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Abstract
Bayesian optimization (BO) is a popular method-
ology to tune the hyperparameters of expensive
black-box functions. Traditionally, BO focuses
on a single task at a time and is not designed to
leverage information from related functions, such
as tuning performance objectives of the same al-
gorithm across multiple datasets. In this work,
we introduce a novel approach to achieve transfer
learning across different datasets as well as dif-
ferent objectives. The main idea is to regress the
mapping from hyperparameter to objective quan-
tiles with a semi-parametric Gaussian Copula dis-
tribution, which provides robustness against dif-
ferent scales or outliers that can occur in different
tasks. We introduce two methods to leverage this
mapping: a Thompson sampling strategy as well
as a Gaussian Copula process using such quantile
estimate as a prior. We show that these strategies
can combine the estimation of multiple objectives
such as latency and accuracy, steering the hyper-
parameters optimization toward faster predictions
for the same level of accuracy. Extensive experi-
ments demonstrate significant improvements over
state-of-the-art methods for both hyperparameter
optimization and neural architecture search.

1. Introduction
Tuning complex machine learning models such as deep neu-
ral networks can be daunting. Object detection or language
understanding models often rely on deep neural networks
with many tunable hyperparameters, and automatic hyper-
parameter optimization (HPO) techniques such as Bayesian
optimization (BO) are critical to find good hyperparameters
in short time. BO addresses the black-box optimization
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problem by placing a probabilistic model, typically a Gaus-
sian process (GP), on the function to minimize; then, the
hyperparameters to evaluate next are determined through
an acquisition function that trades off exploration and ex-
ploitation. Interest in BO has been originally motivated by
speeding up HPO pipelines where the function to optimize
usually takes hours to evaluate or even thousand of GPU
days in total in the case of neural architecture search (NAS)
(Zoph & Le, 2017; Real et al., 2018b). While traditional BO
focuses on each problem in isolation, recent years have seen
a surge of interest in transfer learning for HPO. The key
idea is to exploit evaluations from previous, related tasks
(e.g., the same neural network tuned on multiple datasets)
to further speed up the hyperparameter search.

A key challenge for joint models is that different black-
boxes exhibit heterogeneous scale and noise levels (Bar-
denet et al., 2013; Yogatama & Mann, 2014; Wistuba et al.,
2018; Feurer et al., 2018). The straightforward approach
of standardizing outputs (Yogatama & Mann, 2014) only
works for tasks with normally distributed observations and
no outliers. While rank estimation can be used to alleviate
scale issues, the difficulty of feeding back rank informa-
tion to GPs leads to restricting assumptions. For instance,
Bardenet et al. (2013) does not model rank estimation un-
certainty, while Feurer et al. (2018) uses independent GPs
removing the adaptivity of the GP to the current task.

This paper shows how semi-parametric Gaussian Copulas
effectively handle heterogeneous scales across tasks, giving
rise to several algorithmic instantiations for hyperparameter
transfer learning. Our key contributions are as follows:

• We propose using Gaussian Copulas instead of stan-
dardization to map observations from different tasks to
comparable distributions;

• Two novel methods leveraging this finding, namely
a Thompson sampling and Gaussian Copula process
combined with a joint parametric prior;

• An extensive empirical study demonstrating substantial
improvements over state-of-the-art transfer learning
methods on real-world datasets, including on neural
architecture search (NAS);

• A simple extension that scalarizes Gaussian Copula
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objectives to achieve multi-objective Bayesian opti-
mization.

2. Related work
A variety of methods have been developed to induce trans-
fer learning in HPO. The most common approach is to
model tasks jointly or via a conditional independence
structure, which has been been explored through multi-
output GPs (Swersky et al., 2013), weighted combination of
GPs (Schilling et al., 2016; Wistuba et al., 2018; Feurer et al.,
2018), and neural networks, either fully Bayesian (Sprin-
genberg et al., 2016) or hybrid (Snoek et al., 2015; Perrone
et al., 2018; Law et al., 2018). A different line of research
has focused on the setting where tasks come over time as a
sequence and the models need to be updated online as new
problems accrue. A way to achieve this is to fit a sequence
of surrogate models to the residuals relative to predictions of
the previously fitted model (Golovin et al., 2017; Poloczek
et al., 2016). Specifically, the GP over the new task is cen-
tered on the predictive mean of the previously learned GP.
Finally, rather than fitting a surrogate model to all past data,
some transfer can be achieved by warm-starting BO with
the solutions to the previous BO problems (Feurer et al.,
2015; Wistuba et al., 2015b).

Some methods have instead focused on the search-space
level, aiming to prune it to focus on regions of the hyperpa-
rameter space where good configurations are likely to lie.
An example is Wistuba et al. (2015a), where related tasks
are used to learn a promising search space during HPO,
defining task similarity in terms of the distance of the re-
spective dataset meta-features. An alternative was proposed
in Perrone et al. (2019), where a restricted search space in
the form of a low-volume hyper-rectangle or hyper-ellipsoid
is learned from the optimal hyperparameters of related tasks.
Gaussian Copula Process (GCP) (Wilson & Ghahramani,
2010) can also be used to alleviate scale issues on a single
task at the extra cost of estimating the CDF of the data. Us-
ing GCP for HPO was proposed in Anderson et al. (2017) to
handle potentially non-Gaussian data, albeit only consider-
ing non-parametric homoskedastic priors for the single task
and single objective case.

