))i(1 + 1/γ)η2G2

(1− ρ2)

≤ (1 + τ)2(1− τ)(1 + 1/γ)η2G2

1− ((1− τ)(1 + γ))
.

where in the second inequality, we use the inequality (a + b)2 ≤ (1 + γ)a2 + (1 + 1/γ)b2. As argued in Karimireddy

et al. (2019b), choosing γ = τ
2(1−τ)

suffices to upper bound the above with ≤ 4(1+τ)2(1−τ)η2G2

τ2(1−ρ)2 .
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Plugging everything into equation 3, we get that

E
∥∥∇ f (wt)

∥∥2 ≤ 2(1− ρ)

η

(
E f (w̃t)−E f (w̃t+1) +

ηL2

2(1− ρ)

4(1 + τ)2η2G2

(1− τ)τ2(1− ρ)2 +
Lη2G2

2(1− ρ)2

)
.

Averaging over T yields

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 1
T

T

∑
t=1

E
∥∥∇ f (wt)

∥∥2 ≤ 2(1− ρ)( f (w0)− f ∗)
ηT

+
4L2(1 + τ)2η2G2

(1− τ)τ2(1− ρ)2 +
LηG2

(1− ρ)
.

Setting η = 1−ρ

2L
√

T
finishes the proof of convergence.

Now we will address the size of the sketch needed. As mentioned earlier, the sketch is required 1) to approximate the norm
of d-dimensional vectors up to a multiplicative error of (1± τ), and 2) to recover all τ-heavy coordinates. Following the

Count Sketch memory complexity from Charikar et al. (2002), we require memory of O
(

1
τ log (d/δ)

)
to succeed with

probability at least 1− δ. However, we reuse the same sketch over T iterations, thus by a union bound we nee a sketch of
size O

(
1
τ log (dT/δ)

)
to succeed with probability at least 1− δ. This completes the proof.

Also, note that setting the momentum ρ = 0 in the above, we recover a guarantee for FetchSGD with no momentum

Corollary 1. Under the same assumptions as Theorem 1, FetchSGD, with no momentum, in T iterations, outputs
{

wt}T
t=1

such that

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 4L( f (w0)− f ∗) + G2
√

T
+

(1 + τ)2G2

2(1− τ)τ2T

B.2. Scenario 2

In the previous section, we show convergence under Assumption 1, which is relatively opaque and difficult to verify
empirically. In this section, we make the more interpretable Assumption 2, which posits the existence of `2-heavy hitters in
the sequence of gradients encountered during optimization. Under this assumption, FetchSGD is unlikely to converge
when using a vanilla Count Sketch with error accumulation, by the following argument. Under Assumption 2, the useful
signal in the sequence of gradients consists solely of `2-heavy hitters spread over at most I iterations. As such, the norm of
the signal at some iteration t is bounded by O (I), whereas the norm of the error accumulation sketch overall (signal plus
noise) is bounded by O (t), since the error accumulation includes the sum of gradient vectors up to time t. Because noise
hinders a Count Sketch’s ability to recover heavy hitters, FetchSGD would have a difficult time converging once t� I.

To solve this problem, we show that FetchSGD converges when using a sliding window Count Sketch instead of a vanilla
Count Sketch plus error accumulation. Using a sliding window sketch solves the problem of noise growing as O (t) by
recovering all of the signal present up until iteration t− I, and then discarding the remaining noise. To see why this is the
case, we consider a straightforward implementation of a sliding window Count Sketch that maintains I individual Count
Sketches {Si

e}I
i=1, where the ith sketch was initialized at iteration t− i, as shown in Figure 11a. On lines 12 and 14 of

Algorithm 1, we add a Count Sketch into Se by simply adding the sketch to each of the Si
e. On line 13, we recover heavy

hitters (U (·)) by unsketching each of the Si
e and taking the union of the resulting heavy hitters. And on line 16, we prepare

the sliding window Count Sketch for the next iteration by setting Si+1
e = Si

e, and initializing S0
e as an empty Count Sketch.

