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Abstract
We consider PAC-learning a good item from k-
subsetwise feedback information sampled from a
Plackett-Luce probability model, with instance-
dependent sample complexity performance. In
the setting where subsets of a fixed size can
be tested and top-ranked feedback is made
available to the learner, we give an algorithm
with optimal instance-dependent sample com-
plexity, for PAC best arm identification, of
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, ∆i

being the Plackett-Luce parameter gap between
the best and the ith best item, and Θ[k] is the
sum of the Plackett-Luce parameters for the top-
k items. The algorithm is based on a wrap-
per around a PAC winner-finding algorithm with
weaker performance guarantees to adapt to the
hardness of the input instance. The sample com-
plexity is also shown to be multiplicatively better
depending on the length of rank-ordered feedback
available in each subset-wise play. We show op-
timality of our algorithms with matching sample
complexity lower bounds. We next address the
winner-finding problem in Plackett-Luce models
in the fixed-budget setting with instance depen-
dent upper and lower bounds on the misidenti-
fication probability, of Ω

(
exp(−2∆̃Q)

)
for a

given budget Q, where ∆̃ is an explicit instance-
dependent problem complexity parameter. Nu-
merical performance results are also reported.

1. Introduction
We consider the problem of sequentially learning the best
item of a set when subsets of items can be tested but in-
formation about only their relative strengths is observed.
This is a basic search problem motivated by applications in
recommender systems and information retrieval (Hofmann
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et al., 2013; Radlinski et al., 2008), crowdsourced ranking
(Chen et al., 2013), tournament design (Graepel & Herbrich,
2006), etc. It has received recent attention in the online
learning community, primarily under the rubric of dueling
bandits (e.g., (Yue et al., 2012) and online ranking in the
Plackett-Luce (PL) discrete choice model (Chen et al., 2018;
Saha & Gopalan, 2019; Ren et al., 2018).

Our focus in this paper is to study the instance-dependent
complexity of learning the (near) best item in a subset-wise
PL feedback model by which we mean the following. Each
item has an a priori unknown PL weight parameter, and
every time a subset of alternatives is selected, an item or
items sampled from the PL probability distribution over the
subset are observed by the learner. Given a tolerance ε and
confidence level δ, the learner faces the task of sequentially
playing subsets of items, and stopping and finding an ε-
optimal arm, i.e., an arm i whose PL parameter satisfies
θi ≥ maxj θj − ε, with probability of error at most δ.

Existing work on best arm learning in PL models, e.g., (Saha
& Gopalan, 2019), focuses on attaining the worst-case or
instance-independent sample complexity of learning an ap-
proximately best item. By this, we mean that the typical
goal is to design algorithms that terminate in a number of
rounds bounded by a function of only ε, δ and the num-
ber of arms n, typically of the form O

(
n
ε2 log

(
1
δ

))
rounds.

Such worst-case results, though significantly novel, suffer
from two weaknesses: (1) The termination time guarantees
become vacuous in the setting where an exact best arm is
sought (ε = 0), and (2) The guarantees do not reflect the
fact that some problem instances, in terms of their items’ PL
parameters, are easier than others to learn, e.g., the instance
with parameters (θ1, . . . , θn) = (1, 0.01, . . . , 0.01) ought
to be much easier than (1, 0.99, . . . , 0.99) since item 1 is
a distinctly clearer winner than in the latter case. In this
paper, we set ourselves the more challenging objective of
quantifying and attaining sample complexity that depends
on the inherent ‘hardness’ of the PL instance. In this context,
we make the following contributions:

(1) We give the first instance-optimal algorithm for the
problem of (ε, δ)-PAC learning a best item in a PL model
when subsets of a fixed size can be tested in each round.
This is accomplished by building a novel wrapper algorithm
(Alg. 1) around an (ε, δ)-PAC learning algorithm used as
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a subroutine that we designed (Alg. 5). We also provide a
matching instance-dependent lower bound on the sample
complexity of any algorithm, to establish the optimality of
our algorithm (Thm. 3,4,7).

(2) When richer, m length rank-ordered information is ob-
served per subsetwise query, we show the optimal instance-
dependent sample complexity lower bound is much smaller
than just with the winner feedback case (Thm. 8). We also
propose an optimal algorithm for this setting (Alg. 8) with
an 1

m -factor improved sample complexity guarantee which
is shown to be optimal (Thm. 5).

(3) We also study the fixed-budget version of the best-item
learning problem, where a learning horizon of Q rounds is
specified instead of a desired confidence level δ, and the
performance measure of interest is the probability of error in
identifying a best arm. We give an algorithm for learning the
best item of a Plackett-Luce instance under a fixed budget
with general m-way ranking feedback (Alg. 8, Thm. 12),
and also prove an instance-dependent lower bound for it
(Thm. 11).

Our theoretical findings are also supported with numerical
experiments on different datasets.

Related work. For classical multiarmed bandits setting,
there is a well studied literature on PAC-arm identifica-
tion problem (Even-Dar et al., 2006; Audibert & Bubeck,
2010; Kalyanakrishnan et al., 2012; Karnin et al., 2013;
Jamieson et al., 2014), where the learner gets to see a noisy
draw of absolute reward feedback of an arm upon playing
a single arm per round. Some of the existing results on
dueling bandits line of works also focuses on PAC learning
from pairwise preference feedback for best arm identifica-
tion problem (Yue & Joachims, 2011; Urvoy et al., 2013;
Szörényi et al., 2015; Busa-Fekete et al., 2014a), or even
more general problem objectives e.g. PAC top set recovery
(Busa-Fekete et al., 2013; Mohajer et al., 2017; Chen et al.,
2017), or PAC-ranking of items (Busa-Fekete et al., 2014b;
Falahatgar et al., 2017), even in the feedback setup of noisy
comparisons (Braverman & Mossel, 2008; Caragiannis et al.,
2013). There are also very few recent developments that
focuses on learning for subsetwise feedback in an online
setup (Sui et al., 2017; Brost et al., 2016; Saha & Gopalan,
2018a; 2019; Ren et al., 2018; Chen et al., 2018). Some of
the existing work also explicitly consider the Plackett-Luce
parameter estimation problem with subset-wise feedback
but for offline setup only (Jang et al., 2017; Khetan & Oh,
2016). While most of the above work address the (ε, δ)-PAC
recovery problem, i.e. finding an ‘ε-approximation’ of the
desired (set of) item(s) with probability at least (1− δ), few
of them also focuses of instant dependent PAC recovery
guarantees where the sample complexity explicitly depends
of the parameters of the underlying model, e.g. for classical
multiarmed bandits (Audibert & Bubeck, 2010; Karnin et al.,

2013; Kalyanakrishnan et al., 2012), or even for preference
based bandits (Szörényi et al., 2015; Chen et al., 2018).

2. Problem Setup
Notation. We denote by [n] the set {1, 2, ..., n}. For any
subset S ⊆ [n], let |S| denote the cardinality of S. When
there is no confusion about the context, we often repre-
sent (an unordered) subset S as a vector, or ordered subset,
S of size |S| (according to, say, a fixed global ordering
of all the items [n]). In this case, S(i) denotes the item
(member) at the ith position in subset S. For any ordered
set S, S(i : j) denotes the set of items from position i
to j, i < j, ∀i, j ∈ [|S|]. We denote by ΣS = {σ | σ
is a permutation over items of S}, where for any permu-
tation σ ∈ ΣS , σ(i) denotes the element at the i-th po-
sition in σ, i ∈ [|S|]. We also denote by Σm

S the set of
permutations of any m-subset of S, for any m ∈ [k], i.e.
ΣmS := ΣS′ s.t. S′ ⊆ S, |S′| = m. 1(ϕ) is generically
used to denote an indicator variable that takes the value 1
if the predicate ϕ is true, and 0 otherwise. x ∨ y denotes
the maximum of x and y, and Pr(A) is used to denote the
probability of event A, in a probability space.

Definition 1 (Plackett-Luce probability model). A Plackett-
Luce probability model, specified by positive parameters
(θ1, . . . , θn), is a collection of probability distributions
{Pr(·|S) : S ⊂ [n], S 6= ∅}, where for each non-empty
subset S ⊆ [n], Pr(i|S) = θi1(i∈S)∑

j∈S θj
∀1 ≤ i ≤ n. The

indices 1, . . . , n are referred to as ‘items’ or ‘arms’ .

Since the Plackett-Luce probability model is invariant to
positive scaling of its parameters θ ≡ (θi)

n
i=1, we make the

standard assumption that maxi∈[n] θi = 1.

An online learning algorithm is assumed to interact with a
Plackett-Luce probability model over n items (the ‘environ-
ment’) as follows. At each round t = 1, 2, . . ., the algorithm
decides to either (a) terminate and return an item I ∈ [n],
or (b) play (test) a subset St ⊂ [n] of k distinct items, upon
which it receives stochastic feedback whose distribution
is governed by the probability distribution Pr(·|St). We
specifically consider the following structures for feedback
received upon playing a subset S:

1. Winner feedback: The environment returns a single
item J drawn independently from the probability distribu-
tion Pr(·|S) where Pr(J = j|S) =

θj∑
k∈S θk

∀j ∈ S.

2. Top-m Ranking feedback (1 ≤ m ≤ k−1): Here, the
environment returns an ordered list ofm items sampled with-
out replacement from the Plackett-Luce probability model
on S. More formally, the environment returns a partial
ranking σ ∈ Σm

S , drawn from the probability distribution

Pr(σ = σ|S) =
∏m
i=1

θσ−1(i)∑
j∈S\σ−1(1:i−1) θj

, σ ∈ Σm
S . This

can also be seen as picking an item σ−1(1) ∈ S accord-



From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model

ing to Winner feedback from S, then picking σ−1(2) from
S\{σ−1(1)}, and so on form times. Whenm = 1, Top-m
Ranking feedback is the same as Winner feedback.

Definition 2 ((ε, δ)-PAC or fixed-confidence algorithm). An
online learning algorithm is said to be (ε, δ)-PAC with termi-
nation time bound Q if the following holds with probability
at least 1− δ when it is run in a Plackett-Luce model: (a) it
terminates within Q rounds (subset plays), (b) the returned
item I is an ε-optimal item: θI ≥ maxi∈[n] θi − ε = 1− ε.
(Probability is over both the environment and the algorithm.)

By the sample complexity of an (ε, δ)-PAC online learning
algorithm A for a Plackett-Luce instance θ ≡ (θi)

n
i=1 and

playable subset size k, we mean the smallest possible ter-
mination time bound Q for the algorithm when run on θ.
We use the notation NA(ε, δ) ≡ NA(ε, δ,θ, n, k) to denote
this sample complexity. We aim to design (ε, δ)-PAC al-
gorithms with as small a value of sample complexity as
possible, depending on the number of items n, the playable
subset size k, approximation error ε, confidence δ, and most
importantly, the Plackett-Luce model parameters (θi)

n
i=1.

We also assume item 1 is optimal: θ1 = maxi∈[n] θi = 1,
and ∆i = θ1 − θi for any i ∈ [n].

3. Instance-dependent regret for
Probably-Correct-Best-Item problem

3.1. Prelude: An algorithm for ε = 0

For clarity of exposition, we first describe the design of
a (0, δ)-PAC or Probably-Correct-Best-Item learning algo-
rithm, i.e., an algorithm that attempts to learn the unique best
item in a Plackett-Luce model when such an item exists1:
1 = θ1 > maxi≥2 θi. This is then generalised in the next
section to an online learning algorithm that is (ε, δ)-PAC.

High-level idea behind algorithm design. The algorithm
we propose (PAC-Wrapper) is based on using an (ε, δ)-
PAC-algorithm known to have (expected) termination time
bounded in terms of ε and δ (a ‘worst’ case termination guar-
antee not necessarily dependent on instance parameters) as
an underlying black-box subroutine. The wrapper algorithm
uses the black-box repeatedly, with successively more strin-
gent values of ε and δ, to eliminate suboptimal arms in a
phased manner. The termination analysis of the algorithm
shows that any suboptimal arm i ∈ [n] \ {1} survives for
about O

(
1

∆2
i

ln k
δ

)
rounds before being eliminated, which

leads to the desired bound of O
(∑n

i=2
1

∆2
i

ln k
δ

)
on algo-

rithm’s run time performance (with high probability (1−δ))
(Thm. 3).

1When there is more than one best item the problem of finding
a best item with confidence is not well-defined.

Algorithm description. The PAC-Wrapper algorithm we
propose (Alg. 1) runs in phases indexed by s = 1, 2, . . .,
where each phase s comprises of the following steps.

Figure 1. A sample run of Alg. 1 at any sub-phase s with the set
of surviving arms As−1: Step 1. The algorithm finds a (εs, δs)-
PAC item bs, where εs = 1

2s+2 and δs = δ
40s3

. Step 2. It

partitions As−1 into Bs =
⌈
As−1

k−1

⌉
groups B1, . . .BBs of size

k, each containing bs, and plays each for ts = 2k
ε2s

ln k
δs

times.
Step 3. Based on the received feedback of ts plays, the algorithm
updates the empirical pairwise probability p̂ij of each item pair
(i, j) within a group B by applying Rank-Breaking , and discards
any item i ∈ B with p̂ibs <

1
2
−εs. The rest of the surviving items

are then combined to As, and the algorithm recurses to s+ 1.

Step 1: Finding a good reference item. It first calls an
(εs, δs)-PAC subroutine (described in Sec. 3.4 for complete-
ness) with εs = 1

2s+2 and δs = δ
120s3 to obtain a ‘reasonably

good item’ bs—an item that is likely within an εs margin of
the Best-Item with probability at least (1 − δs)) and thus
a potential Best-Item. For this we design a new sequen-
tial elimination-based algorithm (Alg. 5 in Appendix A.3),
and argue that it finds such a (εs, δs)-PAC ‘good item’ with
instance-dependent sample complexity (Thm. 6), which
is crucial in the overall analysis. This is an improvement
upon the instance-agnostic Algorithm 6 of (Saha & Gopalan,
2019) whose sample complexity guarantee is not strong
enough to be used along with the wrapper.

Step 2: Benchmarking items against the reference item.
After obtaining a candidate good item, the algorithm di-
vides the rest of the current surviving arms into equal-sized
groups of size k − 1, say the groups B1, . . . ,BBs , and
‘stuffs’ the good ‘probe’ item bs into each group, creating
Bs =

⌈
As−1

k−1

⌉
item groups of size k (the Partition subrou-

tine, Algorithm 2, Appendix A.2). It then plays each group
Bb, b ∈ [Bs] for a total of ts = 2Θ̂S

ε2s
ln k

δs
rounds, where

Θ̂S denotes a ’near-accurate’ relative score estimate of the
Plackett-Luce model for the set Bb–we use the subroutine
Score-Estimate for estimating Θ̂S (see Alg. 3, Thm. 13
in Appendix A.2). From the winner data obtained in this
process, it updates the empirical pairwise win count wi of
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each item within any batch Bb by applying a rank-breaking
idea (see Alg. 4, Appendix A.2) .

Step 3: Discarding items weaker than the reference
item. Finally, from each group Bb, the algorithm elimi-
nates all arms whose empirical pairwise win frequency over
the probe item bs is less than 1

2 − εs (i.e. ∀i ∈ Bb for which
p̂ibs <

1
2 − εs, p̂ij being the empirical pairwise preference

of item i over j obtained via Rank-Breaking). The next
phase then begins, unless there is only one surviving item
left, which is output as the candidate Best-Item. Pointers to
the 4 subroutines used in the overall algorithm are as below.

(1). (ε, δ)-PAC Best-Item subroutine: Given ε, δ ∈ (0, 1),
this finds an (ε, δ)-Best-Item in O

(
Θ[k]

ε2 ln k
δ

)
samples,

where Θ[k] = max
S⊆[n]||S|=k

∑
i∈S θi (See Alg. 5, Thm. 6 in

Appendix A.3).

(2). Rank-Breaking subroutine: This is a procedure of
deriving pairwise comparisons from multiwise (subsetwise)
preference information (Soufiani et al., 2014; Khetan & Oh,
2016). (See Alg. 4, Appendix A.2).

(3). Score-Estimate subroutine: Given a set S and a refer-
ence item b ∈ [n], this estimates the relative Plackett-Luce
scores of the set w.r.t. b (see Alg. 3, Appendix A.2).

(4). Partition: This partitions a given set of items into
equally sized batches (See Alg. 2, Appendix A.2).

Fig. 1 graphically depicts a sample run of a sub-phase s (for
k = 4). Note that as the playable subset size is k, we need
to specially treat the final few sub-phases when the number
of surviving arms (i.e. |As|) falls below k (Lines 22-31 in
Alg. 1). The complete algorithm is given in Appendix A.1.
Theorem 3 (PAC-Wrapper(0, δ)-PAC sample complex-
ity bound with Winner feedback). With probabil-
ity at least (1 − δ), A as PAC-Wrapper (Algo-
rithm 1) returns the Best-Item with sample complexity

NA(0, δ) = O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

∆2
i

)
ln k

δ

(
ln 1

∆i

))
,

where Θ[k] := maxS⊆[n]||S|=k
∑
i∈S θi.

Remark 1. As Θ[k] ≤ k, PAC-Wrapper takes O( 1
∆2
i
) ln 1

δ

rounds to eliminate all suboptimal items with confidence
δ. However, the dependence of the upper bound on Θ[k]

implies a 1/k factor gain in sample complexity when the
underlying instance is ‘easy’. Indeed, when Θ[k] = O(1),
e.g., in an instance where θ1 ≈ 1 and θi ≈ 0 ∀i 6= 1, then
the algorithm just takes O( 1

k∆2
i
) ln 1

δ time to terminate. On
the other hand, if 1 = θ1 > θi ≈ 1, then Θ[k] = Ω(k)
which gives the worst case orderwise complexity.
Proof sketch The proof of Thm. 3 is based on the following
claims:

Claim-1: At any sub-phase s = 1, 2, . . ., the Best-Item a∗

is likely to beat the (εs, δs)-PAC item bs by sufficiently high

margin with probability at least (1− δ
20 ), and hence is never

discarded (Lem. 19).

Claim-2: Let [n]r := {i ∈ [n] : 1
2r ≤ ∆i <

1
2r−1 }, and we

denote the set of surviving arms in [n]r at sth sub-phase by
Ar,s, i.e. Ar,s = [n]r∩As, for any s = 1, 2, . . .. Then with
probability at least (1− 19δ

20 ), any such set Ar,s reduces at
a constant rate once s ≥ r, r = 1, . . . , log2(∆min) (Lem.
20)—this ensures that all suboptimal elements get eventually
discarded after they are played sufficiently often.

Claim-3: The number of occurrences of any sub-optimal
item i ∈ [n] \ {1} before it gets discarded away is propor-
tional to O

(
1

∆2
i

ln k
δ

)
. Combining this over all arms yields

the desired sample complexity. Details of the proof is given
in Appendix A.4. �.

3.2. An algorithm for general ε > 0

It is straightforward to extend the (0, δ)-PAC guarantee for
PAC-Wrapper to get a more general (ε, δ)-PAC algorithm
for any given ε ∈ [0, 1]. The idea is to simply execute the
algorithm as originally specified until (and if) it reaches
a phase s such that εs falls below the given tolerance ε
(i.e. εs ≤ ε), at which point the algorithm can stop right
after calling the subroutine (ε, δ)-PAC Best-Item and output
the item bs returned by it. The full algorithm is given in
Appendix A.5 for the sake of brevity.