By constructing the sliding window data structure in this way, any sequence of up to I gradients will appear in one of the Si
e

at some iteration. Therefore, a data structure of this sort will recover all `2-heavy signal spread over up to I iterations with
probability 1− δ when using individual sketches Si

e of size O
(

1
τ log

(
dI
δ

))
. Because of this, when we discard Si

e at the

end of every iteration, we are only discarding noise, thereby preventing the noise from growing as O (t) without losing any
useful signal.

We use the sliding window Count Sketch data structure described above to show convergence, but in Appendix D we discuss
more efficient implementations that require maintaining only log (I) instead of I individual Count Sketch data structures, as
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depicted in 11b. In addition, to simplify the presentation, instead of recovering the highest-magnitude k elements from the
sliding window error accumulation sketch, we recover only τ-heavy hitters.

Proof of Theorem 2. For clarity, we break the proof into two parts. First, we address the particular case when I = 1, and
then we extend the proof to general I.

Warm-up: I = 1 (without error accumulation). When I = 1, Assumption 2 guarantees that every gradient contains
heavy hitters. And the sliding window error accumulation sketch used by FetchSGD reduces to a simple Count Sketch for
compression, with no error accumulation across iterations. In this case, the gradient update step is of the form

wt+1 = wt − C(ηgt).

where C(·) is Top-τ(U (S(·))). Consider the virtual sequence w̃t = wt −∑t−1
i=1

(
ηgi − C(ηgi)

)
. Upon expanding, we get

w̃t = wt−1 − C(ηgt−1)−
t−1

∑
i=1

(
ηgi − C(ηgi)

)
= wt−1 −

t−2

∑
i=1

(
ηgi − C(ηgi)

)
− ηgt−1 = w̃t−1 − ηgt−1

From L-smoothness of f ,

E f (w̃t+1) ≤ E f (w̃t) + E
〈
∇ f (w̃t), w̃t+1 − w̃t

〉
+

L
2

E

∥∥∥w̃t+1 − w̃t
∥∥∥2

= E f (w̃t)−Eη
〈
∇ f (w̃t), gt〉+ Lη2

2
E
∥∥gt∥∥2

≤ E f (w̃t)−Eη
〈
∇ f (w̃t)−∇ f (wt) +∇ f (wt),∇ f (wt)

〉
+

η2LG2

2

= E f (w̃t)− ηE
∥∥∇ f (wt)

∥∥2 −Eη
〈
∇ f (w̃t)−∇ f (wt),∇ f (wt)

〉
+

η2LG2

2

≤ E f (w̃t)− ηE
∥∥∇ f (wt)

∥∥2
+

η

2
E
(∥∥∇ f (w̃t)−∇ f (wt)

∥∥2
+
∥∥∇ f (wt)

∥∥2
)
+

η2LG2

2

≤ E f (w̃t)− η

2
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2
E
∥∥w̃t −wt∥∥2

+
η2LG2

2
(4)

where in the third inequality, we used |〈u, v〉| ≤ 1
2

(
‖u‖2 + ‖v‖2

)
, and the last inequality follows from L-smoothness.

Now, to show convergence of ||∇ f (wt)||, we need to upper bound
∥∥w̃t −wt

∥∥ =
∥∥∥∑t−1

i=1(C(ηgi)− ηgi)
∥∥∥. To do so,

we note that, conditioned on successful recovery of heavy hitters from the Count Sketch, C(ηgi) − ηgi consists only
of mean-zero symmetric noise: every gradient gi in a (1, τ)-sliding heavy sequence of gradients consists solely of τ-
heavy hitters and mean-zero symmetric noise, by Definition 1. Therefore, when all τ-heavy coordinates are identified,
C(gi)− gi =: zi consists only of gi

N (from Definition 1) and the Count Sketch heavy-hitter estimation error. By Assumption
2, gi

N =: zi
noise is drawn from a mean-zero symmetric distribution with scale

∥∥gi
∥∥. And by the properties of the Count

Sketch, the heavy-hitter estimation error zi
estimation is as well. Therefore, zi = ‖gi‖ξ i for some ξ i drawn from mean-zero

symmetric noise distributions, such that the ξ i’s are mutually independent and independent of
∥∥gi
∥∥. As a result:

∥∥w̃t −wt∥∥ =

∥∥∥∥∥t−1

∑
i=1

(C(ηgi)− ηgi)

∥∥∥∥∥ = η

∥∥∥∥∥t−1

∑
i=1

zi
estimation + zi

noise

∥∥∥∥∥ = η

∥∥∥∥∥t−1

∑
i=1

zi

∥∥∥∥∥ = η

∥∥∥∥∥t−1

∑
i=1

∥∥∥gi
∥∥∥ ξ i

∥∥∥∥∥ .

Note that, since the gi’s are dependent because they are a sequence of SGD updates, the zi’s are also dependent. However
since the ξ i’s are independent with mean zero, E

[∥∥gi
∥∥ ξ i|Fi

]
= 0, where Fi is the filtration of events before the ith iteration.
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1       2       3      4       5       6      7 8       9      10   

(a) Naive sliding window

1       2       3      4       5       6      7 8       9      10   

S(4)
S(3)

S(2) S(1) S(0)

(b) Adaptive sliding window

Figure 11. Approximating `2 norm on sliding windows.

So the stochastic process
{

zi}t
i=1 forms a martingale difference sequence. For any martingale difference sequence

{
xi}T

i=1,
it holds that

E

∥∥∥∥∥ T

∑
i=1

xi −Exi

∥∥∥∥∥
2

=
T

∑
i=1

E

∥∥∥xi −Exi
∥∥∥2

+
T,T

∑
i,j=1,i 6=j

E
〈

xi −Exi, xj −Exj
〉

.

For i > j, E
〈
xi −Exi, xj −Exj〉 = Ej [E〈xi −Exi, xj −Exj〉|j] = 0. Applying this, we get

E

∥∥∥∥∥t−1

∑
i=1

(C(ηgi)− ηgi

∥∥∥∥∥
2

= η2E

∥∥∥∥∥t−1

∑
i=1

∥∥∥gi
∥∥∥ ξ i

∥∥∥∥∥
2

= η2
t−1

∑
i=1

E

∥∥∥∥∥∥gi
∥∥∥ ξ i
∥∥∥2

= η2
t−1

∑
i=1

E

∥∥∥zi
∥∥∥2

,

where in the second equality, we apply the martingale difference result, noting that the random variables zi =
∥∥gi
∥∥ ξ i

have a mean of zero. We will now look how heavy coordinates and noise coordinates contribute to the norm of zi. We
can decompose

∥∥zi
∥∥2

=
∥∥zi

estimation + zi
noise

∥∥2 ≤ 2(
∥∥zi

estimation

∥∥2
+
∥∥zi

noise

∥∥2
). Now we bound each component of zi:

zi
estimation and zi

noise.

From Lemma 2 in Charikar et al. (2002), for each bucket in the Count Sketch, the variance in estimation is at most the `2
norm of the tail divided by the number of buckets b. Since the tail has mass at most (1− τ)G2, for each coordinate j, we

have E(zi
estimation)

2
j ≤

(1−τ)G2

b . There are at most 1
τ2 heavy coordinates present, and based on the sketch size in Theorem

2, we can choose a sketch that has at least b > 1
τ2 buckets, so E

∥∥zi
estimation

∥∥2 ≤ 1
τ2 · (1−τ)G2

b ≤ (1− τ)G2. Also, from

Assumption 2, E
∥∥zi

noise

∥∥2 ≤ βG2.

As in the proof of Theorem 1, plugging this in equation 3, taking
∥∥∇ f (wt)

∥∥ to the left hand side, averaging and taking
expectation with respect to all randomness, we get that

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ ∑T
i=1 E

∥∥∇ f (wi)
∥∥2

T
≤ ( f (w0)− f ∗)

ηT
+ η22(1− τ + β)G2LT + LηG2.

Finally, choosing η = 1
G
√

LT2/3 , we get that

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ G
√

L
(
( f (w0)− f ∗)

)
+ 2(1− τ + β)

T1/3 +
G
√

L
T2/3 .

Note that the analysis above holds conditioned on the success of the Count Sketch data structure and on the event that the
first statement in Definition 1 holds at every iteration, which happens with probability 1− 2Tδ by a union bound. This leads
to the size of the sketch provided in Theorem 2.