Theorem 4 (PAC-Wrapper (ε, δ)-PAC sample complex-
ity bound with Winner feedback). For any ε ∈
[0, 1], with probability at least (1 − δ), A as PAC-
Wrapper (Algorithm 1) returns the ε-Best-Item (see
Defn. 2) with sample complexity NA(ε, δ) =

O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

max(∆i,ε)2

)
ln k

δ

(
ln 1

max(∆i,ε)

))
.

Discussion. To the best of our knowledge, this is the
first (ε, δ)-PAC learning algorithm for the Plackett-Luce
model with general multi-wise comparisons with an item-
wise instance-dependent sample complexity bound. For
ε > 0, this is order-wise stronger than the best known worst-
case (instance-independent) upper bound of O

(
n
ε2 log

(
k
δ

))
(Saha & Gopalan, 2019), since max(∆i, ε)

2 ≥ ε2. Thus
PAC-Wrapper is provably able to adapt to the hardness
of the Plackett-Luce instance θ to stop early in case the
instance is ‘well-separated’. Note that for dueling ban-
dits (k = 2), our result strictly improves order-wise upon
the Õ

(
n ·maxi≥2

1
max(∆i,ε)2

)
sample complexity2 of the

best known (ε, δ)-PAC algorithm (PLPAC) (Szörényi et al.,
2015)—which can be worse by a factor of n for many in-
stances. For example, consider an instance having one
‘strong’ suboptimal item, say j ∈ [n] \ {1} with ∆j ≈ 0,
but Ω(n) many extremely ‘weak’ items with ∆i ≈ 1; our

2Notation Õ(·) hides polylogarithmic factors in ε, δ,∆i, n, k.
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sample complexity bound is just Õ
(

1
2∆2

j
ln 1

δ + n
2 ln 1

δ

)
,

whereas that of PLPAC is O
(
n

∆2
j

ln n
∆jδ

)
.

3.3. PAC learning in the Plackett-Luce model with
Top-m Ranking feedback

Main Idea. Algorithmically, the key modification to make
is in the Rank-Breaking subroutine of PAC-Wrapper, which
now uses a rank-ordered list of m feedback items to output
all possible rank-broken comparison pairs. The essence of
the 1

m factor improvement in the sample complexity over
Winner feedback lies in the fact that this naturally gives rise
to O(m) times additional number of pairwise preferences in
comparison to Winner feedback. Hence, it turns out to be
sufficient to sample any batch Bb,∀b ∈ [Bs] for only O

(
1
m

)
times compared to the earlier case, which finally leads to the
improved sample complexity of PAC-Wrapper for Top-m
Ranking feedback. The full description of Alg. 7 is given in
Appendix A.7 for the sake of brevity.

Theorem 5 (PAC-Wrapper: Sample Complexity for
(0, δ)-PAC Guarantee for Top-m Ranking feedback). With
probability at least (1 − δ), PAC-Wrapper (Algorithm 1)
returns the Best-Item with sample complexity NA(0, δ) =

O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

m∆2
i

)
ln k

δ

(
ln 1

∆i

))
.

Remark 2. Following the similar procedure as argued in
Sec. 3.4, one can easily derive an (ε, δ)-PAC version of
PAC-Wrapper (for Top-m Ranking feedback) as well, and
a similar guarantee as that of Thm. 4 with a reduction factor
1/m. We omit the details in the interest of space.

3.4. (ε, δ)-PAC subroutine (used in the main algorithm,
PAC-Wrapper, i.e. in Alg. 1, 5 or 7)

We briefly describe here the core (ε, δ)-PAC subroutine
used in algorithms 1 and 7 to find an ε Best-Item with high
probability (1−δ) in an instance-dependent way (full details
are available in Appendix A.3): The algorithm (ε, δ)-PAC
Best-Item first divides the set of n items into batches of size
k, then plays each group sufficiently long enough until a
single item of that group stands out as the empirical winner
in terms of its empirical pairwise advantage over the rest
(again estimated though Rank-Breaking). It then just retains
this empirical winner for every group and recurses on the set
of surviving winners until only a single item is left, which
is declared as the (ε, δ)-PAC item.

Theorem 6 ((ε, δ)-PAC Best-Item: Correctness and Sam-
ple Complexity with Top-m Ranking feedback). For any
ε ∈

(
0, 1

8

]
and δ ∈ (0, 1), with probability at least

(1 − δ), (ε, δ)-PAC Best-Item (Algorithm 5) returns an
item bs ∈ [n] satisfying pbs1 > 1

2 − ε with sample

complexity O
(
nΘ[k]

k max
(
1, 1

mε2

)
log k

δ

)
, where Θ[k] :=

maxS⊆[n],|S|=k
∑
i∈S θi.

Remark 3. The best item-finding subroutine we develop,
along with the corresponding analysis, is an improvement
over Alg. 6 of (Saha & Gopalan, 2019) which had k in-
stead of Θ[k][k]

≤ k here. The improvement is especially
pronounced for instances where Θ[k] = O(1) (e.g. where
θa∗ → 1 and for all i ∈ [n] \ {a∗}, θi → 0 etc.). Note
that this is an artefact of the adaptive nature of our pro-
posed algorithm (Alg. 5) which samples each batch adap-
tively for just sufficiently enough times before discarding
out the weakest (k − 1) items (see Line 11), whereas (Saha
& Gopalan, 2019) sample each batch for a fixedO

(
k
ε2 ln k

δ

)
times irrespective of the empirical outcomes, leading to a
worse, instance independent sample complexity.

4. Instance-dependent lower bounds on
sample complexity

We here derive information-theoretic lower bounds on sam-
ple complexity for Probably-Correct-Best-Item problem.
We first show a lower bound of Ω

(∑n
i=2

θiθ1
∆2
i

ln
(

1
δ +

n
k ln 1

δ

))
with Winner feedback implying that the sam-

ple complexity of PAC-Wrapper (Thm. 3) is tight upto
logarithmic factors. We then analyze the lower bound for
Top-m Ranking feedback and show an 1

m -factor improve-
ment in the sample complexity lower bound, establishing the
optimality (up to logarithmic factors) of our PAC-Wrapper
algorithm for Top-m Ranking feedback (see Alg. 7 and
Thm. 5).

4.1. Lower bound for Winner feedback

Theorem 7 (Sample complexity lower bound: (0, δ)-PAC
or Probably-Correct-Best-Item with Winner feedback).
Given δ ∈ [0, 1], suppose A is an online learning algorithm
for Winner feedback which, when run on any Plackett-
Luce instance, terminates in finite time almost surely, re-
turning an item I satisfying Pr(θI = maxi θi) > 1 − δ.
Then, on any Plackett-Luce instance θ1 > maxi≥2 θi,
the expected number of rounds it takes to terminate is

Ω

(
max

(∑n
i=2

θiθ1
∆2
i

ln 1
δ ,

n
k ln 1

δ

))
.

Proof sketch. We employ the measure-change technique
of Kaufmann et al (Kaufmann et al., 2016) (see Lem. 26,
Appendix) for lower bounds on the PAC sample complexity
for standard multiarmed bandits (MAB). The novelty of our
proof lies in mapping their result to our setting: For our
case each MAB instance corresponds to an instance of the
BB-PL problem with the arm set containing all subsets of
[n] of size k: A = {S = (S(1), . . . S(k)) ⊆ [n]}.

We now consider any general true PL(n,θ) problem in-
stance PL(n,θ1) : θ1

1 > θ1
2 ≥ . . . ≥ θ1

n, and corresponding
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to each suboptimal item a ∈ [n] \ {1}, we define an alter-
native problem instance PL(n,θa) : θaa = θ1

1 + ε; θai =
θ1
i , ∀i ∈ [n]\{a}, for some ε > 0. Then, applying Lemma

26 on every pairs of problem instances (θ1,θa), and suit-
ably upper bounding the KL-divergence terms we arrive at
n− 1 constraints of the form:

ln
1

2.4δ
≤

∑
S∈A|a∈S

Eθ1 [NS(τA)]KL(p1
S , p

a
S)

≤
∑

S∈A|a∈S

Eθ1 [NS(τA)]
∆′2a

θ1
S(θ1

1 + ε)
, ∀a ∈ [n] \ {1}

Since the total sample complexity of A being N (0, δ) =∑
S∈ANS (here NS is the number of plays of subset S by

A), the problem of finding the sample complexity lower
bound actually reduces to solving the (primal) linear pro-
gramming (LP) problem:

Primal LP (P): min
S∈A

∑
S∈A

Eθ1 [NS ]

such that
∑

S∈A|a∈S

Eθ1 [NS ]
∆′2a

θ1
S(θ1

1 + ε)
≥ ln

1

2.4δ
,

∀a ∈ [n] \ {1}

However above has O
(
n
k

)
many optimization variables (pre-

cisely Eθ1 [NS ]s), so we instead solve the dual LP to reach
the desired bound. Lastly the Ω

(
n
k ln 1

δ

)
term in the lower

bound arises as any learning algorithm must at least test
each item a constant number of times via k-wise subset
plays before judging it optimality which is the bare mini-
mum sample complexity the learner has to incur (Chen et al.,
2018). The complete proof is given in Appendix B.1. �.

4.2. Lower bound for Top-m Ranking feedback
Theorem 8 (Sample complexity Lower Bound:
(0, δ)-Probably-Correct-Best-Item with Top-m Ranking
feedback). Suppose A is an online learning algo-
rithm for Top-m Ranking feedback which, given
δ ∈ [0, 1] and run on any Plackett-Luce instance,
terminates in finite time almost surely, returning an
item I satisfying Pr(θI = maxi θi) > 1 − δ. Then,
on any Plackett-Luce instance θ1 > maxi≥2 θi, the
expected number of rounds it takes to terminate is

Ω

(
max

(
1
m

∑n
i=2

θiθ1
∆2
i

ln
(

1
δ

)
, nk ln 1

δ

))
.

Proof sketch. The crucial fact used here is owning to the
chain rule for KL-divergence, the KL divergence for Top-m
Ranking feedback is m times larger than that of just with
Winner feedback: KL(p1

S , p
a
S) = KL(p1

S(σ1), paS(σ1)) +
+
∑m
i=2KL(p1

S(σi | σ(1 : i − 1)), paS(σi | σ(1 : i − 1))),
where we abbreviate σ(i) as σi and KL(P (Y | X), Q(Y |
X)) :=

∑
x Pr

(
X = x

)[
KL(P (Y | X = x), Q(Y |

X = x))
]

denotes the conditional KL-divergence. Using

this and the upper bound on the KL divergences for Win-
ner feedback setup as derived for Thm. 7, we get that in
this case KL(p1

S , p
a
S) ≤ m∆′2a

θ1
S(θ1

1+ε)
, ∀a ∈ [n] \ {1}, where

lies the crux of the 1
m -factor improvement in the sample

complexity lower bound compared to Winner feedback.
The lower bound now can be derived following a similar
procedure that of Thm. 7. Details are given in B.1. �.

5. The Fixed-Sample-Complexity Learning
Problem

This section studies the problem of finding the Best-Item
within a maximum allowed number of queries Q, with min-
imum possible probability of misidentification. Note the
algorithms for Probably-Correct-Best-Item setting cannot
be used here as they do not take the total sample complexity
Q as input; also, simply terminating such algorithms with a
suitable δ after Q runs may not necessarily be optimal. We
present results for the general Top-m Ranking feedback.

5.1. Lower Bound: Fixed-Sample-Complexity setting

We derive an instance-dependent lower bound on error prob-
ability in which the problem complexity depends on the

complexity term
(∑n

a=2
θa
∆2
a

)−1

, unlike the case for our
first objective (Probably-Correct-Best-Item), which depends
on the gap parameter 1

∆2
a
, ∀ ∈ [n] \ {1}. We first define a

natural consistency or ‘non-trivial learning’ property for any
best-arm algorithm given a fixed budget of Q:

Definition 9 (Budget-Consistent Best-Item Identification
Algorithm). An online algorithm A, taking as input a sam-
ple complexity budget Q, terminating within Q rounds and
outputting an item I ∈ [n], is said to be Budget-Consistent
if, for every Plackett-Luce instance θ ≡ (θi)

n
i=1 with

a unique best item a∗(θ) := arg maxi∈[n] θi, it satisfies
Prθ

(
I = a∗(θ)

)
≥ 1 − exp(−f(θ) · Q) when run on θ,

where f : [0, 1]n 7→ R+ is an instance-dependent function
mapping every Plackett-Luce instance to a real number.

Informally, a Budget-Consistent algorithm picks out the
best arm in a Plackett-Luce instance with arbitrarily low
error probability given enough rounds Q. We next define the
notion of a Order-Oblivious or label-invariant algorithm
before stating our main lower bound result.

Definition 10 (Order obliviousness or label invari-
ance). A Budget-Consistent algorithm A is said to
be Order-Oblivious if its output is insensitive to the
specific labelling of items, i.e., if for any PL model
(θ1, . . . , θn), bijection φ : [n] → [n] and any item
I ∈ [n], it holds that Pr(A outputs I | (θ1, . . . , θn)) =
Pr(A outputs I | (θφ(1), . . . , θφ(n))), where
Pr(· |(α1, . . . , αn)) denotes the probability distribu-
tion on the trajectory of A induced by the PL model



From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model

(α1, . . . , αn).

Theorem 11 (Confidence lower bound in fixed sample com-
plexityQ for Top-mRanking feedback). LetA be a Budget-
Consistent and Order-Oblivious algorithm for identifying
the Best-Item under Top-m Ranking feedback. For any
Plackett-Luce instance θ and sample size (budget) Q, its
probability of error in identifying the best arm in θ satis-
fies Prθ

(
I 6= arg maxi∈[n] θi

)
= Ω

(
exp

(
−2mQ∆̃

))
,

where the complexity parameter ∆̃ :=
(∑n

a=2
(θa)2

∆2
a

)−1

.

Remark 4. As expected, the error probability reduces with
increasing feedback size m and budget Q. However a more
interesting tradeoff lies in the instant dependent complexity
term ∆̃: for ‘easy’ instances where most of the suboptimal
item have θa → 0 (i.e. ∆a → 1), ∆̃ shoots up, in fact attains
∆̃ → ∞ in the limiting case where θa → 0 ∀i ∈ [n \ {1}.
On the other hand, for ‘hard’ instances, where there exists
even one suboptimal item a ∈ [n] \ {1} with θa ≈ 1 (i.e.
∆a ≈ 0), ∆̃ → 0 raising the minimum error probability
significantly, which indicates the hardness of the learning
problem.

5.2. Proposed Algorithm for Fixed-Sample-Complexity
setup: Uniform-Allocation

Main Idea. Our proposed algorithm Uniform-Allocation
solves the problem with a uniform budget allocation rule:
Since we are allowed to play sets of size k only, we divide
the items into k-sized batches and eliminate the bottom half
of the winning items once each batch is played sufficiently.
The important parameter to tune is how long to play the
batches. Given a fixed budget Q, since one does not have
an idea about which batch the Best-Item lies in, a good
strategy is to allocate the budget uniformly across all sets
formed during the entire run of the algorithm, which can
shown to be precisely O(n+k log2 k

k ) sets, so we allocate a

budget of Q′ = O
(

kQ
n+k log2 k

)
samples per batch.

Algorithm description. The algorithm proceeds in rounds,
where in each round it divides the set of surviving items
into batches of size k and plays each Q′ = (n+k)kQ

2n2 log2 k
times.

Upon this it retains only the top half of the winning arms,
eliminating the rest forever. The hope here is that with
‘enough’ observed samples, the Best-Item always stays in
the top half and never gets eliminated. The next round
recurses on the remaining items, and the algorithm finally
returns the only single element is left as the potential Best-
Item. The pseudocode is moved to Appendix C.2.

Theorem 12 (Uniform-Allocation: Confidence bound for
Best-Item identification with fixed sample complexity
Q). Given a budget of Q rounds, Uniform-Allocation re-
turns the Best-Item of PL(n,θ) with probability at least

1 − O
(

log2 n exp
(
− mQ∆2

min

16(2n+k log2 k)

))
, where ∆min =

minni=2 ∆i.

Remark 5. Thm. 12 equivalently shows that with sam-

ple complexity at most O

(
16(2n+k log2 k)

m∆2
min

ln

(
log2 n
δ

))
,

Uniform-Allocation returns the Best-Item with probabil-
ity at least (1 − δ). The bound is clearly optimal in terms
of m and Q (comparing with Thm. 11), however it still
remains an open problem to close the gap between the com-

plexity term ∆̃ =
(∑n

a=2
(θa)2

∆2
a

)−1

in the lower bound, vs.

the
(

n
∆2

min

)−1

term that we obtained.

6. Experiments
This section reports numerical results of our proposed al-
gorithm PAC-Wrapper (PW) on different Plackett-Luce
environments. All reported performances are averaged
across 50 runs. The default values of the parameters are
set to be k = 5, ε = 0.01, δ = 0.01, m = 1 unless ex-
plicitly mentioned/tuned in the specific experimental setup.
We compared our algorithm with the only existing bench-
mark algorithm Divide-and-Battle (DnB) (Saha & Gopalan,
2019) (even though, as described earlier, it does not apply
to instance-optimal analysis, specifically for ε = 0; this
is reflected in our experimental results as well). We use 8
different PL environments (with different θ parameters) for
the purpose, their descriptions are moved to Appendix D.

Throughout this section, by the term sample-complexity, we
mean the average (mean) termination time of the algorithms
across multiple reruns (i.e. number of subsetwise queries
performed by the algorithm before termination).

6.1. Results: Probably-Correct-Best-Item setting

Sample-Complexity vs Error-Margin (ε). Our first set of
experiments analyses the sample complexity (N (ε,∆)) of
PAC-Wrapper with varying ε (keeping δ fixed at 0.1). As
expected, Fig. 2 shows that the sample complexity increases
with decreasing ε for both the algorithms. However, the
interesting part is, for PW the sample complexity becomes
almost constant beyond a certain threshold of ε (precisely
when ε falls below ∆min) in every case, whereas for DnB
it keeps on scaling in O( 1

ε2 ) irrespective of the ‘hardness’
of the underlying PL environment due to its non-adaptive
nature—this is the region where we excel out. Also, note
that the harder the dataset (i.e. the smaller its ∆min), the
smaller this threshold is, as follows from Thm. 4, which
verifies the instance-adaptive nature of our PW algorithm as
it terminates as soon as ε falls below ∆min.
Itemwise sample complexity. This experiment reveals the
survival time of the items (i.e. total number plays of an
item before elimination) in PAC-Wrapper algorithm. The
results in Fig. 3 clearly shows the inverse dependency of
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Figure 2. Sample-Complexity vs Error-Margin (ε) (both in log
scale) of PW and DnB across 4 different problem instances.

the survival time of items w.r.t. their θ parameter, e.g. for
g4 dataset, the survival times of the items are categorized
into 4 groups, highest for item 1, with items 2-6, 7-11, and
12-16 following it—justifying the O

(
1

∆2
i

)
survival times for

each item i (in Thm. 3 or 5).

Figure 3. Survival time of different items (Itemwise sample com-
plexity) in PW on 4 different problem instances.