General case: any I (with error accumulation) When I = 1, FetchSGD converges when each gradient is compressed
with a vanilla Count Sketch, since doing so preserves all `2-heavy signal in the sequence of gradients. For I > 1, this is no
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longer the case, since signal needed for convergence may not be `2-heavy in any given iteration. As described above, we
capture signal spread over multiple iterations using a sliding-window Count Sketch data structure, which recovers all the
`2-heavy signal with high probability, even if it is spread over multiple iterations. This is sufficient to show convergence
because Assumption 2 states that all of the signal in the sequence of gradients is contained within gradient coordinates that
are `2-heavy over a sliding window.

Because of the similarity between a Count Sketch and a sliding window Count Sketch, the proof of Theorem 2 for general I
largely follows the proof for I = 1.

Let Ct = U (St
e) be the result of unsketching the sliding window Count Sketch at iteration t, and consider a virtual sequence

similar to the one in the warm-up case:

w̃t = wt −
(

t−1

∑
i=1

ηgi − Ci

)

= wt−1 − Ct−1 −
(

t−1

∑
i=1

ηgi − Ci

)

= wt−1 −
t−2

∑
i=1

ηgi − Ci − ηgt−1

= w̃t−1 − ηgt−1

As before, we need to bound
∥∥w̃t −wt

∥∥ =
∥∥∥∑t−1

i=1 ηgi − Ci
∥∥∥.

Because the sliding window sketch recovers all `2-heavy signal spread over at most I iterations, the value of ηgi − Ci

consists of only zestimation + znoise when i < t− I.

For i < t− I, the sliding window Count Sketch data structure will recover all the signal, leaving only zi
estimation + zi

noise
remaining. For t− I ≤ i ≤ t, some signal will already be recovered in Ci (which we denote gi

r), while other signal remains
to be recovered in future steps (gi

n). Note that gi = gi
r + gi

n, and we let znoise be distributed arbitrarily between gi
r and gi

n.

As shown in the warm-up case, we argue that

w̃t −wt =
t

∑
i=1

(ηgi −Ci) =

(
t−I

∑
i=1

ηgi +
t

∑
i=t−I+1

ηgi
r −

t

∑
i=1

Ci

)
+

t

∑
i=t−I+1

ηgi
n

=

(
t

∑
i=1

zi
estimation error + zi

noise

)
+

t

∑
i=t−I+1

ηgi
n =

t

∑
i=1

zi +
t

∑
i=t−I+1

ηgi
n

Since the gradients are bounded in norm, the norm of the sum of the past I gradients, from which signal has yet to be
recovered, can be bounded as IG. The norm of gi

n is less than the norm of gi, so the sum of gi
n can be likewise bounded.

Then, by the triangle inequality we get

∥∥w̃t −wt∥∥2 ≤ 2

∥∥∥∥∥t−I

∑
i=1

zi

∥∥∥∥∥
2

+ 2η2 I2G2

We now similarly argue that zi forms a martingale difference sequence and therefore we have

E
∥∥w̃t −wt∥∥2 ≤ 2E

∥∥∥∥∥t−I

∑
i=1

zi

∥∥∥∥∥+ 2η2 I2G2 ≤ 2(1− τ + β)η2G2(t− I) + 2η2 I2G2 ≤ 2(1− τ + β)η2G2t + 2η2 I2G2
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Repeating the steps in the warm-up case: using L-smoothness of f , we get

E f (w̃t+1) ≤ f (w̃t)− η

2

∥∥∇ f (wt)
∥∥2

+
ηL
2

E
∥∥w̃t −wt∥∥2

+
η2LG2

2

≤ f (w̃t)− η

2

∥∥∇ f (wt)
∥∥2

+
ηL
2

(
2(1− τ + β)η2G2t + 2η2 I2G2

)
+

η2LG2

2

Taking
∥∥∇ f (wt)

∥∥ to the left hand side, averaging and taking expectation with respect to all randomness, and choosing
η = 1

G
√

LT2/3 we get

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ G
√

L
(

f (w0)− f ∗
)
+ 2(1− τ + β)

T1/3 +
G
√

L
T2/3 +

2I2

T4/3

The first part of the theorem is recovered by noting that β ≤ 1. For the second part, note that the size of sketch needed to

capture τ-heavy hitters with probability at least 1− δ is O
(

log(dδ)
τ2

)
; taking a union bound over all T iterations recovers

the second claim in the theorem.