Tradeoff: Sample-Complexity vs size of Top-ranking
Feedback m. In this case we verified the flexibility of PAC-
Wrapper for Top-m Ranking feedback (Alg. 7). We run
it on different datasets with increasing size of top-ranking
feedback (m). Again, justifying the claims of Thm. 5, Fig.
4 shows the sample complexity varies at a rate of 1

m (note
that as m is doubled, sample complexity gets about halved),
while rest of the parameters (i.e. k, δ, ε) are kept unchanged.

Figure 4. Sample-Complexity vs length of rank ordered feedback
(m) of PW for 4 different problem instances.

6.2. Results: Fixed-Sample-Complexity setting

Success probability (1 − δ) vs Sample-Complexity (Q).
Finally we analysed the success probability (1 − δ) of al-
gorithm Uniform-Allocation (UA) for varying sample com-
plexities (Q), keeping ε fixed at (∆min)/2. Fig. 5 shows
that the algorithm identifies the Best-Item with higher con-
fidence with increasing Q—justifying its O(exp(−Q) error
confidence rate as proved in Thm. 12. Note that g4 being
the easiest instance, it reaches the maximum success rate 1
at a much smaller Q, compared to the rest. By construction,
DnB is not designed to operate in Fixed-Sample-Complexity
setup, but due to lack of any other existing baseline, we still
use it for comparison force terminating it if the specified
sample complexity is exceeded, and as expected, here again
it performs poorly in the lower sample complexity region.

Figure 5. Comparative performances of PW and DnB in terms of
Success probability (1− δ) vs Sample-Complexity (Q) across 4
different problem instances.

7. Conclusion and Future Work
Moving forward, it would be interesting to explore similar
algorithmic and statistical questions in the context of other
common subset choice models such as the Mallows model,
Multinomial Probit, etc. It would also be of great practical
interest to develop efficient algorithms for large item sets,
especially when there is structure among the parameters to
be exploited. One can also aim to develop instant dependent
guarantees for other ‘learning from relative feedback’ ob-
jectives, e.g. PAC-ranking (Szörényi et al., 2015), top-set
identification (Busa-Fekete et al., 2013) etc., both in fixed
confidence as well as fixed budget setting.
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Supplementary: From PAC to Instance Optimal Sample Complexity in the
Plackett-Luce Model

A. Appendix for Sec. 3
A.1. Pseudo-code for PAC-Wrapper

Algorithm 1 PAC-Wrapper (for Probably-Correct-Best-Item problem with Winner feedback)
1: input: Set of items: [n], Subset size: n ≥ k > 1, Confidence term δ > 0
2: init: A0 ← [n], s← 1
3: while |As−1| ≥ k do
4: Set εs = 1

2s+2 , δs = δ
120s3 ,Rs ← ∅

5: bs ← (ε, δ)-PAC Best-Item(As−1, k, 1, εs, δs)
6: B1, . . .BBs ← Partition(As−1 \ {bs}, k − 1)
7: if |BBs | < k − 1, thenRs ← BBs and Bs = Bs − 1
8: for b = 1, 2 . . . Bs do
9: Θ̂S ← Score-Estimate(bs,Bb, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).

10: Set Bb ← Bb ∪ {bs}
11: Play Bb for ts := 2Θ̂S

ε2s
ln k

δs
rounds

12: Receive the winner feedback: σ1, σ2, . . . σts ∈ Σ1
Bb after each respective ts rounds.

13: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ Bb
14: p̂ij :=

wij
wij+wji

for all i, j ∈ Bb
15: If ∃i ∈ Bb s.t. p̂ibs >

1
2 − εs, then As ← As ∪ {i}

16: end for
17: As ← As ∪Rs, s← s+ 1
18: end while
19: A ← As−1,
20: B ← As−1 ∪ {(k − |As−1|) elements from [n] \ As−1}
21: Pairwise empirical win-count wij ← 0, ∀i, j ∈ A
22: while |A| > 1 do
23: Set εs = 1

2s+2 , and δs = δ
80s3

24: bs ← (ε, δ)-PAC Best-Item(B, k,m, εs, δs)
25: Θ̂S ← Score-Estimate(bs,A \ {bs}, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).
26: Play B for ts := 2Θ̂S

mε2s
ln k

δs
rounds, and receive the corresponding winner feedback: σ1, σ2, . . . σts ∈ Σm

B per round.
27: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ A
28: Update p̂ij :=

wij
wij+wji

for all i, j ∈ A
29: If ∃i ∈ A with p̂ibs <

1
2 − εs, then A ← A \ {i}

30: s← s+ 1
31: end while
32: output: The item remaining in As

A.2. Subroutines used in PAC-Wrapper (Alg. 1)

Partition subroutine: Partition a given set A into B =
⌈
|A|
k

⌉
equally sized batches B1,B2, . . .BB , each of size at most k.

Algorithm 2 Partition subroutine
1: Input: Set of items: A ⊆ [n], Batch size: k ∈ [n]

2: B ←
⌈
|A|
k

⌉
3: Divide A into B subsets B1,B2, . . .BB such that Bi ∩ Bj = ∅, ∪Bi=1Bi = A and |Bi| = k , ∀i ∈ [B − 1]
4: Output: B batches B1,B2, . . .BB
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Score-Estimate subroutine: Our proposed algorithm relies on a black-box subroutine for efficient estimation of sum of the
Plackett-Luce model score parameters (θ) of any given subset S ⊆ [n], which we denote by ΘS :=

∑
i∈S θi. We achieve

this with the subroutine Score-Estimate (Alg. 3) which requires a pivot element b ∈ [n] to estimate the sum of the score
parameters of the given set S (i.e. ΘS): The algorithm simply plays the subset S ∪ {b} sufficiently many times and estimate
ΘS based on the relative win counts of items in ΘS w.r.t. pivot b. Under the assumption that b ∈ [n] is a sufficiently good
item such that θb > 1

2 , Thm. 13 shows Alg. 3 successfully estimates the relative scores of any subset S (upto multiplicative
constants) with high confidence (1− δs).

Algorithm 3 Score-Estimate(S, b, δ) subroutine
1: Input: Set of items: S ⊆ [n], pivot b, and confidence parameter δ
2: repeat
3: Play S ∪ {b} and observe the winner.
4: until b wins for d = 10 ln 4

δ times
5: Let T be the total number of plays of S ∪ {b}, and let Z = T − d.
6: Return: Z

d

Theorem 13 (Score-Estimate high probability estimation guarantee). Let ΘS :=
∑
i∈S θi. Given ΘS > θb, with probability

at least (1− δ):

i. the algorithm terminates in at most 10(θb+ΘS)
θb

ln 2
δ rounds and,

ii. the output returned by Score-Estimate (Alg. 3) satisfies:∣∣∣Z
d
− ΘS

θb

∣∣∣ ≤ 1

2
max

(
ΘS

θb
, 1

)

Proof. Let Xi denotes the time iteration when b wins for the ith time, ∀i ∈ [d]. Note that this implies Xi ∼
Geometric

(
θb

ΘS+θb

)
, ∀i ∈ [d]. Then from Lem. 7 of (Saha & Gopalan, 2018b), we have for any η > 0,

Pr
(∣∣∣Z
d
− ΘS

θb

∣∣∣ ≥ η) ≤ 2 exp

(
− 2dη2(

1 + ΘS
θb

)(
η + 1 + ΘS

θb

)).

We first want to get the right hand side 2 exp

(
− 2dη2(

1+
ΘS
θb

)(
η+1+

ΘS
θb

)) ≤ δ
2 , which further implies to have d ≥(

1+
ΘS
θb

)(
η+1+

ΘS
θb

)
2η2 ln 4

δ . Towards this we now would consider two cases:

Case 1: Suppose ΘS
θb
≥ 1: Then we can set η = ΘS

2θb
and thus one must have:(

1 + ΘS
θb

)(
η + 1 + ΘS

θb

)
2η2

ln
4

δ
=

(
θb
ΘS

+ 1
)(

θb
ΘS

+ 3
2

)
2(1/4)

ln
4

δ
≤

(
2
)(

5
2

)
2(1/4)

ln
4

δ
= 10 ln

4

δ
≤ d

Case 2: Suppose ΘS
θb

< 1: In this case we may set η = 1
2 so then it suffices to have(

1 + ΘS
θb

)(
η + 1 + ΘS

θb

)
2η2

ln
4

δ
≤

(
2
)(

5
2

)
2/4

ln
4

δ
= 10 ln

4

δ

Thus combining both cases we get with probability at least (1− δ/2):
∣∣∣Zd − ΘS

θb

∣∣∣ < 1
2 max

(
ΘS
θb
, 1

)
.
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So we are only left to prove the required sample complexity of Score-Estimate to yield d = 10 ln 4
δ wins of θb. For this,

note that at any round item b wins with probability θb
ΘS+θb

. So for any fixed τ rounds E[d] = θbτ
ΘS+θb

. Then applying
multiplicative Chernoff bounds, we know that for any ε ∈ (0, 1),

Pr
(
d ≤ (1− ε)E[d]

)
≤ exp

(
− E[d]ε2

2

)
,

which implies whenever τ ≥ 20(ΘS+θb)
θbε2

ln 4
δ , d ≥ (1− ε) τθb

θb+ΘS
with probability at least (1− δ/4). Finally noting that we

need d ≥ 10 ln 4
δ , this implies we can easily set ε = 1

2 so that

d ≥ (1− ε)20(ΘS + θb)

θbε2
θb

θb + ΘS
ln

4

δ
≥ 10 ln

4

δ
,

and the claim follows.

Lemma 14. Let us denote Θ̂S := max(Score-Estimate(S, b, δ), 1). Consider the notations introduced in Thm. 13, Then
with probability at least (1− δ), max(1, ΘS

2θb
) ≤ Z

d ≤ max( ΘS
2θb
, 3

2 ), and the algorithm Score-Estimate terminates in at most
40(ΘS + θb) ln 4

δ many iterations.

Proof. The proof directly follows from Thm. 13.

Corollary 15. Let S ⊆ [n], |S| = k, and let Θ[k] = maxS⊆[n]||S|=k
∑
i∈S θi. With the notation of Lem. 14, if b is an

1
2 -optimal item such that θb > θ1− ε for any ε ∈

(
0, 1

2

]
, then with probability at least (1−δ), max(1,ΘS/2) ≤ Z

d ≤ 6Θ[k],

and the Score-Estimate algorithm terminates in at most 80Θ[k] ln 4
δ iterations.

Proof. The proof directly follows from Lem. 14, with noting that by definition for any S ⊆ [n], |S| = k, ΘS ≤ Θ[k],
θb >

1
2 and Θ[k] ≥ 1, since we assume θ1 = 1 and of course θ1 ∈ Θ[k].

Rank-Breaking Subroutine (Soufiani et al., 2014; Khetan & Oh, 2016). This is a procedure of deriving pairwise compar-
isons from multiwise (subsetwise) preference information. Formally, given any set S ⊆ [n], m ≤ |S| < n, if σ ∈ Σm

S

denotes a possible Top-m Ranking feedback of S, Rank-Breaking considers each item in S to be beaten by its preceding
items in σ in a pairwise sense and extracts out total

∑m
i=1(k − i) = m(2k−m−1)

2 such pairwise comparisons. For instance,
given a full ranking of a set of 4 elements S = {a, b, c, d}, say b � a � c � d, Rank-Breaking generates the set of 6
pairwise comparisons: {(b � a), (b � c), (b � d), (a � c), (a � d), (c � d)}.

Algorithm 4 Rank-Breaking subroutine
1: Input: Subset S ⊆ [n], such that |S| = k (n ≥ k)
2: A top-m ranking σ ∈ Σm

S , for some m ∈ [k − 1]
3: Pairwise win-count wij for each item pair i, j ∈ S
4: while ` = 1, 2, . . .m do
5: Update wσ(`)i ← wσ(`)i + 1, for all i ∈ S \ {σ(1), . . . , σ(`)}
6: end while

A.3. Pseudo-code for (ε, δ)-PAC Best-Item

Algorithm description: The algorithm (ε, δ)-PAC Best-Item first divides the set of n items into batches of size k, and plays
each group sufficiently long enough, until a single item of that group stands out as the empirical winner in terms of its
empirical pairwise advantage over the rest (again estimated through Rank-Breaking). It then just retains this empirical winner
for every group and recurses on the set of surviving winners, until only a single item is left behind, which is declared as the
(ε, δ)-PAC item. The Its important to note that the sample complexity of our algorithm (see Thm. 6) offers an improved
instance dependent guarantee (compared to the O

(
n
mε2 ln k

δ

)
sample complexity algorithm Divide-and-Battle proposed by

(Saha & Gopalan, 2019)), which would turn out to be crucial for the instance-dependent sample-complexity analyses of our
main algorithms, Alg. 1 or 7, later. (See proof of Thm. 3 and 5 respectively for details.) Though our proposed algorithm
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proceed along a line similar to Divide-and-Battle of (Saha & Gopalan, 2019), the crux of our proposed algorithm lies in

sampling each subset Gg just sufficiently enough in an adaptive way for only O
(

Θ̂Gg
mε2 ln 2n

δ

)
times—thanks to our sum

estimation routine Score-Estimate (Alg. 3)—instead of sampling them blindly for O
(

k
mε2 ln 2n

δ

)
times as proposed in

Divide-and-Battle. To find the (1/2, δ)-optimal item: b ∈ [n] required to estimate Θ̂Gg , we can use the existing algorithms
like Divide-and-Battle. The complete algorithm is described in Alg. 5.

Algorithm 5 (ε, δ)-PAC Best-Item (for TR feedback)
1: Input:
2: Set of items: [n], and subset size: k > 2 (n ≥ k ≥ m)
3: Error bias: ε > 0, and confidence parameter: δ > 0
4: A (1/2, δ)-optimal item: b ∈ [n], such that θb > 1

2
5: Initialize:
6: S ← [n], ε0 ← ε

8 , and δ0 ← δ
2

7: Divide S into G := dnk e sets G1,G2, · · · GG such that ∪Gj=1Gj = S and Gj ∩ Gj′ = ∅, ∀j, j′ ∈ [G], |Gj | = k, ∀j ∈
[G− 1]. If |GG| < k, then setR1 ← GG and G = G− 1, ElseR1 ← ∅.

8: while ` = 1, 2, . . . do
9: Set δ` ← δ`−1

2 , ε` ← 3
4ε`−1

10: for g = 1, 2, · · ·G do
11: Θ̂Gg ← Score-Estimate

(
Gg, b, δ`

)
12: Initialize pairwise (empirical) win-count wij ← 0, for each item pair i, j ∈ Gg
13: for τ = 1, 2, . . . t :=

⌈
16Θ̂Gg
mε2l

ln 2k
δ`

⌉
do

14: Play the set Gg (one round of battle)
15: Receive feedback: The top-m ranking σ ∈ Σm

Gg
16: Update win-count wij of each item pair i, j ∈ Gg using Rank-Breaking(Gg,σ)
17: end for
18: Estimate pairwise win probabilities: ∀i, j ∈ Gg p̂i,j =

wij
wij+wji

if wij + wji > 0, p̂i,j = 1
2 otherwise

19: If ∃i ∈ Gg such that p̂ij + ε`
2 ≥

1
2 , ∀j ∈ Gg, then set cg ← i, else select cg ← uniformly at random from Gg. Set

S ← S \ (Gg \ {cg})
20: end for
21: S ← S ∪R`
22: if (|S| == 1) then
23: Break (out of the while loop)
24: else if |S| ≤ k then
25: S′ ← Randomly sample k − |S| items from [n] \ S, and set S ← S ∪ S′, ε` ← 2ε

3 , δ` ← δ
26: end if
27: Divide S intoG :=

⌈ |S|
k

⌉
sets G1, · · · GG such that ∪Gj=1Gj = S, Gj ∩Gj′ = ∅, ∀j, j′ ∈ [G], |Gj | = k, ∀j ∈ [G−1].

If |GG| < k, then setR`+1 ← GG and G = G− 1, ElseR1 ← ∅.
28: end while
29: Output: r∗, the single item remaining in S

Theorem 6 ((ε, δ)-PAC Best-Item: Correctness and Sample Complexity with Top-m Ranking feedback). For any ε ∈
(
0, 1

8

]
and δ ∈ (0, 1), with probability at least (1 − δ), (ε, δ)-PAC Best-Item (Algorithm 5) returns an item bs ∈ [n] satisfying

pbs1 >
1
2 − ε with sample complexity O

(
nΘ[k]

k max
(
1, 1

mε2

)
log k

δ

)
, where Θ[k] := maxS⊆[n],|S|=k

∑
i∈S θi.

Proof. For notational convenience we will use p̃ij = pij − 1
2 , ∀i, j ∈ [n].

We start by recalling a lemma from (Saha & Gopalan, 2019) which will be used crucially in the analysis:

Lemma 16. (Saha & Gopalan, 2019) For any three items a, b, c ∈ [n] such that θa > θb > θc, if p̃ba > −ε1 and p̃cb > −ε2,
where ε1, ε2 > 0 and (ε1 + ε2) < 1

2 , then p̃ca > −(ε1 + ε2).
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We first bound the sample complexity of Algorithm 5. For clarity of notation, we denote the set S at the beginning of

iteration ` (i.e., at line 9) by S`. Note that at an iteration `, any set Gg is played t = d 16Θ̂Gg
mε2l

ln 2k
δ`
e ≤ d 96Θ[k]

mε2l
ln 2k

δ`
e times,

where the inequality follows from Corollary 15. Also, since the algorithm discards exactly k − 1 items from each set Gg,

the maximum number of iterations possible is dlnk ne. Now, at iteration `, since G =
⌊
|S`|
k

⌋
< |S`|

k , the total sample
complexity for iteration ` is at most

|S`|
k
t ≤ n

k`

⌈
96Θ[k]

mε2`
ln

2k

δ`

⌉
using the fact that |S`| ≤ n

k`−1 for all ` ∈ [blnk nc]. For all iterations ` ∈ [blnk nc] except the final one, we have ε` =

ε
8

(
3
4

)`−1

and δ` = δ
2`+1 . Moreover, for the last iteration ` = dlnk ne, the sample complexity is at most

⌈
96Θ[k]

m(ε/2)2 ln 4k
δ

⌉
since, in this case, ε` = ε

2 , and δ` = δ
2 , and |S| = k.

Let us ignore, for the moment, the additional sample complexity due to the score estimation subroutine, Score-Estimate, in
the operation of Algorithm 5. Then, the argument above implies that the sample complexity of the algorithm is at most

(A) :=

dlnk ne∑
`=1

|S`|
k
t ≤

∞∑
`=1

n

k`


96Θ[k]

m

(
ε
8

(
3
4

)`−1
)2 ln

k2`+1

δ

+

⌈
96Θ[k]

m(ε/2)2
ln

4k

δ

⌉

≤
∞∑
`=1

n

k`

 96Θ[k]

m

(
ε
8

(
3
4

)`−1
)2 ln

k2`+1

δ
+ 1

+

(
96Θ[k]

m(ε/2)2
ln

4k

δ
+ 1

)

≤
4096nΘ[k]

mkε2

∞∑
`=1

16`−1

(9k)`−1

(
ln
k

δ
+ (`+ 1)

)
+

n

k − 1
+

384Θ[k]

mε2
ln

4k

δ
+ 1

≤
4096nΘ[k]

mkε2
ln
k

δ

∞∑
`=1

4`−1

(9k)`−1

(
3`
)

+
384Θ[k]

mε2
ln

4k

δ
+

(
1 +

n

k − 1

)
= O

(
nΘ[k]

mkε2
ln
k

δ
+
n

k

)
[for any k > 1]

= O

(
nΘ[k]

mkε2
ln
k

δ
+
nΘ[k]

k
ln
k

δ

)
[since Θ[k] ≥ 1, ln

k

δ
≥ 1].

Turning to the extra effort expended by the score estimation subroutine Score-Estimate(Gg, b, δ`), at each phase `, the sample

complexity of Score-Estimate is known by Cor. 15 to be at most 80Θ[k] ln 4
δ`

= O
(

Θ[k] ln 1
δ`

)
for any subgroup Gg . And

since there are at most G =
⌊
|S`|
k

⌋
< |S`|

k subgroups at any phase `, this implies that the total sample complexity incurred

at any phase owing to Score-Estimate is at most 80|S`|Θ[k]

k ln 4
δ`
≤ 80nΘ[k]

k`+1 ln 4
δ`

. Following the same calculations as before,
the total sample complexity incurred by the Score-Estimate subroutine within the algorithm, over all iterations, is at most

(B) :=

dlnk ne∑
`=1

80nΘ[k]

k`+1
ln

4

δ`
≤
∞∑
`=1

nΘ[k]

k

80

k`
ln

82`

δ
= O

(
nΘ[k]

k
ln

1

δ

)
= O

(
nΘ[k]

k
ln
k

δ

)
.

Observe now that the term (B) is dominated by (A) in general unless 1
mε2 = O(1), or in other words m is so large that

m = Ω
(

1
ε2

)
. Thus taking care of the above tradeoff between term (A) and (B), the final sample complexity can be expressed

as O(
nΘ[k]

k max
(
1, 1

mε2

)
log k

δ ). This proves the sample complexity bound for Algorithm 5.
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We now proceed to prove the (ε, δ)-PAC correctness of Algorithm 5. We start by making the following observation.

Lemma 17. Consider any particular set Gg at any iteration ` ∈ bnk c, and let qi :=
∑t
τ=1 1(i ∈ Gmg ) be the number of

times any item i ∈ Gg appears in the top-m rankings when Gg is played for t rounds. If ig := arg maxi∈Gg θi and θig >
1
2 ,

then for any η ∈
(

3
32
√

2
, 1
]
, with probability at least

(
1− δ`

2k

)
, qig > (1− η)mtk .

Proof. Define iτ := 1(i ∈ Gmg ) as the indicator of the event that the ith element appears in the top-m ranking at iteration
τ ∈ [t]. Using the definition of the top-m ranking feedback model, we get E[iτg ] = Pr({ig ∈ Gmg }) = Pr

(
∃j ∈

[m] | σ(j) = ig
)

=
∑m
j=1 Pr

(
σ(j) = ig

)
>
∑m−1
j=0

θig

Θ̂Gg
≥ mθig

Θ̂Gg
, as Pr({ig|S}) =

θig∑
j∈S θj

≥ θig

Θ̂Gg
for any S ⊆ [Gg],

i ∈ Gg , as ig := arg maxi∈Gg θi is the best item of set Gg . Hence E[qig ] =
∑t
τ=1 E[iτg ] ≥ mtθig

ΘGg
> mt

2ΘGg
.

Applying the Chernoff-Hoeffding concentration inequality for wig , we get that for any η ∈ ( 3
32 , 1],

Pr
(
qig ≤ (1− η)E[qig ]

)
≤ exp

(
−

E[qig ]η2

2

)
≤ exp

(
−mtη

2

4ΘGg

)
= exp

(
− 2η2

ε2`
ln

(
2k

δ`

))
= exp

(
− (
√

2η)2

ε2`
ln

(
2k

δ`

))
≤ exp

(
− ln

(
2k

δ`

))
≤ δ`

2k
,

where the second last inequality holds as η ≥ 3
32
√

2
and ε` ≤ 3

32 , for any iteration ` ∈ dlnne; in other words for any

η ≥ 3
32
√

2
, we have

√
2η
ε`
≥ 1 which leads to the second last inequality. Thus, we get that with probability at least

(
1− δ`

2k

)
,

it holds that qig > (1− η)E[qig ] ≥ (1− η) tm
2ΘGg

.

In particular, fixing η = 1
2 in Lemma 17, we get that with probability at least

(
1− δ`

2

)
, qig > (1− 1

2 )E[wig ] > mt
4ΘGg

. Note
that for any round τ ∈ [t], whenever an item i ∈ Gg appears in the top-m set Gτgm, then the rank breaking update ensures
that every element in the top-m set gets compared with rest of the k − 1 elements of Gg . Based on this observation, we now
prove that for any set Gg , its best item ig is retained as the winner cg with probability at least

(
1− δ`

2

)
. More formally, we

make the following observation.

Lemma 18. Consider any particular set Gg at any iteration ` ∈ bnk c. If ig = arg maxi∈Gg θi and θig >
1
2 , then the

following events occur with probability at least
(

1− δ`
)

: (1) p̂igj + ε`
2 ≥

1
2 for all ε`-optimal items in Gg, i.e., ∀j ∈ Gg

such that pigj ∈
(

1
2 ,

1
2 + ε`

]
, and (2) p̂igj − ε`

2 ≥
1
2 for all non ε`-optimal items in Gg , i.e., j ∈ Gg such that pigj >

1
2 + ε`.

Proof. With top-m ranking feedback, the crucial observation lies in the fact that at any round τ ∈ [t], whenever an item
i ∈ Gg appears in the top-m set Gmg , then the rank breaking update ensures that every element in the top-m set gets compared
with each of the rest of the k − 1 elements of Gg: it gets defeated by every element preceding it in σ ∈ ΣGmg , and defeats all
other items in the top-m set Gmg . Therefore, defining nij = wij + wji to be the number of times item i and j are compared
after rank-breaking, i, j ∈ Gg . Clearly nij = nji, and 0 ≤ nij ≤ tk. Moreover, from Lemma 17 with η = 1

2 , we have that
nigj ≥ mt

4ΘGg
. Given the above arguments in place let us analyze the probability of a ‘bad event’, i.e.:

Case 1. j is ε`-optimal with respect to ig , i.e. pigj ∈
(

1
2 ,

1
2 + ε`

]
. Then we have

Pr

({
p̂igj +

ε`
2
<

1

2

}
∩
{
nigj ≥

mt

4ΘGg

})
= Pr

({
p̂igj <

1

2
− ε`

2

}
∩
{
nigj ≥

mt

4ΘGg

})

≤ Pr
({

p̂igj − pigj < −
ε`
2

}
∩
{
nigj ≥

mt

4ΘGg

})
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≤ exp
(
− 2

mt

4ΘGg
(ε`/2)

2
))

=
δ`
2k
,

where the first inequality follows as pigj >
1
2 , and the second inequality follows from Lemma 22 with η = ε`

2 and v = mt
4ΘGg

.

Case 2. j is non ε`-optimal with respect to ig , i.e. pigj >
1
2 + ε`. Similar to before, we have

Pr

({
p̂igj −

ε`
2
<

1

2

}
∩
{
nigj ≥

mt

4ΘGg

})
= Pr

({
p̂igj <

1

2
+
ε`
2

}
∩
{
nigj ≥

mt

4ΘGg

})

≤ Pr
({

p̂igj − pigj < −
ε`
2

}
∩
{
nigj ≥

mt

4ΘGg

})
≤ exp

(
− 2

mt

4ΘGg
(ε`/2)

2
))

=
δ`
2k
,

where the third last inequality follows since in this case pigj >
1
2 + ε`, and the last inequality follows from Lemma 22 with

η = ε`
2 and v = mt

2k .

Let us define the event E :=

{
∃j ∈ Gg such that p̂igj + ε`

2 < 1
2 , pigj ∈

(
1
2 ,

1
2 + ε`

]
or p̂igj − ε`

2 < 1
2 , pigj >

1
2 + ε`

}
.

Then by combining Case 1 and 2, we get

Pr
(
E
)

= Pr

(
E ∩

{
nigj ≥

mt

4ΘGg

})
+ Pr

(
E ∩

{
nigj <

mt

4ΘGg

})

≤
∑

j∈Gg s.t. pigj∈
(

1
2 ,

1
2 +ε`

]Pr
({

p̂igj +
ε`
2
<

1

2

}
∩
{
nigj ≥

mt

4ΘGg

})

+
∑

j∈Gg s.t. pigj>
1
2 +ε`

Pr

({
p̂igj −

ε`
2
<

1

2

}
∩
{
nigj ≥

mt

4ΘGg

})
+ Pr

({
nigj <

mt

4ΘGg

})

≤ (k − 1)δ`
2k

+
δ`
2k
≤ δ`

where the last inequality follows from the above two case analyses and Lemma 17.

Given Lemma 18 in place, let us now analyze with what probability the algorithm can select a non ε`-optimal item j ∈ Gg
as cg at any iteration ` ∈ dnk e. For any set Gg (or set S for the last iteration ` = dnk e), we define the set of non-ε`-optimal

elements Og = {j ∈ Gg | pigj > 1
2 + ε`}, and recall the event E :=

{
∃j ∈ Gg such that p̂igj + ε`

2 < 1
2 , pigj ∈(

1
2 ,

1
2 + ε`

]
or p̂igj − ε`

2 < 1
2 , pigj >

1
2 + ε`

}
. We then have

Pr(cg ∈ Og) ≤ Pr

({
∃j ∈ Gg, p̂igj +

ε`
2
<

1

2

}
∪
{
∃j ∈ Og, p̂jig +

ε`
2
≥ 1

2

})

≤ Pr

(
E ∪

{
∃j ∈ Og, p̂jig +

ε`
2
≥ 1

2

})

= Pr
(
E
)

+ Pr

({
∃j ∈ Og, p̂jig +

ε`
2
≥ 1

2

}
∩ Ec

)
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= Pr
(
E
)

+ Pr

({
∃j ∈ Og, p̂jig +

ε`
2
≥ 1

2

}
∩ Ec

)
≤ δ` + 0 = δ`, (1)

where the last inequality follows from Lemma 18 and the fact that p̂igj − ε`
2 ≥

1
2 =⇒ p̂jig + ε`

2 < 1
2 . The proof now

follows by combining all the above parts together.

At each iteration `, let us define g` ∈ [G] to be the index of the set that contains the best item of the currently surviving set S,
i.e., the index g` such that arg maxi∈S θi ∈ Gg` . Then from (1), with probability at least (1− δ`), p̃cg` ig` > −ε`. Now for

each iteration `, recursively applying (1) and Lemma 16 to Gg` , we get that p̃r∗1 > −
(
ε
8 + ε

8

(
3
4

)
+ · · ·+ ε

8

(
3
4

)bnk c)+ ε
2 ≥

− ε
8

(∑∞
i=0

(
3
4

)i)
+ ε

2 = ε. (Note that for this analysis to go through, it is in fact sufficient to consider only the set of
iterations {` ≥ `0 | `0 = min{l | 1 /∈ Rl, l ≥ 1}}, because prior to considering item 1, it does not matter even if the
algorithm makes a mistake in any of the iterations ` < `0). Thus assuming that the algorithm does not fail in any of the
iterations `, we have that pr∗1 >

1
2 − ε.

Finally, since at each iteration `, the algorithm fails with probability at most δ`, the total failure probability of the algorithm
is at most

(
δ
4 + δ

8 + · · ·+ δ

2d
n
k
e

)
+ δ

2 ≤ δ. This concludes the correctness of the algorithm showing that it indeed returns

an ε-best element r∗ such that pr∗1 ≥ 1
2 − ε with probability at least 1− δ.

A.4. Proof of Thm. 3

Theorem 3 (PAC-Wrapper(0, δ)-PAC sample complexity bound with Winner feedback). With probability at
least (1 − δ), A as PAC-Wrapper (Algorithm 1) returns the Best-Item with sample complexity NA(0, δ) =

O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

∆2
i

)
ln k

δ

(
ln 1

∆i

))
, where Θ[k] := maxS⊆[n]||S|=k

∑
i∈S θi.

Proof. The proof is based on the following four main observations:

1. The Best-Item a∗ (i.e. item 1 in our case) is likely to beat the (εs, δs)-PAC item by sufficiently high margin, for any
sub-phase s = 1, 2 . . ., and hence is never discarded (see Lem. 19).

2. With high probability the set of suboptimal items get discarded at a fixed rate once played for sufficiently long duration
(see Lem. 20).

3. The number of occurrences of any sub-optimal item i before it gets discarded is proportional to O
(

1
∆2
i

)
which yields

the desired sample complexity of the algorithm (see Lem.21).

4. Lastly we show (using Thm. 6 and Lem. 14)) that the additional sample complexity incurred due to invoking the
subroutine (ε, δ)-PAC Best-Item and Score-Estimate at every sub-phase s is orderwise same as the sample complexity
incurred by PAC-Wrapper in the rest of the sub-phase, due to which (ε, δ)-PAC Best-Item so they do not actually
contribute to the overall sample complexity of the algorithm modulo some constant factors.

While analysing any particular batch Bb of a given phase s, we will denote by S = Bb \ {bs} and by ΘS =
∑
i∈S θi.

We will first prove the correctness of the algorithm, i.e. with high probability (1− δ), PAC-Wrapper indeed returns the
Best-Item , i.e. item 1 in our case. We prove this using the following two lemmas: Lem. 19 and Lem. 20 respectively.

Lemma 19. With high probability of at least (1− δ
20 ), item 1 is never eliminated, i.e. 1 ∈ As for all sub-phase s. More

formally, at the end of any sub-phase s = 1, 2, . . ., p̂1bs >
1
2 − εs.

Proof. Firstly note that at any sub-phase s, each batch b ∈ B within that phase is played for ts =
2Θ[k]

ε2s
ln k

δs
rounds. Now

consider the batch B 3 1 at any phase s. Clearly bs ∈ B too. Again since bs is returned by Alg. 5, by Thm. 6 we know
that with probability at least (1− δs), pbs1 >

1
2 − εs =⇒ θbs > θ1 − 4ε. This further implies θbs ≥ θ1 − 1

2 = 1
2 (since

we assume θ1 = 1, and at any s, εs < 1
8 ). Moreover by Lem. 14, we have Θ̂S ≥ θbs+ΘS

θbs
> ΘS+1

2 (recall we denote
S = Bb \ {bs})
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Now let us define wi as number of times item i ∈ B was returned as the winner in ts rounds and iτ be the winner retuned by
the environment upon playing B for the τ th round, where τ ∈ [ts]. Then clearly Pr({iτ = 1}) = θ1∑

j∈B θj
= 1

θbs+ΘS
≥

1
1+ΘS

, ∀τ ∈ [ts], as 1 := arg maxi∈B θi. Hence E[w1] =
∑ts
τ=1 E[1(iτ = 1)] = ts

θbs+ΘS
≥ ts

(1+ΘS) . Now assuming bs to
be indeed an (εs, δs)-PAC Best-Item and the bound of Lem. 14 to hold good as well, applying the multiplicative form of the
Chernoff-Hoeffding bound on the random variable w1, we get that for any η ∈ (

√
2εs, 1],

Pr
(
w1 ≤ (1− η)E[w1]

)
≤ exp

(
− E[w1]η2

2

)
≤ exp

(
− tsη

2

2(1 + ΘS)

)
= exp

(
− 2Θ̂Sη

2

2ε2s(1 + ΘS)
ln
k

δs

)
(a)

≤ exp

(
− 2(ΘS + 1)η2

4ε2s(1 + ΘS)
ln
k

δs

)
≤ exp

(
− η2

2ε2s
ln

(
k

δs

))
≤ exp

(
− ln

(
k

δs

))
=
δs
k
,

where (a) holds since we proved Θ̂S ≥ θbs+ΘS
θbs

> ΘS+1
2 , and the last inequality holds as η > εs

√
2.

In particular, note that εs ≤ 1
8 for any sub-phase s, due to which we can safely choose η = 1

2 for any s, which gives that
with probability at least

(
1− δs

k

)
, w1 > (1− 1

2 )E[w1] > ts
2(θbs+ΘS) , for any subphase s.

Thus above implies that with probability atleast (1− δs
k ), after ts rounds we have w1bs ≥ ts

2(θbs+ΘS) =⇒ w1bs + wbs1 ≥
ts

2(θbs+ΘS) . Let us denote n1bs = w1bs + wbs1. Then the probability of the event:

Pr

(
p̂1bs <

1

2
− εs, n1bs ≥

ts
2(θbs + ΘS)

)
= Pr

(
p̂1bs −

1

2
< −εs, n1bs ≥

ts
2(θbs + ΘS)

)

≤ Pr

(
p̂1bs − p1bs < −εs, n1bs ≥

ts
2(θbs + ΘS)

)
(as p1bs >

1

2
)

(a)

≤ exp
(
− 2

ts
2(θbs + ΘS)

(
εs
)2)

≤ exp
(
− 2(θbs + ΘS)

ε2sθbs(θbs + ΘS)

(
εs
)2) ≤ δs

k
,

where the last inequality (a) follows from Lem. 22 for η = εs and v = ts
2k .

Thus under the two assumptions that (1). bs is indeed an (εs, δs)-PAC Best-Item and (2). the bound of Lem. 14 holds good,
combining the above two claims, at any sub-phase s, we have

Pr

(
p̂1bs <

1

2
− εs

)

= Pr

(
p̂1bs <

1

2
− εs, n1bs ≥

ts
2(θbs + ΘS)

)
+ Pr

(
p̂1bs <

1

2
− εs, n1bs <

ts
2(θbs + ΘS)

)

≤ δs
k

+ Pr

(
n1bs <

ts
2(θbs + ΘS)

)
≤ 2δs

k
≤ δs (since k ≥ 2)
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Moreover from Thm. 6 and Lem. 14 we know that the above two assumptions hold with probability at least (1− 2δs). Then
taking union bound over all sub-phases s = 1, 2, . . ., the probability that item 1 gets eliminated at any round:

Pr

(
∃s = 1, 2, . . . s.t. p̂1bs <

1

2
− εs

)
=

∞∑
s=1

3δs =

∞∑
s=1

3δ

120s3
≤ δ

40

∞∑
s=1

1

s2
≤ δ

40

π2

6
≤ δ

20
,

where the first inequality holds since k ≥ 2.

We next introduce few notations before proceeding to the next claim of Lem. 20.

Notations. Recall that we defined ∆i = θ1 − θi (Sec. 2). We further denote ∆min = mini∈[n]\{1}∆i. We define the set
of arms [n]r := {i ∈ [n] : 1

2r ≤ ∆i <
1

2r−1 }, and denote the set of surviving arms in [n]r at sth sub-phase by Ar,s, i.e.
Ar,s = [n]r ∩ As, for all s = 1, 2, . . ..

Lemma 20. Assuming that the best arm 1 is not eliminated at any sub-phase s = 1, 2, . . ., then with probability at least
(1− 19δ

20 ), for any sub-phase s ≥ r, |Ar,s| ≤ 2
19 |Ar,s−1|, for any r = 0, 1, 2, . . . log2(∆min).