Implementation. We now give details on how this data structure is constructed and what the operations correspond to.
For all heavy coordinates to be successfully recovered from all suffixes of the last I gradient updates (i.e. ∀I′ < I, to recover
heavy coordinates of ∑t

i=t−I′ ηgi) we can maintain I sketches in the overlapping manner depicted in Figure 11a. That is,
every sketch is cleared every I iterations. To find heavy coordinates, the FindHeavy() method must query every sketch and
return the united set of heavy coordinates found; Insert() appends new gradients to all I sketches; and Update() subtracts
the input set of heavy coordinates from all I sketches. Although sketches are computationally efficient and use memory
sub-linear in d (a Count Sketch stores O (log (d)) entries), linear dependency on I in unfavorable, as it limits our choice
of I. Fortunately, the sliding window model, which is very close to the setting studied here, is thoroughly studied in the
streaming community (Braverman and Ostrovsky, 2007; Datar et al., 2002). These methods allow us to maintain a number
of sketches only logarithmic in I. For a high level overview we refer the reader to Appendix D.

B.3. Are these assumptions necessary?

We have discussed that un-sketching a sketch gives an unbiased estimate of the gradient: EU (S(g)) = g, so the sketch can
be viewed as a stochastic gradient estimate. Moreover, since Top-k, error feedback and momentum operate on these new
stochastic gradients, existing analysis can show that our method converges. However, the variance of the estimate derived
from unsketching is Θ(d), in the worst-case. By standard SGD analysis, this gives a convergence rate of O

(
d/
√

T
)

,

which is optimal since the model is a function of only these new O (d)-variance stochastic gradients. This establishes
that even without any assumptions on the sequence of gradients encountered during optimization, our algorithm has
convergence properties. However this dimensionality dependence does not reflect our observation that the algorithm
performs competitively with uncompressed SGD in practice, motivating our assumptions and analysis.

C. Count Sketch
Streaming algorithms have aided the handling of enormous data flows for more than two decades. These algorithms operate
on sequential data updates, and their memory consumption is sub-linear in the problem size (length of stream and universe
size). First formalized by Alon et al. (1999), sketching (a term often used for streaming data structures) facilitates numerous
applications, from handling networking traffic (Ivkin et al., 2019c) to analyzing cosmology simulations (Liu et al., 2015). In
this section we provide a high-level overview of the streaming model, and we explain the intuition behind the Count Sketch
(Charikar et al., 2002) data structure, which we use in our main result. For more details on the field, we refer readers to
Muthukrishnan et al. (2005).
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Consider a frequency vector g ∈ Rd initialized with zeros and updated coordinate by coordinate in the streaming fashion
– i.e. at time t an update (ai, wi) changes the frequency as gai+ = wi. Alon et al. (1999) introduce the AMS sketch,
which can approximate ‖g‖ with only constant memory. Memory footprint is very important in the streaming setting,
since d is usually assumed to be large enough that g cannot fit in the memory. The AMS sketch consists of a running
sum S initialized with 0, and a hash function h that maps coordinates of g into ±1 in an i.i.d. manner. Upon arrival
of an update (ai, wi), the AMS sketch performs a running sum update: S += h(ai)wi. Note that at the end of the

stream, E(S) = ∑n
i=1 h(ai)wi can be reorganized as per coordinate E(S) = ∑d

j=1

(
h(j)∑{i:ai=j} wi

)
= ∑d

j=1 h(j)gj,

where gj is the value of j-th coordinate at the end of the stream. The AMS sketch returns S2 as an estimation of ‖g‖2:
E(S2) = E(∑d

j=1 h(j)2g2
j ) + E(∑d

j=1 h(j)h(j′)gjgj′). If h is at least 2-wise independent second, then both Eh(j)h(j′)

and the second term are 0. So E(S2) = E(∑d
j=1 g2

j ) = ‖g‖2, as desired. Similarly, Alon et al. (1999) show how to bound
the variance of the estimator (at the cost of 4-wise hash independence). The AMS sketch maintains a group of basic sketches
described above, so that the variance and failure probability can be controlled directly via the amount of memory allocated:
an AMS sketch finds ̂̀2 = ‖g‖ ± ε‖g‖ using O(1/ε2) memory.

The Count Sketch data structure (Charikar et al., 2002) extends this technique to find heavy coordinates of the vector. A
coordinate i is (τ, `2)-heavy (or an (τ, `2)-heavy hitter) if gi ≥ τ‖g‖. The intuition behind the Count Sketch is as follows:
the data structure maintains a hash table of size c, where every coordinate j ∈ [d] is mapped to one of the bins, in which
an AMS-style running sum is maintained. By definition, the heavy coordinates encompass a large portion of the `2 mass,
so the `2 norm of the bins where heavy coordinates are mapped to will be significantly larger then that of the rest of the
bins. Consequently, coordinates mapped to the bins with small `2 norm are not heavy, and can be excluded from list of
heavy candidates. Repeating the procedure O(log (d)) times in parallel reveals the identities of heavy coordinates and
estimates their values. Formally, a Count Sketch finds all (τ, `2)-heavy coordinates and approximates their values with
±ε‖g‖ additive error. It requires O( 1

ε2τ2 log (d)) memory. Algorithm 2 depicts the most important steps in a Count Sketch.
For more details on the proof and implementation, refer to (Charikar et al., 2002).

Algorithm 2 Count Sketch (Charikar et al., 2002)
1: function init(r, c):
2: init r× c table of counters S
3: for each row r init sign and bucket hashes:

{
(hs

j , hb
j )
}r

j=1
4: function update((ai, wi)):
5: for j in 1 . . . r : S[j, hb

j (i)] += hs
j (i)wi

6: function estimate(i):
7: init length r array estimates
8: for j in 1, . . . , r:
9: estimates[r] = hs

j (i)S[j, hb
j (i)]

10: return median(estimates)

For FetchSGD, an important feature of the Count Sketch data structure is that it is linear – i.e., S(g1) + S(g2) =
S(g1 + g2). This property is used when combining the sketches of gradients computed on every iteration, and to maintain
error accumulation and momentum. We emphasize that while there are more efficient algorithms for finding heavy hitters,
they either provide weaker `1 approximation guarantees (Muthukrishnan et al., 2005) or support only non-negative entries
of the vector (Misra and Gries, 1982; Braverman et al., 2017). The structure of the Count Sketch allows for high amounts of
parallelization, and the operations of a Count Sketch can be easily accelerated using GPUs (Ivkin et al., 2018).

D. Sliding Windows
As was mentioned in Appendix C, the streaming model focuses on problems where data items arrive sequentially and their
volume is too large to store on disk. In this case, accessing previous updates is prohibited, unless they are stored in the
sketch. In many cases, the stream is assumed to be infinite and the ultimate goal is to approximate some function on the
last n updates and to “forget” the older ones. The sliding window model, introduced in (Datar et al., 2002), addresses
exactly this setting. Recall the example from Appendix C: given a stream of updates (at, wt) to a frequency vector g (i.e.
gt

at+ = wt), approximating the `2 norm of g in the streaming model implies finding ̂̀2 = ‖g‖ ± ε‖g‖ On the other hand,
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in the sliding window model one is interested only in the last n updates, i.e. ̂̀2 = ‖gt − gt−n‖ ± ε‖gt − gt−n‖.
One naive solution is to maintain n overlapping sketches, as in Fig. 11a. However, such a solution is infeasible for larger n.
Currently there are 2 major frameworks to adopt streaming sketches to the sliding window model: exponential histograms,
by Datar et al. (2002), and smooth histograms, by Braverman and Ostrovsky (2007). For simplicity, we will provide only the
high level intuition behind the latter one. Maintaining all n sketches as in Fig. 11a is unnecessary if one can control the
growth of the function: neighboring sketches differ only by one gradient update, and the majority of the sketches can be
pruned. Braverman and Ostrovsky (2007) show that if a function is monotonic and satisfies a smoothness property, then
the sketches can be efficiently pruned, leaving only O (log (n)) sketches. As in Fig. 11b, ‖S(i)‖ < (1 + ε)‖S(i−1)‖, so
any value in the intermediate suffixes (which were pruned earlier) can be approximated by the closest sketch ‖S(i)‖ as
shown in Ivkin et al. (2019a). For more details on how to construct this data structure, and for a definition of the smoothness
property, we refer readers to Braverman and Ostrovsky (2007).