Proof. Consider any sub-phase s, and let us start by noting some properties of bs. Note that by Lem. 6, with high probability
(1− δs), pbs1 >

1
2 − εs. Then this further implies

pbs1 >
1

2
− εs =⇒ (θbs − θ1)

2(θbs + θ1)
> −εs

=⇒ (θbs − θ1) > −2εs(θbs + θ1) > −4εs (as θi ∈ (0, 1)∀i ∈ [n] \ {1})

So we have with probability atleast (1− δs), θbs > θ1 − 4εs = θ1 − 1
2s .

Now consider any fixed r = 0, 1, 2, . . . log2(∆min). Clearly by definition, for any item i ∈ [n]r, ∆i = θ1 − θi > 1
2r .

Then combining the above two claims, we have for any sub-phase s ≥ r, θbs > θ1− 1
2s ≥ θi+

1
2r −

1
2s > 0 =⇒ pbsi >

1
2 ,

at any s ≥ r.

Moreover note that for any s ≥ 1, εs > 1
8 , so that implies θbs > θ1 − 4εs >

1
2 .

Recall that at any sub-phase s, each batch within that phase is played for ts =
2Θ[k]

ε2s
ln k

δs
many rounds. Now consider

any batch such that B 3 i for any i ∈ [n]r. Of course bs ∈ B as well, and note that we have shown pbsi >
1
2 with high

probability (1− δs).

Same as Lem. 19, let us again define wi as number of times item i ∈ B was returned as the winner in ts rounds, and iτ be
the winner retuned by the environment upon playing B for the τ th rounds, where τ ∈ [ts]. Then given θbs >

1
2 (as derived

earlier), clearly Pr({iτ = bs}) =
θbs

θbs+ΘS
, ∀τ ∈ [ts]. Hence E[wbs ] =

∑ts
τ=1 E[1(iτ = bs)] =

θbs ts
(θbs+ΘS) . Now applying

multiplicative Chernoff-Hoeffdings bound on the random variable wbs , we get that for any η ∈ (
√

2εs, 1],

Pr
(
wbs ≤ (1− η)E[wbs ] | θbs >

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
≤ exp

(
− E[wbs ]η

2

2

)
≤ exp

(
− θbstsη

2

2(θbs + ΘS)

)
≤ exp

(
− η2

2ε2s
ln

(
k

δs

))
≤ exp

(
− ln

(
k

δs

))
=
δs
k
,

where the last inequality holds as η >
√

2εs. So as a whole, for any η ∈ (
√

2εs, 1],
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Pr
(
wbs ≤ (1− η)E[wbs ]

)
≤ Pr

(
wbs ≤ (1− η)E[wbs ] | θbs >

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
Pr
(
θbs >

1

2

)
+ Pr

(
θbs <

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
≤ δs

k
+ 2δs

In particular, note that εs < 1
8 for any sub-phase s, due to which we can safely choose η = 1

2 for any s, which gives that
with probability at least

(
1− δs

k

)
, wbs > (1− 1

2 )E[wbs ] >
tsθbs

2(ΘS+θbs ) , for any subphase s.

Thus above implies that with probability at least (1 − δs
k − 2δs), after ts rounds we have wbsi ≥

tsθbs
2(ΘS+θbs ) =⇒

wibs + wbsi ≥
tsθbs

2(ΘS+θbs ) . Let us denote nibs = wibs + wbsi. Then the probability that item i is not eliminated at any
sub-phase s ≥ r is:

Pr

(
p̂ibs >

1

2
− εs, nibs ≥

tsθbs
2(ΘS + θbs)

)
= Pr

(
p̂ibs −

1

2
> −εs, nibs ≥

tsθbs
2(ΘS + θbs)

)

≤ Pr

(
p̂ibs − pibs > −εs, n1bs ≥

tsθbs
2(ΘS + θbs)

)
(as pibs <

1

2
)

(a)

≤ exp
(
− 2

ts
2(ΘS + θbs)

(
εs
)2)

≤ exp
(
− 2

(ΘS + θbs)

2θbs(ΘS + θbs)

(
εs
)2

ln
δs
k

)
≤ δs

k
,

where (a) follows from Lem. 22 for η = εs and v = ts
2k .

Now combining the above two claims, at any sub-phase s, we have:

Pr

(
p̂ibs >

1

2
− εs

)
= Pr

(
p̂ibs >

1

2
− εs, nibs ≥

ts
4k

)
+ Pr

(
p̂ibs >

1

2
− εs, nibs <

ts
4k

)

≤ δs
k

+ 2δs +
δs
k
≤ 3δs (since k ≥ 2)

This consequently implies that for any sup-phase s ≥ r, E[|Ar,s|] ≤ 3δsE[|Ar,s−1|]. Then applying Markov’s Inequality
we get:

Pr

(
|Ar,s| ≤

2

19
|Ar,s−1|

)
≤ 3δs|Ar,s−1|

2
19 |Ar,s−1|

=
57δs

2

Finally applying union bound over all sub-phases s = 1, 2, . . ., and all r = 1, 2, . . . s, we get:

∞∑
s=1

s∑
r=1

57δs
2

=

∞∑
s=1

s
57δ

240s3
=

57δ

240

∞∑
s=1

1

s2
≤ 57δ

240

π2

6
≤ 57δ

120
≤ 19δ

20
.
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Thus combining Lem. 19 and 20, we get that the total failure probability of PAC-Wrapper is at most δ
20 + 19δ

20 = δ.

The remaining thing is to prove the sample complexity bound which crucially relies on the following claim. At any sub-phase
s, we call the item bs as the pivot element of phase s.

Lemma 21. Assume both Lem. 19 and Lem. 20 holds good and the algorithm does not do a mistake. Consider any item
i ∈ [n]r, for any r = 1, 2, . . . log2(∆min). Then the total number of times item i gets played as a non-pivot item (i.e. appear

in at most one of the k-subsets per sub-phase s) during the entire run of Alg. 1 is O
(

(2r)2Θ[k] ln rk
δ

)
.

Proof. Let us denote the sample complexity of item i (as a non-pivot element) from phase x to y as N (i)
x,y, for any

1 ≤ x < y <∞. Additionally, recalling from Lem. 14 that Θ̂S ≤ 7Θ[k], we now prove the claim with the following two
case analyses:

(Case 1) Sample complexity till sub-phase s = r − 1: Note that in the worst case item i can get picked at every sub-phase
s = 1, 2, . . . r − 1, and at every s it is played for ts round. Additionally, recalling from Lem. 14 that Θ̂S ≤ 7Θ[k], the total
number of plays of item i ∈ [n]r (as a non-pivot item), till sub-phase r − 1 becomes:

N (i)
1,r−1 ≤

r−1∑
s=1

ts =

r−1∑
s=1

14Θ[k]

ε2s
ln
k

δs
=

14Θ[k]

4−2

r−1∑
s=1

(2s)2 ln
120k3

δ
= O

(
(2r)2Θ[k] ln

rk

δ

)
(Case 2) Sample complexity from sub-phase s ≥ r onwards: Assuming Lem. 20 holds good, note that if we define a random
variable Is for any sub-phase s ≥ r such that Is = 1(i ∈ As), then clearly E[Is] ≤ 2

19E[Is−1] (as follows from the analysis
of Lem. 19). Then the total expected sample complexity of item i ∈ [n]r for round r, r + 1, . . .∞ becomes:

N (i)
r,∞ ≤ 224Θ[k]

∞∑
s=r

(
2

19

)s−r+1

4s ln
k

δs
= 224Θ[k](2

r)2
∞∑
s=0

(
2

19

)s+1

(2s)2 ln
120k(s+ r)3

δ

=
448

19
Θ[k](2

r)2
∞∑
s=0

(
8

19

)s
ln

120k(s+ r)3

δ

≤ 448

19
Θ[k](2

r)2

[
ln

120kr

δ

∞∑
s=0

(
8

19

)s
+

∞∑
s=0

(
8

19

)s
ln(120ks)

]
= O

(
(2r)2Θ[k] ln

rk

δ

)

Combining the two cases above we get N (i)
1,∞ = O

(
(2r)2Θ[k] ln rk

δ

)
as well, which concludes the proof.

Following similar notations as N (i)
x,y, we now denote the number of times any k-subset S ⊆ [n] played by the algorithm in

sub-phase x to y as N (S)
x,y . Then using Lem. 21, the total sample complexity of the algorithm PAC-Wrapper (lets call it

algorithm A) can be written as:

NA(0, δ) =
∑

S⊂[n]||S|=k

∞∑
s=1

1(S ∈ {B1, . . . ,BBs})ts =
∑
i∈[n]

∞∑
s=1

1(i ∈ As \ {bs})
k − 1

ts

=

∞∑
s=1

∑
i∈[n]

1(i ∈ As \ {bs})
k − 1

ts =

∞∑
s=1

log2(∆min)∑
r=1

∑
i∈[n]r

1(i ∈ As \ {bs})
k − 1

ts

=
1

k − 1

log2(∆min)∑
r=1

∑
i∈[n]r

N (i)
1,∞ ( Lem. 21)

=
1

k − 1

log2(∆min)∑
r=1

∑
i∈[n]r

O
(

(2r)2Θ[k] ln
rk

δ

)
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=
Θ[k]

k − 1

log2(∆min)∑
r=1

|[n]r|O
(

(2r)2 ln
rk

δ

)
= O

(Θ[k]

k

n∑
i=2

1

∆2
i

ln
(k
δ

ln
1

∆i

))
, (2)

where the last inequality follows since 2r < 2
∆i

by definition for all i ∈ [n]r. Finally the last thing to account for is the
additional sample complexity incurred due to calling the subroutine (ε, δ)-PAC Best-Item and Score-Estimate at every

sub-phase s, which is combinedly known to be of O
(
|As|Θ[k]

k

(
1, 1

(2s)2

)
ln k

δ

)
at any sub-phase s (from Thm. 6 and

Cor. 15). And using a similar summation as shown above over all s = 1, 2, . . .∞, combined with Lem. 20 and using
the fact that 2r < 2

∆i
, one can show that the total sample complexity incurred due to the above subroutines is at most

Θ[k]

k

∑n
i=2 max

(
1, 1

∆2
i

)
log k

δ ). Considering the above sample complexity added with that derived in Eqn. 2 finally gives

the desired O
(

Θ[k]

k

∑n
i=2 max

(
1, 1

∆2
i

)
ln k

δ

(
ln 1

∆i

))
sample complexity bound of Alg. 1.

Lemma 22 (Deviations of pairwise win-probability estimates for the PL model (Saha & Gopalan, 2019)). Consider a
Plackett-Luce choice model with parameters θ = (θ1, θ2, . . . , θn), and fix two distinct items i, j ∈ [n]. Let S1, . . . , ST be a
sequence of (possibly random) subsets of [n] of size at least 2, where T is a positive integer, and i1, . . . , iT a sequence of
random items with each it ∈ St, 1 ≤ t ≤ T , such that for each 1 ≤ t ≤ T , (a) St depends only on S1, . . . , St−1, and (b)
it is distributed as the Plackett-Luce winner of the subset St, given S1, i1, . . . , St−1, it−1 and St, and (c) ∀t : {i, j} ⊆ St
with probability 1. Let ni(T ) =

∑T
t=1 1(it = i) and nij(T ) =

∑T
t=1 1({it ∈ {i, j}}). Then, for any positive integer v,

and η ∈ (0, 1),

Pr

(
ni(T )

nij(T )
− θi
θi + θj

≥ η, nij(T ) ≥ v
)
∨ Pr

(
ni(T )

nij(T )
− θi
θi + θj

≤ −η, nij(T ) ≥ v
)
≤ e−2vη2

.
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A.5. Modified version of PAC-Wrapper (Alg. 1) for general (ε, δ)-PAC guarantee (for any ε ∈ [0, 1])

Algorithm 6 Modified PAC-Wrapper (for a general (ε, δ)-PAC guarantee)
1: input: Set of items: [n], Subset size: n ≥ k > 1, Confidence term δ > 0
2: init: A0 ← [n], s← 1
3: while |As−1| > 1 do
4: Set εs = 1

2s+2 , δs = δ
120s3 , andRs ← ∅.

5: bs ← (ε, δ)-PAC Best-Item(As−1, k, 1, εs/4, δs)
6: If (εs ≤ ε) then A′ ← {bs}, and exit the while loop (go to Line 35)
7: B1, . . .BBs ← Partition(As−1 \ {bs}, k − 1)
8: if |BBs | < k − 1, thenRs ← BBs and Bs = Bs − 1
9: for b = 1, 2 . . . Bs do

10: Θ̂S ← Score-Estimate(bs,Bb, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).
11: Set Bb ← Bb ∪ {bs}
12: Play Bb for ts := 2Θ̂S

ε2s
ln k

δs
rounds

13: Receive the winner feedback: σ1, σ2, . . . σts ∈ Σ1
Bb after each respective ts rounds.

14: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ Bb
15: p̂ij :=

wij
wij+wji

for all i, j ∈ Bb
16: If ∃i ∈ Bb s.t. p̂ibs >

1
2 − εs, then As ← As ∪ {i}

17: end for
18: As ← As ∪Rs, s← s+ 1
19: if 1 < |As−1| ≤ k then
20: Append As−1 with any (k − |As−1|) elements from [n] \ As−1

21: Pairwise empirical win-count wij ← 0, ∀i, j ∈ As−1; A ← As−1; A′ ← As−1

22: while |A′| > 1 do
23: Set εs = 1

2s+2 , and δs = δ
1200s3

24: bs ← (ε, δ)-PAC Best-Item(A, k, 1, εs/4, δs)
25: If (εs ≤ ε) then A′ ← {bs}, and exit the while loops (go to Line 35)
26: Θ̂S ← Score-Estimate(bs,A \ {bs}, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).
27: Play B for ts := 2Θ̂S

ε2s
ln k

δs
rounds, and receive the corresponding winner feedback: σ1, . . . σts ∈ Σ1

A per round.
28: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ A′
29: Update p̂ij :=

wij
wij+wji

for all i, j ∈ A′

30: If ∃i ∈ A′ with p̂ibs <
1
2 − εs, then A′ ← A′ \ {i}

31: s← s+ 1
32: end while
33: end if
34: end while
35: output: The item remaining in A′

A.6. Proof of Thm. 4

Theorem 4 (PAC-Wrapper (ε, δ)-PAC sample complexity bound with Winner feedback). For any ε ∈ [0, 1], with
probability at least (1− δ), A as PAC-Wrapper (Algorithm 1) returns the ε-Best-Item (see Defn. 2) with sample complexity

NA(ε, δ) = O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

max(∆i,ε)2

)
ln k

δ

(
ln 1

max(∆i,ε)

))
.

Proof. Let us denote by s0 to be the sub-phase at which εs falls below ε for the first time, i.e. s0 := arg mins=1,2,... 1(εs ≤ ε).
We first proof the (ε, δ)-PAC correctness of the algorithm:

(Proof of Correctness): Note from Lem. 19 that the probability the Best-Item 1 gets eliminated till sub-phase s =
1, 2, . . . (s0 − 1) is upper bounded by

∑s0−1
s=1

2δs
k ≤

∑s0−1
s=1 δs, since k ≥ 2.

So with probability at least (1−
∑s0−1
s=1 δs), item 1 survives till the beginning of sub-phase s0. And by Thm. 4, we know
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that with probability at least (1− δs), pbs1 >
1
2 − εs/4 =⇒ θbs > θ1 − εs, which ensures εs optimality of the item bs (see

Defn. 2). So at s = s0, we have Pr(θbs0 > θ1 − εs0) > (1− δs0) which ensures the (ε, δ) correctness of the algorithm as
at s0, εs0 ≤ ε.

Moreover the over all probability of the algorithm failing to return an ε-optimal item is
∑s0−1
s=1 δs + δs0 ≤

∑∞
s=1 δs =

δ
120

∑∞
s=1

1
s2 ≤

δ
120

π2

6 ≤
δ
20 .

For the rest of the analysis we will assume that the claim of Lem. 20 holds good for all s = 1, 2 . . . s0, which we know to
satisfy with probability at least (1− 19δ

20 ).

(Proof for Sample-complexity): We now proceed to prove the sample complexity of the algorithm. Let us call bs to be the
pivot item of any phase s, and denote the sample complexity of item i (as a non-pivot element) from phase x to y as N (i)

x,y,
for any 1 ≤ x < y <∞. Additionally, recalling from Lem. 14 that Θ̂S ≤ 7Θ[k], we now prove the claim with the following
two case analyses:

(Case 1) For suboptimal item i ∈ [n] \ {1} such that ∆i > ε: Recall from Lem. 21 that the sample complexity of item i

(as a non-pivot) is N (i)
1,∞ = O

(
(2r)2Θ[k] ln rk

δ

)
, where i ∈ [n]r. Hence we further get N (i)

1,∞ = O
(

Θ[k]

∆2
i

ln
(
k
δ ln 1

∆i

))
as

since i ∈ [n]r, so by definition ∆i <
2
2r .

(Case 2) For items i such that ∆i ≤ ε: Recall due to Thm. 6 the orderwise sample complexity of playing the sets
B1, . . . ,BBs is same as that incurred due to calling the subroutine (ε, δ)-PAC Best-Item at sub-phase s, for all s = 1, 2, . . ..
Now in the worst case, all items i with ∆i < ε might survive till phase s0. Thus the maximum sample complexity of any
such item i (as a non-pivot) till sub-phase s0 can be upper bounded as:

N (i)
1,∞ = N (i)

1,s0
≤

s0∑
s=1

ts =

r−1∑
s=1

14Θ[k]

ε2s
ln
k

δs
=

14Θ[k]

4−2

s0∑
s=1

(2s)2 ln
120ks3

δ

= O
(

(2s0+1)2Θ[k] ln
(s0 + 1)k

δ

)
= O

(
Θ[k]

ε2s0
ln
(k
δ

ln
1

εs0

))
= O

(
Θ[k]

ε2
ln
(k
δ

ln
1

ε

))
,

where the last equality follows as ε < 2εs0 = εs0−1, by definition of s0.

Now denoting the number of times any k-subset S ⊆ [n] played by the algorithm in sub-phase x to y asN (S)
x,y , and using the

claims from above two cases, the total sample complexity of the algorithm (lets call it algorithm A) becomes:

NA(0, δ) =
∑

S⊂[n]||S|=k

∞∑
s=1

1(S ∈ {B1, . . . ,BBs})ts =
∑
i∈[n]

∞∑
s=1

1(i ∈ As \ {bs})
k − 1

ts

=

∞∑
s=1

∑
i∈[n]

1(i ∈ As \ {bs})
k − 1

ts

=

∞∑
s=1

log2(∆min)∑
r=1

∑
i∈[n]r

1(i ∈ As \ {bs})
k − 1

ts =
1

k − 1

log2(∆min)∑
r=1

∑
i∈[n]r

N (i)
1,∞

=
1

k − 1

log2(∆min)∑
r=1

( ∑
{i∈[n]r|∆i>ε}

N (i)
1,∞ +

∑
{i∈[n]r|∆i≤ε}

N (i)
1,∞

)

=
1

k − 1

log2(∆min)∑
r=1

( ∑
{i∈[n]r|∆i>ε}

O
(Θ[k]

∆2
i

ln
(k
δ

1

∆i

))
+

∑
{i∈[n]r|∆i≤ε}

O

(
Θ[k]

ε2
ln
(k
δ

ln
1

ε

)))

= O

(
Θ[k]

k

n∑
i=2

1

max(∆i, ε)2
ln
k

δ

(
ln

1

max(∆i, ε)

))
,

where note that the second last inequality is follows from Case 1 and 2 derived above. Finally, as shown in the proof of
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Algorithm 7 PAC-Wrapper (for Top-m Ranking feedback)
1: input: Set of items: [n], Subset size: n ≥ k > 1, Ranking feedback size: m ∈ [k − 1], Confidence term δ > 0
2: init: A0 ← [n], s← 1
3: while |As−1| ≥ k do
4: Set εs = 1

2s+2 , δs = δ
120s3 , andRs ← ∅.

5: bs ← (ε, δ)-PAC Best-Item(As−1, k,m, εs, δs)
6: B1, . . .BBs ← Partition(As−1 \ {bs}, k − 1)
7: if |BBs | < k − 1, thenRs ← BBs and Bs = Bs − 1
8: for b = 1, 2 . . . Bs do
9: Θ̂S ← Score-Estimate(bs,Bb, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).

10: Set Bb ← Bb ∪ {bs}
11: Play Bb for ts := 2Θ̂S

mε2s
ln k

δs
rounds

12: Receive the winner feedback: σ1, σ2, . . . σts ∈ Σm
Bb after each respective ts rounds.

13: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ Bb
14: p̂ij :=

wij
wij+wji

for all i, j ∈ Bb
15: If ∃i ∈ Bb with p̂ibs >

1
2 − εs, then As ← As ∪ {i}

16: end for
17: As ← As ∪Rs, s← s+ 1
18: end while
19: A ← As−1; B ← As−1 ∪ {(k − |As−1|) elements from [n] \ As−1}
20: Pairwise empirical win-count wij ← 0, ∀i, j ∈ A
21: while |A| > 1 do
22: Set εs = 1

2s+2 , and δs = δ
120s3

23: bs ← (ε, δ)-PAC Best-Item(B, k,m, εs, δs)
24: Θ̂S ← Score-Estimate(bs,A \ {bs}, δs). Set Θ̂S ← max(2Θ̂S + 1, 2).
25: Play B for ts := 2Θ̂S

mε2s
ln k

δs
rounds, and receive the corresponding winner feedback: σ1, σ2, . . . σts ∈ Σm

B per round.
26: Update pairwise empirical win-count wij using Rank-Breaking on σ1 . . . σts , ∀i, j ∈ A
27: Update p̂ij :=

wij
wij+wji

for all i, j ∈ A
28: If ∃i ∈ A with p̂ibs <

1
2 − εs, then A ← A \ {i}

29: s← s+ 1
30: end while
31: output: The item remaining in A

Thm. 3, further taking into consideration the additional sample complexity incurred at each sub-phase s due to invoking
the (ε, δ)-PAC Best-Item and Score-Estimate subroutine can shown to be at most Θ[k]

k

∑n
i=2 max

(
1, 1

max(ε2,∆2
i )

)
log k

δ ),
combining which with the above sample complexity gives the desired sample complexity bound of Alg. 6.

A.7. Modified version of PAC-Wrapper (Alg. 1) for Top-m Ranking feedback

The pseudo code is provided in Alg. 7.

A.8. Proof of Thm. 5

Theorem 5 (PAC-Wrapper: Sample Complexity for (0, δ)-PAC Guarantee for Top-m Ranking feedback). With prob-
ability at least (1 − δ), PAC-Wrapper (Algorithm 1) returns the Best-Item with sample complexity NA(0, δ) =

O

(
Θ[k]

k

∑n
i=2 max

(
1, 1

m∆2
i

)
ln k

δ

(
ln 1

∆i

))
.

Proof. As argued, the main idea behind the 1
m factor improvement in the sample complexity w.r.t Winner feedback (as

proved in Thm. 3), lies behind using Rank-Breaking updates (see Alg. 4) to the general Top-m Ranking feedback. This
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actually gives rise to O(m) times additional number of pairwise preferences in comparison to Winner feedback which is
why in this case it turns out to be sufficient to sample any batch Bb,∀b ∈ [Bs] for only O

(
1
m

)
times compared to the earlier

case—precisely the reason behind 1
m -factor improved sample complexity of PAC-Wrapper for Top-m Ranking feedback.

The rest of the proof argument is mostly similar to that of Thm. 3. We provide the detailed analysis below for the sake of
completeness.

We start by proving the correctness of the algorithm, i.e. with high probability (1− δ), PAC-Wrapper indeed returns the
Best-Item , i.e. item 1 in our case. Towards this we first prove the following two lemmas: Lem. 23 and Lem. 24, same
as what was derived for Thm. 3 as well—However it is important to note that its is due to the Top-m Ranking feedback
feedback the exact same guarantees holds in this case as well, even with a m-times lesser observed samples.

Lemma 23. With high probability of at least (1− δ
20 ), item 1 is never eliminated, i.e. 1 ∈ As for all sub-phase s. More

formally, at the end of any sub-phase s = 1, 2, . . ., p̂1bs >
1
2 − εs.

Proof. Firstly note that at any sub-phase s, each batch b ∈ B within that phase is played for ts =
2Θ[k]

mε2s
ln k

δs
rounds. Now

consider the batch B 3 1 at any phase s. Clearly bs ∈ B too. Again since bs is returned by Alg. 5, by Thm. 6 we know
that with probability at least (1− δs), pbs1 >

1
2 − εs =⇒ θbs > θ1 − 4ε. This further implies θbs ≥ θ1 − 1

2 = 1
2 (since

we assume θ1 = 1, and at any s, εs < 1
8 ). Moreover by Lem. 14, we have Θ̂S ≥ θbs+ΘS

θbs
> ΘS+1

2 (recall we denote
S = Bb \ {bs})

Now let us define wi as number of times item i ∈ B was returned as the winner in ts rounds and iτ be the winner retuned
by the environment upon playing B for the τ th round, where τ ∈ [ts]. Then clearly Pr({1 ∈ στ}) =

∑m
j=1 Pr

(
στ (j) =

1
)
≥ mθ1∑

j∈B θj
= m

θbs+ΘS
≥ m

1+ΘS
, ∀τ ∈ [ts], as 1 := arg maxi∈B θi. Hence E[w1] =

∑ts
τ=1 E[1(iτ = 1)] = mts

θbs+ΘS
≥

mts
(1+ΘS) . Now assuming bs to be indeed an (εs, δs)-PAC Best-Item and the bound of Lem. 14 to hold good as well, applying

multiplicative Chernoff-Hoeffdings bound on the random variable w1, we get that for any η ∈ (
√

2εs, 1],

Pr
(
w1 ≤ (1− η)E[w1]

)
≤ exp

(
− E[w1]η2

2

)
≤ exp

(
− mtsη

2

2(1 + ΘS)

)
= exp

(
− 2Θ̂Sη

2

2mε2s(1 + ΘS)
ln
k

δs

)
(a)

≤ exp

(
− 2(ΘS + 1)η2

4ε2s(1 + ΘS)
ln
k

δs

)
≤ exp

(
− η2

2ε2s
ln

(
k

δs

))
≤ exp

(
− ln

(
k

δs

))
=
δs
k
,

where (a) holds since we proved Θ̂S ≥ θbs+ΘS
θbs

> ΘS+1
2 , and the last inequality holds as η > εs

√
2.

In particular, note that εs ≤ 1
8 for any sub-phase s, due to which we can safely choose η = 1

2 for any s, which gives that
with probability at least

(
1− δs

k

)
, w1 > (1− 1

2 )E[w1] > mts
2(θbs+ΘS) , for any subphase s.

Thus above implies that with probability atleast (1− δs
k ), after ts rounds we have w1bs ≥ mts

2(θbs+ΘS) =⇒ w1bs + wbs1 ≥
mts

2(θbs+ΘS) . Let us denote n1bs = w1bs + wbs1. Then the probability of the event:

Pr

(
p̂1bs <

1

2
− εs, n1bs ≥

mts
2(θbs + ΘS)

)
= Pr

(
p̂1bs −

1

2
< −εs, n1bs ≥

mts
2(θbs + ΘS)

)

≤ Pr

(
p̂1bs − p1bs < −εs, n1bs ≥

mts
2(θbs + ΘS)

)
(as p1bs >

1

2
)

(a)

≤ exp
(
− 2

mts
2(θbs + ΘS)

(
εs
)2)
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≤ exp
(
− 2m(θbs + ΘS)

mε2sθbs(θbs + ΘS)

(
εs
)2) ≤ δs

k
,

where the last inequality (a) follows from Lem. 22 for η = εs and v = ts
2k .

Thus under the two assumptions that (1). bs is indeed an (εs, δs)-PAC Best-Item and (2). the bound of Lem. 14 holds good,
combining the above two claims, at any sub-phase s, we have

Pr

(
p̂1bs <

1

2
− εs

)

= Pr

(
p̂1bs <

1

2
− εs, n1bs ≥

mts
2(θbs + ΘS)

)
+ Pr

(
p̂1bs <

1

2
− εs, n1bs <

mts
2(θbs + ΘS)

)

≤ δs
k

+ Pr

(
n1bs <

mts
2(θbs + ΘS)

)
≤ 2δs

k
≤ δs (since k ≥ 2)

Moreover from Thm. 6 and Lem. 14 we know that the above two assumptions hold with probability at least (1− 2δs). Then
taking union bound over all sub-phases s = 1, 2, . . ., the probability that item 1 gets eliminated at any round:

Pr

(
∃s = 1, 2, . . . s.t. p̂1bs <

1

2
− εs

)
=

∞∑
s=1

3δs =

∞∑
s=1

3δ

120s3
≤ δ

40

∞∑
s=1

1

s2
≤ δ

40

π2

6
≤ δ

20
,

where the first inequality holds since k ≥ 2.

Recall the notations introduced in the proof of Thm. 3: ∆i = θ1 − θi (Sec. 2), ∆min = mini∈[n]\{1}∆i. Further
[n]r := {i ∈ [n] : 1

2r ≤ ∆i <
1

2r−1 }, and Ar,s, i.e. Ar,s = [n]r ∩ As, for all s = 1, 2, . . .. Then in this case again we
claim:

Lemma 24. Assuming that the best arm 1 is not eliminated at any sub-phase s = 1, 2, . . ., then with probability at least
(1− 19δ

20 ), for any sub-phase s ≥ r, |Ar,s| ≤ 2
19 |Ar,s−1|, for any r = 0, 1, 2, . . . log2(∆min).

Proof. Consider any sub-phase s, and let us start by noting some properties of bs. Note that by Lem. 6, with high probability
(1− δs), pbs1 >

1
2 − εs. Then this further implies

pbs1 >
1

2
− εs =⇒ (θbs − θ1)

2(θbs + θ1)
> −εs

=⇒ (θbs − θ1) > −2εs(θbs + θ1) > −4εs (as θi ∈ (0, 1)∀i ∈ [n] \ {1})

So we have with probability atleast (1− δs), θbs > θ1 − 4εs = θ1 − 1
2s .

Now consider any fixed r = 0, 1, 2, . . . log2(∆min). Clearly by definition, for any item i ∈ [n]r, ∆i = θ1 − θi > 1
2r . Then

combining the above two claims, we have for any sub-phase s ≥ r, θbs > θ1 − 1
2s ≥ θi + 1

2r −
1
2s > 0 =⇒ pbsi >

1
2 , at

any s ≥ r. Moreover note that for any s ≥ 1, εs > 1
8 , so that implies θbs > θ1 − 4εs >

1
2 .

Recall that at any sub-phase s, each batch within that phase is played for ts =
2Θ[k]

mε2s
ln k

δs
many rounds. Now consider

any batch such that B 3 i for any i ∈ [n]r. Of course bs ∈ B as well, and note that we have shown pbsi >
1
2 with high

probability (1− δs).
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Same as Lem. 19, let us again define wi as number of times item i ∈ B was returned as the winner in ts rounds, and
iτ be the winner retuned by the environment upon playing B for the τ th rounds, where τ ∈ [ts]. Then given θbs >

1
2

(as derived earlier), clearly Pr({bs ∈ στ}) =
∑m
j=1 Pr

(
στ (j) = bs

)
≥
∑m−1
j=0

θbs
(θbs+ΘS) =

mθbs
θbs+ΘS

, ∀τ ∈ [ts]. Hence

E[wbs ] =
∑ts
τ=1 E[1(iτ = bs)] =

mθbs ts
(θbs+ΘS) . Now applying multiplicative Chernoff-Hoeffdings bound on the random

variable wbs , we get that for any η ∈ (
√

2εs, 1],

Pr
(
wbs ≤ (1− η)E[wbs ] | θbs >

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
≤ exp

(
− E[wbs ]η

2

2

)
≤ exp

(
− mθbstsη

2

2(θbs + ΘS)

)
≤ exp

(
− η2

2ε2s
ln

(
k

δs

))
≤ exp

(
− ln

(
k

δs

))
=
δs
k
,

where the last inequality holds as η >
√

2εs. So as a whole, for any η ∈ (
√

2εs, 1],

Pr
(
wbs ≤ (1− η)E[wbs ]

)
≤ Pr

(
wbs ≤ (1− η)E[wbs ] | θbs >

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
Pr
(
θbs >

1

2

)
+ Pr

(
θbs <

1

2
, Θ̂S >

(θbs + ΘS)

θbs

)
≤ δs

k
+ 2δs

In particular, note that εs < 1
8 for any sub-phase s, due to which we can safely choose η = 1

2 for any s, which gives that
with probability at least

(
1− δs

k

)
, wbs > (1− 1

2 )E[wbs ] >
mtsθbs

2(ΘS+θbs ) , for any subphase s.

Thus above implies that with probability at least (1 − δs
k − 2δs), after ts rounds we have wbsi ≥

mtsθbs
2(ΘS+θbs ) =⇒

wibs + wbsi ≥
mtsθbs

2(ΘS+θbs ) . Let us denote nibs = wibs + wbsi. Then the probability that item i is not eliminated at any
sub-phase s ≥ r is:

Pr

(
p̂ibs >

1

2
− εs, nibs ≥

mtsθbs
2(ΘS + θbs)

)
= Pr

(
p̂ibs −

1

2
> −εs, nibs ≥

mtsθbs
2(ΘS + θbs)

)

≤ Pr

(
p̂ibs − pibs > −εs, n1bs ≥

mtsθbs
2(ΘS + θbs)

)
(as pibs <

1

2
)

(a)

≤ exp
(
− 2

mts
2(ΘS + θbs)

(
εs
)2)

≤ exp
(
− 2

m(ΘS + θbs)

2mθbs(ΘS + θbs)

(
εs
)2

ln
δs
k

)
≤ δs

k
,

where (a) follows from Lem. 22 for η = εs and v = ts
2k .

Now combining the above two claims, at any sub-phase s, we have:

Pr

(
p̂ibs >

1

2
− εs

)
= Pr

(
p̂ibs >

1

2
− εs, nibs ≥

ts
4k

)
+ Pr

(
p̂ibs >

1

2
− εs, nibs <

ts
4k

)

≤ δs
k

+ 2δs +
δs
k
≤ 3δs (since k ≥ 2)
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This consequently implies that for any sup-phase s ≥ r, E[|Ar,s|] ≤ 3δsE[|Ar,s−1|]. Then applying Markov’s Inequality
we get:

Pr

(
|Ar,s| ≤

2

19
|Ar,s−1|

)
≤ 3δs|Ar,s−1|

2
19 |Ar,s−1|

=
57δs

2

Finally applying union bound over all sub-phases s = 1, 2, . . ., and all r = 1, 2, . . . s, we get:

∞∑
s=1

s∑
r=1

57δs
2

=

∞∑
s=1

s
57δ

240s3
=

57δ

240

∞∑
s=1

1

s2
≤ 57δ

240

π2

6
≤ 57δ

120
≤ 19δ

20
.

Thus combining Lem. 23 and 24, we get that the total failure probability of PAC-Wrapper is at most δ
20 + 19δ

20 = δ.

The remaining thing is to prove the sample complexity bound which crucially follows from a similar claim as proved in
Lem. 21. As before, at any sub-phase s, we call the item bs as the pivot element of phase s, then

Lemma 25. Assume both Lem. 23 and Lem. 24 holds good and the algorithm does not do a mistake. Consider any item
i ∈ [n]r, for any r = 1, 2, . . . log2(∆min). Then the total number of times item i gets played as a non-pivot item (i.e. appear

in at most one of the k-subsets per sub-phase s) during the entire run of Alg. 7 is O
(

(2r)2Θ[k]

m ln rk
δ

)
.

Proof. Let us denote the sample complexity of item i (as a non-pivot element) from phase x to y as N (i)
x,y, for any

1 ≤ x < y <∞. Additionally, recalling from Lem. 14 that Θ̂S ≤ 7Θ[k], we now prove the claim with the following two
case analyses:

(Case 1) Sample complexity till sub-phase s = r − 1: Note that in the worst case item i can get picked at every sub-phase
s = 1, 2, . . . r − 1, and at every s it is played for ts rounds. Thus the total number of plays of item i ∈ [n]r (as a non-pivot
item), till sub-phase r − 1 becomes:

N (i)
1,r−1 ≤

r−1∑
s=1

ts =

r−1∑
s=1

14Θ[k]

mε2s
ln
k

δs
=

14Θ[k]

m4−2

r−1∑
s=1

(2s)2 ln
120ks3

δ
= O

( (2r)2Θ[k]

m
ln
rk

δ

)
(Case 2) Sample complexity from sub-phase s ≥ r onwards: Assuming Lem. 24 holds good, note that if we define a random
variable Is for any sub-phase s ≥ r such that Is = 1(i ∈ As), then clearly E[Is] ≤ 2

19E[Is−1] (as follows from the analysis
of Lem. 23). Then the total expected sample complexity of item i ∈ [n]r for round r, r + 1, . . .∞ becomes:

N (i)
r,∞ ≤

224Θ[k]

m

∞∑
s=r

(
2

19

)s−r+1

4s ln
k

δs
=

224Θ[k](2
r)2

m

∞∑
s=0

(
2

19

)s+1

(2s)2 ln
120k(s+ r)3

δ

=
448

19m
Θ[k](2

r)2
∞∑
s=0

(
8

19

)s
ln

120k(s+ r)3

δ

≤ 448

19m
Θ[k](2

r)2

[
ln

120kr

δ

∞∑
s=0

(
8

19

)s
+

∞∑
s=0

(
8

19

)s
ln(120ks)

]
= O

( (2r)2Θ[k]

m
ln
rk

δ

)

Combining the two cases above we get N (i)
1,∞ = O

(
(2r)2Θ[k]

m ln rk
δ

)
as well, which concludes the proof.
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Following similar notations as N (i)
x,y, we now denote the number of times any k-subset S ⊆ [n] played by the algorithm in

sub-phase x to y as N (S)
x,y . Then using Lem. 25, the total sample complexity of the algorithm PAC-Wrapper (lets call it

algorithm A) can be written as:

NA(0, δ) =
∑

S⊂[n]||S|=k

∞∑
s=1

1(S ∈ {B1, . . . ,BBs})ts =
∑
i∈[n]

∞∑
s=1

1(i ∈ As \ {bs})
k − 1

ts

=

∞∑
s=1

∑
i∈[n]

1(i ∈ As \ {bs})
k − 1

ts =

∞∑
s=1

log2(∆min)∑
r=1

∑
i∈[n]r

1(i ∈ As \ {bs})
k − 1

ts

=
1

k − 1

log2(∆min)∑
r=1

∑
i∈[n]r

N (i)
1,∞ ( Lem. 21)

=
1

k − 1

log2(∆min)∑
r=1

∑
i∈[n]r

O
( (2r)2Θ[k]

m
ln
rk

δ

)
=

Θ[k]

k − 1

log2(∆min)∑
r=1

|[n]r|O
( (2r)2

m
ln
rk

δ

)

= O
(Θ[k]

k

n∑
i=2

1

m∆2
i

ln
(k
δ

ln
1

∆i

))
, (3)

where the last inequality follows since 2r < 2
∆i

by definition for all i ∈ [n]r. Finally, same as derived in the proof of
Thm. 3, the last thing to account for is the additional sample complexity incurred due to calling the subroutine (ε, δ)-PAC

Best-Item and Score-Estimate at every sub-phase s, which is combinedly known to be of O
(
|As|Θ[k]

k

(
1, 1

(m2s)2

)
ln k

δ

)
at any sub-phase s (from Thm. 6 and Cor. 15). And using a similar summation as shown above over all s = 1, 2, . . .∞,
combined with Lem. 24 and using the fact that 2r < 2

∆i
, one can show that the total sample complexity incurred due to the

above subroutines is at most Θ[k]

k

∑n
i=2 max

(
1, 1

m∆2
i

)
log k

δ ). Considering the above sample complexity added with the

one derived in Eqn. 3 finally gives the desired O
(

Θ[k]

k

∑n
i=2 max

(
1, 1

m∆2
i

)
ln k

δ

(
ln 1

∆i

))
sample complexity bound of

Alg. 7.

B. Appendix for Sec. 4
B.1. Proof of Thm. 7

Theorem 7 (Sample complexity lower bound: (0, δ)-PAC or Probably-Correct-Best-Item with Winner feedback). Given
δ ∈ [0, 1], suppose A is an online learning algorithm for Winner feedback which, when run on any Plackett-Luce instance,
terminates in finite time almost surely, returning an item I satisfying Pr(θI = maxi θi) > 1−δ. Then, on any Plackett-Luce

instance θ1 > maxi≥2 θi, the expected number of rounds it takes to terminate is Ω

(
max

(∑n
i=2

θiθ1
∆2
i

ln 1
δ ,

n
k ln 1

δ

))
.

Proof. The argument is based on a change-of-measure argument (Lemma 1) of (Kaufmann et al., 2016), restated below for
convenience:

Consider a multi-armed bandit (MAB) problem with n arms or actions A = [n]. At round t, let At and Zt denote the arm
played and the observation (reward) received, respectively. Let Ft = σ(A1, Z1, . . . , At, Zt) be the sigma algebra generated
by the trajectory of a sequential bandit algorithm upto round t.

Lemma 26 (Lemma 1, (Kaufmann et al., 2016)). Let ν and ν′ be two bandit models (assignments of reward distributions to
arms), such that νi (resp. ν′i) is the reward distribution of any arm i ∈ A under bandit model ν (resp. ν′), and such that for
all such arms i, νi and ν′i are mutually absolutely continuous. Then for any almost-surely finite stopping time τ with respect
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to (Ft)t, n∑
i=1

Eν [Ni(τ)]KL(νi, ν
′
i) ≥ sup

E∈Fτ
kl(Prν(E), P rν′(E)),

where kl(x, y) := x log(xy ) + (1− x) log(1−x
1−y ) is the binary relative entropy, Ni(τ) denotes the number of times arm i is

played in τ rounds, and Prν(E) and Prν′(E) denote the probability of any event E ∈ Fτ under bandit models ν and ν′,
respectively.

The heart of the lower bound analysis stands on the ground on constructing PL(n,θ) instances, and slightly modified
versions of it such that no (0, δ)-PAC algorithm can correctly identify the Best-Item of both the instances without examining
enough (precisely Ω

(∑n
i=2

θiθ1
∆2
i

ln
(

1
δ

))
) many subsetwise samples per instance. We describe the our constructed problem

instances below:

Consider an PL(n,θ) instance with the arm (item) set A containing all subsets of size k of [n] defined as A = {S ⊆
[n] | |S| = [k]}. Let PL(n,θ1) be the true distribution associated to the bandit arms [n], given by the score parameters
θ = (θ1, . . . , θn), such that θ1 > θi, ∀i ∈ [n] \ {1}. Thus we have

True Instance: PL(n,θ1) : θ1
1 > θ1

2 ≥ . . . ≥ θ1
n.

Clearly, the Best-Item of PL(n,θ1) is a∗ = 1. Now for every suboptimal item a ∈ [n] \ {1}, consider the altered problem
instance PL(n,θa) such that:

Instance a: PL(n,θa) : θaa = θ1
1 + ε; θai = θ1

i , ∀i ∈ [n] \ {a}

for some ε > 0. Clearly, the Best-Item of PL(n,θa) is a∗ = a. Note that, for problem instance PL(n,θa) a ∈ [n], the
probability distribution associated to arm S ∈ A is given by:

paS ∼ Categorical(p1, p2, . . . , pk), where pi = Pr(i|S) =
θai∑
j∈S θ

a
j

, ∀i ∈ [k], ∀S ∈ A, ∀a ∈ [n],

recall the definition of Pr(i|S) is as defined in Sec. 2. Now applying Lem. 26 we get:

∑
{S∈A|a∈S}

Eθ1 [NS(τA)]KL(p1
S , p

a
S) ≥ kl(Prθ1(E), P rθa(E)), (4)

where τA := NA(0, δ) denotes the sample complexity (number of rounds of subsetwise game played before stopping)
of Alg. A and for any subset S ∈ A, NS(τ) denotes the number of times S was played by A in NA(0, δ) rounds. The
above result holds from the straightforward observation that for any arm S ∈ A with a /∈ S, p1

S is same as paS , hence
KL(p1

S , p
a
S) = 0, ∀S ∈ A, a /∈ S.

For the notational convenience we will henceforth denote Sa = {S ∈ A | a ∈ S}. Now let us analyse the right hand side of
(4), for any set S ∈ Sa. We further denote ∆′a = ∆a + ε = (θ1 − θa) + ε, and θaS =

∑
i∈S θ

a
i for any a ∈ [n]. Now using

the following upper bound on KL(p,q) ≤
∑
x∈X

p2(x)
q(x) − 1, p and q be two probability mass functions on the discrete

random variable X (Popescu et al., 2016), we get:

KL(p1
S , p

a
S) ≤

∑
i∈S\{a}

(
θ1
i

θ1
S

)2(
θaS
θai

)
+

(
θ1
a

θ1
S

)2(
θaS
θaa

)
− 1

=
∑

i∈S\{a}

(
θ1
i

θ1
S

)2(
θ1
S + ∆′a
θ1
i

)
+

(
θ1
a

θ1
S

)2(
θ1
S + ∆′a
θ1
a + ∆′a

)
− 1

=

(
θ1
S + ∆′a
(θ1
S)2

)( ∑
i∈S\{a}

θ1
i +

(θ1
a)2

θ1
a + ∆′a

)
− 1
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=

(
θ1
S + ∆′a
(θ1
S)2

)(
θ1
aθ

1
S + ∆′a(θ1

S − θ1
a)

θ1
a + ∆′a

)
− 1

[
replacing

∑
i∈S\{a}

θ1
i = (θ1

S − θ1
a)

]

=
∆′2a (θ1

S − θ1
a)

(θ1
S)2(θ1

a + ∆′a)
≤ ∆′2a
θ1
S(θ1

a + ∆′a)
=

∆′2a
θ1
S(θ1

1 + ε)
(5)

Now, consider E0 ∈ Fτ be an event such that the algorithm A returns the element i = 1, and let us analyse the left hand
side of (4) for E = E0. Clearly, A being an (0, δ)-PAC algorithm, we have Prθ1(E0) > 1− δ, and Prθa(E0) < δ, for any
suboptimal arm a ∈ [n] \ {1}. Then we have:

kl(Prθ1(E0), P rθa(E0)) ≥ kl(1− δ, δ) ≥ ln
1

2.4δ
(6)

where the last inequality follows from (Kaufmann et al., 2016)(see Eqn. (3)). Now combining (4) and (6), for each problem
instance PL(n,θa), a ∈ [n] \ {1}, we get,

∑
S∈Sa

Eθ1 [NS(τA)]KL(p1
S , p

a
S) ≥ ln

1

2.4δ

Moreover, using (5), we further get:

ln
1

2.4δ
≤
∑
S∈Sa

Eθ1 [NS(τA)]KL(p1
S , p

a
S) ≤

∑
S∈Sa

Eθ1 [NS(τA)]
∆′2a

θ1
S(θ1

1 + ε)
(7)

Clearly, the total sample complexity ofA: τA =
∑
S∈ANS(τA), then note that the problem of finding the sample complexity

lower bound problem actually reduces down to

Primal LP (P): min
S∈A

∑
S∈A

Eθ1 [NS(τA)]

such that, ln
1

2.4δ
≤
∑
S∈Sa

Eθ1 [NS(τA)]
∆′2a

θ1
S(θ1

1 + ε)
, ∀a ∈ [n] \ {1},

which can equivalently be written as a linear programming (LP) of the following form:

Dual LP (D): min
y

b>y

such that, K>y ≥ z, and y ≥ 0,

where y ∈ RM , M = |A| =
(
n
k

)
, with y(S) = Eθ1 [NS(τA)], ∀S ∈ A, z ∈ Rn−1 with z(i) = ln 1

2.4δ ∀i ∈ [n − 1],

K ∈ RM×(n−1) such that K(S, a) =

{
∆′2a

θ1
S(θ1

1+ε)
, if S ∈ Sa

0, otherwise
, and b ∈ RM×1 such that b(i) = 1 ∀i ∈ [M ].

Then taking the dual of the above LP (see Chapter 5, (Boyd & Vandenberghe, 2004)) we get:

max
x

z>x, such that, Kx ≤ b, and x ≥ 0,
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where clearly x ∈ Rn−1 is the dual optimization variable.

Now we know that by strong duality if y∗ and x∗ respectively denotes the optimal solution of (P) and (D), then b>y∗ =
z>x∗. Thus at any feasible solution x′ of (D), z>x′ ≤ z>x∗ = b>y∗.

Claim. x′i =
θ1
i+1(θ1

1+ε)

∆′a
2 for all i ∈ [n− 1] is a feasible solution of (D).

Proof. Clearly, x′i ≥ 0 ∀i ∈ [n− 1] which ensures that the second set of constraints of (D) hold good. Expanding the first
set of constraints Kx′ ≤ b we get M constraints, one for each S ∈ A such that

n−1∑
i=1

K(S, i)x′i =

n−1∑
i=1

1(S ∈ Si+1)K(S, i)
θ1
i+1(θ1

1 + ε)

∆′a
2

=

n∑
i=2

1(i ∈ S)
∆′2a

θ1
S(θ1

1 + ε)

θ1
i (θ

1
1 + ε)

∆′a
2

{
= 1 if 1 /∈ S
≤ 1 otherwise

.

The claim now follows recalling that b(i) = 1 ∀i ∈ [M ].

Thus we get ln
(

1
δ

)∑n
i=2

θiθ1
∆′i

2 = z>x′ ≤ z>x∗ = b>y∗ =
∑
S∈A Eθ1 [NS(τA)]. Moreover since ε > 0 is a construction

dependent parameter, taking ε→ 0 the expected sample complexity of A under PL(n,θ1) becomes:

Eθ1

[
NA(0, δ)

]
=
∑
S∈A

Eθ1 [NS(τA)] ≥
n∑
i=2

θiθ1

∆2
i

ln
1

δ

Now taking ε → 0, the above construction shows that for any general problem instance, precisely PL(n,θ1), it requires

a sample complexity of Ω

(∑n
a=2

θ1θa
∆2
a

ln 1
δ

)
on expectation, to find the Best-Item (i.e. to achieve (0, δ)-PAC objective).

Finally to get the additional nk log 1
δ term we appeal to the lower bound argument provided in (Chen et al., 2018) (see their

Thm. B.9) for the
(
0, 1

8

)
-PAC best-arm identification problem. For such ‘low confidence’ regimes, i.e., when δ = Ω(1) 9 0,

these explicitly shows a simple n
k log 1

δ term (independent of the instance) lower bound, which slightly improves the bound
of Thm. 7 for instances when θi → 0 (or ∆i → 1) for all suboptimal item i ∈ [n] \ {1}—note that a term like n

k log 1
δ is

also intuitive, as for any Plackett-Luce instance, the learner needs to query at the least Ω
(
n
k ln 1

δ

)
many samples to make

sure it covers the entire set of n items.

B.2. Proof of Thm. 8

Theorem 8 (Sample complexity Lower Bound: (0, δ)-Probably-Correct-Best-Item with Top-m Ranking feedback).
Suppose A is an online learning algorithm for Top-m Ranking feedback which, given δ ∈ [0, 1] and run on any
Plackett-Luce instance, terminates in finite time almost surely, returning an item I satisfying Pr(θI = maxi θi) >
1 − δ. Then, on any Plackett-Luce instance θ1 > maxi≥2 θi, the expected number of rounds it takes to terminate is

Ω

(
max

(
1
m

∑n
i=2

θiθ1
∆2
i

ln
(

1
δ

)
, nk ln 1

δ

))
.

Proof. The proof proceeds almost same as the proof of Thm. 7, the only difference lies in the analysis of the KL-divergence
terms with Top-m Ranking feedback.

Consider the exact same set of PL instances, PL(n,θa) we constructed for Thm. 7. It is now interesting to note that how
Top-m Ranking feedback affects the KL-divergence analysis, precisely the KL-divergence shoots up by a factor of m
which in fact triggers an 1

m reduction in regret learning rate. Note that for Top-m Ranking feedback for any problem
instance PL(n,θa), a ∈ [n], each k-set S ⊆ [n] is associated to

(
k
m

)
(m!) number of possible outcomes, each representing

one possible ranking of set of m items of S, say Sm. Also the probability of any permutation σ ∈ Σm
S is given by

paS(σ) = Prθa(σ|S), where Prθa(σ|S) is as defined for Top-m Ranking feedback (in Sec. 2). More formally, for
problem Instance-a, we have that:
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paS(σ) =

m∏
i=1

θaσ(i)∑m
j=i θ

a
σ(j) +

∑
j∈S\σ(1:m) θ

a
σ(j)

, ∀a ∈ [n],

The important thing now to note is that for any such top-m ranking of σ ∈ Σm
S , KL(p1

S(σ), paS(σ)) = 0 for any set S 63 a.
Hence while comparing the KL-divergence of instances θ1 vs θa, we need to focus only on sets containing a. Applying
Chain-Rule of KL-divergence, we now get

KL(p1
S , p

a
S) = KL(p1

S(σ1),paS(σ1)) +KL(p1
S(σ2 | σ1), paS(σ2 | σ1)) + · · ·

+KL(p1
S(σm | σ(1 : m− 1)), paS(σm | σ(1 : m− 1))), (8)

where we abbreviate σ(i) as σi and KL(P (Y | X), Q(Y | X)) :=
∑
x Pr

(
X = x

)[
KL(P (Y | X = x), Q(Y | X =

x))
]

denotes the conditional KL-divergence. Moreover it is easy to note that for any σ ∈ ΣmS such that σ(i) = a, we have
KL(p1

S(σi+1 | σ(1 : i)), paS(σi+1 | σ(1 : i))) := 0, for all i ∈ [m].

Now as derived in (5) in the proof of Thm. 7, we have

KL(p1
S(σ1), paS(σ1)) ≤ ∆′2a

θ1
S(θ1

1 + ε)
.

To bound the remaining terms of (8), note that for all i ∈ [m− 1]

KL(p1
S(σi+1 | σ(1 : i)), paS(σi+1 | σ(1 : i)))

=
∑
σ′∈ΣiS

Pr(σ′)KL(p1
S(σi+1 | σ(1 : i)) = σ′, paS(σi+1 | σ(1 : i)) = σ′)

=
∑

σ′∈ΣiS |a/∈σ′

[
i∏

j=1

(
θ1
σ′j

θ1
S −

∑j−1
j′=1 θσ′j′

)]
∆′2a

(θ1
S −

∑i
l=1 θ

1
σl

)(θ1
1 + ε)

=
∆′2a

θ1
S(θ1

1 + ε)

Thus applying above in (8) we get:

KL(p1
S , p

a
S) = KL(p1

S(σ1) + · · ·+KL(p1
S(σm | σ(1 : m− 1)), paS(σm | σ(1 : m− 1)))

≤ m∆′2a
θ1
S(θ1

1 + ε)
. (9)

Eqn. (9) gives the main result to derive Thm. 8 as it shows an m-factor blow up in the KL-divergence terms owning to
Top-m Ranking feedback. The rest of the proof follows exactly the same argument used in 7. We add the steps below for
convenience.

Same as before, consider E0 ∈ Fτ be an event such that the algorithm A returns the element i = 1, and combining (4) and
(6), for each problem instance PL(n,θa), a ∈ [n] \ {1}, we get,

∑
S∈Sa

Eθ1 [NS(τA)]KL(p1
S , p

a
S) ≥ ln

1

2.4δ

Now using (9), we further get:
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ln
1

2.4δ
≤
∑
S∈Sa

Eθ1 [NS(τA)]KL(p1
S , p

a
S) ≤

∑
S∈Sa

Eθ1 [NS(τA)]
m∆′2a

θ1
S(θ1

1 + ε)
(10)

Again consider the primal problem towards finding the sample complexity lower bound:

Primal LP (P): min
S∈A

∑
S∈A

Eθ1 [NS(τA)]

such that, ln
1

2.4δ
≤
∑
S∈Sa

Eθ1 [NS(τA)]
m∆′2a

θ1
S(θ1

1 + ε)
, ∀a ∈ [n] \ {1},

which can equivalently be written as a linear programming (LP) of the following form:

Dual LP (D): min
y

b>y

such that, K>y ≥ z, and y ≥ 0,

where y ∈ RM , M = |A| =
(
n
k

)
, with y(S) = Eθ1 [NS(τA)], ∀S ∈ A, z ∈ Rn−1 with z(i) = ln 1

2.4δ ∀i ∈ [n − 1],

K ∈ RM×(n−1) such that K(S, a) =

{
m∆′2a

θ1
S(θ1

1+ε)
, if S ∈ Sa

0, otherwise
, and b ∈ RM×1 such that b(i) = 1 ∀i ∈ [M ].

The dual of the above LP boils down to:

max
x

z>x

such that, Kx ≤ b, and x ≥ 0,

where clearly x ∈ Rn−1 is the dual optimization variable.

Claim. x′i =
θ1
i+1(θ1

1+ε)

m∆′a
2 for all i ∈ [n− 1] is a feasible solution of (D).

Proof. Clearly, x′i ≥ 0 ∀i ∈ [n− 1] which ensures that the second set of constraints of (D) hold good. Expanding the first
set of constraints Kx′ ≤ b we get M constraints, one for each S ∈ A such that

n−1∑
i=1

K(S, i)x′i =

n−1∑
i=1

1(S ∈ Si+1)K(S, i)
θ1
i+1(θ1

1 + ε)

m∆′a
2

=

n∑
i=2

1(i ∈ S)
m∆′2a

θ1
S(θ1

1 + ε)

θ1
i (θ

1
1 + ε)

m∆′a
2

{
= 1 if 1 /∈ S
≤ 1 otherwise

.

The claim now follows recalling that b(i) = 1 ∀i ∈ [M ].

Thus we get ln
(

1
δ

)∑n
i=2

θiθ1
m∆′i

2 = z>x′ ≤ z>x∗ = b>y∗ =
∑
S∈A Eθ1 [NS(τA)]. Moreover since ε > 0 is a construction

dependent parameter, taking ε→ 0 the expected sample complexity of A under PL(n,θ1) becomes:

Eθ1

[
NA(0, δ)

]
=
∑
S∈A

Eθ1 [NS(τA)] ≥
n∑
i=2

θiθ1

m∆2
i

ln
1

δ
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Now taking ε→ 0, the above construction shows that for any general problem instance, precisely PL(n,θ1), it requires a

sample complexity of Ω

(∑n
a=2

θ1θa
m∆2

a
ln 1

δ

)
on expectation, to find the Best-Item (i.e. to achieve (0, δ)-PAC objective)

with Top-m Ranking feedback. Finally, to prove the additional instance independent Ω
(
n
k log 1

δ

)
term, we can use a similar

argument provided in the Thm. 7, which ensures that no matter what the underlying Plackett-Luce instance is, the learner
needs to query at the least Ω

(
n
k ln 1

δ

)
queries to cover the entire set of n items–note that this term is independent of m.

C. Appendix for Sec. 5
C.1. Proof of Thm. 11

Theorem 11 (Confidence lower bound in fixed sample complexity Q for Top-m Ranking feedback). Let A be a Budget-
Consistent and Order-Oblivious algorithm for identifying the Best-Item under Top-m Ranking feedback. For any
Plackett-Luce instance θ and sample size (budget) Q, its probability of error in identifying the best arm in θ satisfies

Prθ
(
I 6= arg maxi∈[n] θi

)
= Ω

(
exp

(
−2mQ∆̃

))
, where the complexity parameter ∆̃ :=

(∑n
a=2

(θa)2

∆2
a

)−1

.

Proof. Similar to our lower bounds proofs for Probably-Correct-Best-Item setting (see Thm. 7, 8), we again use a
change-of-measure argument to prove the instance-dependent lower bounds for the Fixed-Sample-Complexity setting.

We start by constructing the problem instances as follows: Consider a general the true underlying PL(n,θ) problem instance
PL(n,θ1) : θ1

1 > θ1
2 ≥ . . . ≥ θ1

n, and corresponding to each suboptimal item a ∈ [n] \ {1}, let us define an alternative
problem instance PL(n,θa) : θaa = θ1

1; θa1 = θ1
a; θai = θ1

i , ∀i ∈ [n] \ {a, 1}, for some ε > 0.

Then using a similar derivation shown for Eqn. (9), for above construction of problem instances in this case we can can
show that:

KL(p1
S , p

a
S) ≤ m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)
(11)

where recall that we denote ∆a = θ1
1 − θ1

a, for any sub-optimal arm a ∈ [n] \ {a}. Clearly for any subset S ⊂ [n] such that
{1, a} ∩ S = ∅ must lead to KL(p1

S , p
a
S) = 0 which is also follows from (11).

Same as the proof of Thm. 8, now applying Lem. 26 for any event E ∈ Fτ we get:

∑
{S⊆[n],|S|=k|a∈S}

Eθ1 [NS(Q)]KL(p1
S , p

a
S) ≥ kl(Prθ1(E), P rθa(E)),

where for any k-subset S, NS(Q) denotes the total number of times S was played (i.e. queried upon for the Top-m
Ranking feedback) by A in Q samples. Now, consider E0 ∈ Fτ be an event such that the algorithm A indeed outputs the
Best-Item 1 upon termination, and let us analyse the left hand side of (4) for E = E0. Now A being Budget-Consistent
algorithm (see Defn. 9), we have Prθ1(E0) > 1 − exp(−f(θ)Q). Moreover, since A is Order-Oblivious as well, we
also have Prθa(E0) < exp(−f(θ)Q), for any suboptimal arm a ∈ [n] \ {1}. Combining above two claims and denoting
δ = exp(−f(θ)Q), we get:

kl(Prθ1(E0), P rθa(E0)) ≥ kl(1− δ, δ) ≥ ln
1

2.4δ

where the last inequality follows from (Kaufmann et al., 2016) (see Eqn. (3)). Then combining the above two claims with
(11), for any problem instance PL(n,θa), a ∈ [n] \ {1}, we get,

ln
1

2.4δ
≤
∑
S∈S

Eθ1 [NS(Q)]KL(p1
S , p

a
S) ≤

∑
S∈S

Eθ1 [NS(Q)]
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)
, (12)
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where we denote the set of all possible k-subsets of [n] by S = {S ⊆ [n] | |S| = k}.

Now coming back to our actual problem objective, recall that our goal is to understand the best possible lower bound on the
quantity δ—since the left hand side above is a decreasing function of δ, at best any algorithm can aim to minimize δ as
much as possible without violating the right hand side constraints for any a ∈ [n] \ {1}. In other words any algorithm can at
best aim to achieve a error confidence δ such that ln

(
1

2.4δ

)
is upper bounded by:

Max-Min Optimization (P):

max
{NS(Q)}S∈S

n
min
a=2

∑
S∈S

Eθ1 [NS(Q)]
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)
such that,

∑
S∈S

Eθ1 [NS(Q)] = Q, and Eθ1 [NS(Q)] ≥ 0, ∀S ∈ S

Clearly the optimization variables in (P) are {Eθ1 [NS(Q)]}S∈S . We denote the simplex on S by ΠS = {π ∈ [0, 1](
n
k) |∑

i π(i) = 1}. In general, we denote any d-dimensional simplex by Πd, for any d ∈ N. Then it is easy to follow that the
above optimization problem (P) can be equivalently written in terms of optimization variables xS :=

Eθ1 [NS(Q)]

Q as:

Equivalent Max-Min Optimization (P’):

Q

[
max
{xS}S∈S

min
λ∈Πn−1

n∑
a=2

λ(a)

(∑
S∈S

xS
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

))]
such that,

∑
S∈S

xS = 1, and xs ≥ 0, ∀S ∈ S

We denote by opt(P) and opt(P’) the optimal values of problem P and P’ respectively. Note that opt(P) = opt(P’). Also note
that (xS)S∈S ∈ ΠS . Then, opt(P’) can be further rewritten as:

opt(P’)
Q

= max
{xS}S∈S

min
λ∈Πn−1

n∑
a=2

λ(a)

(∑
S∈S

xS
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

))

= min
λ∈Πn−1

max
{xS}S∈S

∑
S∈S

n∑
a=2

λ(a)xS
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)

= min
λ∈Πn−1

max
S∈S

n∑
a=2

λ(a)
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)

where the second equality follows from Von Neumann’s well-known Minmax Theorem (Freund & Schapire, 1996). Now

further setting λ′(a) =
(θ1
a)2/∆2

a∑n
i=2 (θ1

i )
2/∆2

i

, for all a ∈ [n] \ {1} (note that λ′ ∈ Πn−1), using λ = λ′ in opt(P’), it can further

be upper bounded as:

opt(P’)
Q

≤ max
S∈S

n∑
a=2

λ′(a)
m∆2

a

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)

= max
S∈S

n∑
a=2

(θ1
a)2∑n

i=2 (θ1
i )

2/∆2
i

m

θ1
S

(
θ1

11(1 ∈ S) + θ1
a1(a ∈ S)

θ1
1θ

1
a

)
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=



= max
S∈S

∑n
a=2

(θ1
a)2∑n

i=2 (θ1
i )

2/∆2
i

m

θ1
S

(
1

θ1
1

)
≤ m

(∑n
a=2

(θ1
a)2

∆2
a

)−1

, if 1 /∈ S, a ∈ S

≤ max
S∈S

∑n
a=2

(θ1
a)2∑n

i=2 (θ1
i )

2/∆2
i

m

θ1
S

(
1

θ1
a

)
= m

(∑n
a=2

(θ1
a)2

∆2
a

)−1

, if a /∈ S, 1 ∈ S

≤ max
S∈S

∑n
a=2

(θ1
a)2∑n

i=2 (θ1
i )

2/∆2
i

m

θ1
S

(
θ1
a + θ1

1

θ1
1θ

1
a

)
≤ 2m

(∑n
a=2

(θ1
a)2

∆2
a

)−1

, if both 1, a ∈ S

= 0 otherwise

≤ 2m
( n∑
a=2

(θ1
a)2

∆2
a

)−1

Then combining above upper bound to Eqn. 12, we finally get:

ln 1
2.4δ

Q
≤ 2m

( n∑
a=2

(θ1
a)2

∆2
a

)−1

=⇒ 1

2.4δ
≤ exp

(
2mQ

( n∑
a=2

(θ1
a)2

∆2
a

)−1
)

=⇒ δ ≥
exp

(
− 2mQ

(∑n
a=2

(θ1
a)2

∆2
a

)−1)
2.4

,

which proves the claim. Thus we show for any general problem instance, precisely PL(n,θ1), such that any (0, δ)-PAC

algorithm incurs an error on at least Ω

(
exp

(
− 2mQ

(∑n
a=2

(θ1
a)2

∆2
a

)−1))
towards identifying the Best-Item with Top-m

Ranking feedback.

C.2. Pseudo-code for Uniform-Allocation

Algorithm 8 Uniform-Allocation
1: input: Set of items: [n], Subset size: k ≤ n, Ranking

feedback size: m ∈ [k − 1], Sample complexity Q
2: init: A ← [n], s← 1
3: while |A| ≥ k do
4: B1,B2, . . .BB ← Partition(A, k)
5: if |BB | < k, then B ← B − 1,R ← BB
6: for b ∈ [B] do
7: Play the set Bb for Q′ := kQ

2n+k log2 k
times

8: For all i, j ∈ Bb, update p̂ij with Rank-Breaking
9: Compute wi :=

∑
j∈Bb 1(p̂ij >

1
2 )

10: Define w̄ ←Median({wi}i∈Bb), ∀i ∈ Bb
11: A ← {i ∈ Bb | wi ≥ w̄}
12: end for
13: A ← A∪R;
14: end while
15: B ← A∪ {k − |A| random elements from [n] \ A}
16: while |A| > 1 do
17: Play the set B for Q′ := kQ

2n+k log2 k
times

18: For all i, j ∈ A, update p̂ij with Rank-Breaking
19: Compute zi :=

∑
j∈A 1(p̂ij >

1
2 ), ∀i ∈ A

20: Define z̄ ←Median({zi}i∈A)
21: A ← {i ∈ A | zi ≥ z̄}
22: end while
23: output: The remaining item in A
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C.3. Proof of Thm. 12

Theorem 12 (Uniform-Allocation: Confidence bound for Best-Item identification with fixed sample complexity Q). Given a

budget of Q rounds, Uniform-Allocation returns the Best-Item of PL(n,θ) with probability at least 1−O
(

log2 n exp
(
−

mQ∆2
min

16(2n+k log2 k)

))
, where ∆min = minni=2 ∆i.

Proof. Firstly, we establish that the sample complexity of Uniform-Allocation is always within the stipulated constraint Q.

Correctness of stipulated sample complexity (Q). To show this note that inside any round, for any batch Bb, b ∈ [B] k2
items of Bb, by definition of w̄. Thus at each consecutive round, the number of surviving elements gets halved, which
implies that the total number of rounds can be at most log2 n. Hence size of the set of surviving items |A| at round i is
approximately n

2`−1 , for any round ` = 1, 2, . . . log2 n. Also number of sets formed at round i is
⌊
|A|
k

⌋
< |A|

k . Then total
number of sets formed by the algorithm during its entire run can be at most:

n

k

(
1 +

1

2
+

1

22
+ · · ·+ 1

2

⌈
log2

n
k

⌉ )+ log2 k <
n

k

( ∞∑
i=0

1

2i
)

+ log2 k =
(2n+ k log2 k)

k

where the extra log2 k term is due to the final log2 k rounds for which |A| < k. Now since our strategy is to allocate
uniform budget across all sets, the assumign sample complexity per set is Q′ = Q

(2n+ k log2 k)

k

= Qk
2n+k log2 k

. Hence our

algorithm is always within the budget constraint Q. The only part left is to now prove the confidence bound of Thm. 12, as
analysed below:

Bounding the Best-Item identification confidence. We first analyse the any particular batch B ∈ {Bb}b∈[B], for any
particular round ` = 1, 2, . . . log2 n, such that 1 ∈ B. Let us analyze the probability of item 1 getting eliminated from batch
B at the end of round `.

First recall the number of times B is sampled is Q′ = kQ
2n+k log2 k

. Now let us define wi as the number of times item i ∈ B
was returned in the top-mwinner (i.e. i appeared in the Top-m Ranking feedback σ ∈ ΣmS ) inQ′ plays, and στ be the top-m
ranking retuned by the environment upon playing the batch B for the τ th round, ∀τ ∈ [Q′]. Then given θ1 = arg maxi∈[n] θi,

clearly Pr({1 ∈ στ}) =
∑m
j=1 Pr

(
στ (j) = 1

)
=
∑m−1
j=0

1
2(k−j) ≥

m
k , since Pr({1|S}) = θ1∑

j∈S θj
≥ 1
|S| for any S ⊆ B.

Thus E[w1] =
∑Q′

τ=1 E[1(1 ∈ στ )] ≥ mQ′

k . Now applying multiplicative Chernoff-Hoeffdings bound on the random
variable w1, we get that for any η ∈ (0, 1],

Pr
(
w1 ≤ (1− η)E[w1]

)
≤ exp

(
− E[w1]η2

2

)
≤ exp

(
− mQ′η2

2k

)

In particular, setting η = 1
2 we get with probability at least

(
1− exp

(
− mQ′

8k

))
, w1 > (1− 1

2 )E[w1] > mQ′

2k , for any

such batch B, at any round `. This further implies that with probability at least 1 − exp

(
− mQ′

8k

)
, after Q′ plays, we

have w1i + wi1 ≥ mQ′

2k , for any item i ∈ B \ {1}, as due to Rank-Breaking update whenever an item appears in Top-m
Ranking feedback στ , it ends up getting pairwise compared with the rest of the k − 1 items in B after τ th play. Let us
denote n1i = w1i + wi1. Then the probability that any suboptimal item i ∈ B \ {1} beats 1 after Q′ plays is:

Pr

(
p̂1i >

1

2
, n1i ≥

mQ′

2k

)
= Pr

(
p̂1i − p1i >

1

2
− p1i, n1i ≥

mQ′

2k

)

= Pr

(
p̂1i − p1i > p1i −

1

2
, n1i ≥

mQ′

2k

)



From PAC to Instance-Optimal Sample Complexity in the Plackett-Luce Model

≤ Pr

(
p̂1i − p1i >

∆i

4
, n1i ≥

mQ′

2k

) [
as, p1i −

1

2
=

(θ1 − θi)
2(θ1 + θi)

>
(θ1 − θi)

4

]

≤ exp
(
− 2

mQ′

2k

(
∆i

4

)2)
= exp

(
− mQ′∆2

i

16k

)
,

where the last inequality follows from Lem. 22 for η = ∆i

4 , and v = mQ′

2k . So combining the above two claims, we get that
the total probability of

Pr

(
p̂1i >

1

2

)
= Pr

(
p̂1i >

1

2
, n1i ≥

mQ′

2k

)
+ Pr

(
p̂1i >

1

2
, n1i <

mQ′

2k

)

≤ exp
(
− mQ′∆2

i

16k

)
+ Pr

(
w1i <

mQ′

2k

)
≤ exp

(
− mQ′∆2

i

16k

)
+ exp

(
− mQ′

8k

)
≤ 2 exp

(
− mQ′∆2

i

16k

)
. (13)

Now let us try to analyze that for a fixed round `, how many such suboptimal item i ∈ B \ {1} can beat the Best-Item 1.
Towards this we define a random variable V :=

∑
i∈B\{1} 1(p̂i1 >

1
2 ). Now from (13) we get that:

E[V ] =
∑

i∈B\{1}

Pr(p̂i1 >
1

2
) ≤ 2(k − 1) exp

(
− mQ′∆2

i

16k

)

Then applying Markov’s inequality we have:

Pr
(
V ≥ k

2

)
≤ E[V ]

k
2

≤ 4(k − 1)

k
exp

(
− mQ′∆2

i

16k

)
≤ 4(k − 1)

k
exp

(
− mQ′∆2

min

16k

)
It is important to note that in case if V < k

2 , =⇒ z1 >
k
2 and hence z1 > z̄, as z̄ ≤ k

2 .

Therefore with probability at least
(

1 − 4(k−1)
k exp

(
− mQ′∆2

min

16k

))
, item 1 is not eliminated in round `. Then the total

probability of item 1 getting eliminated in the entire run of Uniform-Allocation can be upper bounded as:

Pr
(
∃` = 1, 2, . . .log2n s.t. item 1 is eliminated at round `

)
≤

log2 n∑
`=1

Pr
(

Item 1 is eliminated at round `
)

≤ 4 log2 n
(k − 1)

k
exp

(
− mQ′∆2

min

16k

)
= 4 log2 n

(k − 1)

k
exp

(
− mQ∆2

min

16(2n+ k log2 k)

)
,

where the last equality follows recalling that we set Q′ = kQ
2n+k log2 k

, which concludes the first claim. The second claim
simply follows from the first as the total error probability is upper bounded by δ, this further implies

δ ≤ 4 log2 n
(k − 1)

k
exp

(
− mQ∆2

min

16(2n+ k log2 k)

)
=⇒ Q ≥ 16(2n+ k log2 k)

m∆2
min

ln

(
4(k − 1) log2 n

kδ

))
= O

(
16(2n+ k log2 k)

m∆2
min

ln

(
log2 n

δ

)))
which proves the second claim.
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D. Appendix for Sec. 6
Environments. 1. g1, 2. g4, 3. arith, 4. geo, 5. b1 all with n = 16, and three larger models 5. g4-big, 6. arith-big, and 7.
geo-big each with n = 50 items. Their individual score parameters are as follows: 1. g1: θ1 = 0.8, θi = 0.2, ∀i ∈ [16]\{1}
2. g4: θ1 = 1, θi = 0.7, ∀i ∈ {2, . . . 6}, θi = 0.5, ∀i ∈ {7, . . . 11}, and θi = 0.01 otherwise. 3. arith: θ1 = 1 and
θi − θi+1 = 0.06, ∀i ∈ [15]. 4. geo: θ1 = 1, and θi+1

θi
= 0.8, ∀i ∈ [15]. 5. b1: θ1 = 0.8, θi = 0.6, ∀i ∈ [16] \ {1} 6.

g4b: θ1 = 1, θi = 0.7, ∀i ∈ {2, . . . 18}, θi = 0.5, ∀i ∈ {19, . . . 45}, and θi = 0.01 otherwise. 7. arithb: θ1 = 1 and
θi − θi+1 = 0.2, ∀i ∈ [49]. 8. geob: θ1 = 1, and θi+1

θi
= 0.9, ∀i ∈ [49].