3. Gaussian Copula regression
For each task j denote with f j : Rp → R the error function
one wishes to minimize, and with D = {xi, yi}Ni=1 the
evaluations available for an arbitrary task with yi = f(xi).
Given the evaluations on M tasks

DM =

M⋃
j=1

{xji , y
j
i }
Nj
i=1,

we are interested in speeding up the optimization of an
arbitrary new task f , namely in finding arg minx∈Rp f(x)
in the least number of evaluations. We assume the functions
{f j}Mj=1 and f to be related, such as the error function of
the same algorithm over several datasets. In the following,
we refer to task as the problem of tuning a given algorithm
on a dataset, with different datasets corresponding to related
tasks.

One possible approach to speed up the optimization of f is
to build a surrogate model f̂(x). While using a Gaussian
process is possible, scaling this approach to the large number
of evaluations available in a transfer learning setting is chal-
lenging. Instead, we propose fitting a parametric estimate
of the distribution of f̂θ(x) which can be later used in HPO
strategies as a prior of a Gaussian Copula Process. A key
requirement here is to learn a joint model, namely we would
like to find θ which fits well all observed tasks f j . We show
how this can be achieved with a semi-parametric Gaussian
Copula in two steps. First, all evaluations are mapped to
quantiles with the empirical CDF. Then, we fit a paramet-
ric Gaussian distribution on quantiles mapped through the
Gaussian inverse CDF.

We make the modeling assumption that every yi comes
from the same distribution for an arbitrary task. The prob-
ability integral transform results in ui = F (yi), where F
is the cumulative distribution function of y. The CDF of
(u1, . . . , uN ) is modeled with a Gaussian Copula:

C(u1, . . . , uN ) = φµ,Σ(Φ−1(F (y1)), . . . ,Φ−1(F (yN ))),

where Φ is the standard normal CDF and φµ,Σ is the CDF of
a normal distribution parametrized by µ and Σ. Assuming
F to be invertible, we define the change of variable z =
Φ−1◦F (y) = ψ(y) and g = ψ◦f , see Figure 1. Note that if
z is regressed perfectly against x, then finding the minimum
of f is trivial as a parameter x minimizing ψ(f(x)) also
minimizes f(x) since ψ is monotonically increasing.

The conditional distribution of P (z|x) is estimated with
a Gaussian distribution whose mean and variance are two
deterministic parametric functions given by

P (z|x) ∼ N (µθ(x), σ2
θ(x))

= N (wTµhwh(x) + bµ, (Ψ(wTσ hwh(x) + bσ))2),

where hwh(x) ∈ Rd is the output of a multi-layer percep-
tron (MLP), wh, wµ ∈ Rd, bµ ∈ R, wσ ∈ Rd, bσ ∈ R
are free parameters and Ψ(t) = log(1 + exp t) is an ac-
tivation mapping to positive numbers. The parameters
θ = {wh, wµ, bµ, wσ, bσ} are learned by minimizing the
Gaussian negative log-likelihood on the available evalu-
ations DM =

⋃
1≤j≤M{x

j
i , z

j
i }
Nj
i=1, e.g., by minimizing

with SGD
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Figure 1. Illustration of the steps to compute of z = ψ(y). The
empirical CDF is computed on each task individually and truncated
with Winsorized cut-off.

∑
(x,z)∈DM

1

2
log 2πσθ(x)2 +

1

2

(
z − µθ(x)

σθ(x)

)2

(1)

Let us make two remarks. First, the parameters θ are inde-
pendent of the task chosen so that minimizing Eq. (1) gives
a joint model over all available tasks, the hope being it can
generalize to new tasks, see Figure 2. Second, each task is
assumed to have the same number of observations. If this is
not the case, each term in Eq. (1) can be weighted inversely
to the number of task observations.

The transformation ψ requires F , which needs to be es-
timated. Rather than using a parametric or density es-
timation approach, we use the empirical CDF F̃ (t) =
1
N

∑N
i=1 1yi≤t. While it has the advantage of being non-

parametric, this estimator leads to infinite value when eval-
uating ψ at the minimum or maximum of y. To avoid this
issue, we use the Winsorized cut-off estimator

F (t) ≈


δN if F̃ (t) < δN

F̃ (t) if δN ≤ F̃ (t) ≤ 1− δN
1− δN if F̃ (t) > 1− δN

where N is the number of observations of y and choosing
δN = 1

4N1/4
√
π logN

strikes a bias-variance trade-off (Liu
et al., 2009). This approach is semi-parametric in that the
CDF is estimated with a non-parametric estimator and the
Gaussian Copula is estimated with a parametric approach.

The benefit of using a non-parametric estimator for the CDF
is that it allows us to map the observations of each task
to comparable distributions. Indeed, each uj = F j(yj) is
uniformly distributed by the probability integral transform
property. Since zj = Φ−1(uj), all tasks j are normally
distributed, namely zj ∼ N (0, 1) for all j. This is critical
to allow the joint learning of the parametric estimates µθ
and σθ, which share their parameters θ across all tasks.

Another advantage of this view is that one can easily assess
whether transfer learning helps. Indeed, a constant predictor
ẑ = 0 yields a RMSE of 1 as

RMSE(ẑ)2 = E[(z − ẑ)2]

= E[z2]− 2 E[z]E[ẑ] + E[ẑ2]

= 1

using the independence of z and ẑ, and the fact z ∼ N (0, 1).
Our experiments will show that one can regress a parametric
estimate that has a RMSE lower than 1. This means that
information can be leveraged from the evaluations obtained
on related tasks, compared to the result of the constant pre-
dictor which would be the best predictor if no information
was given (assuming of course absence of overfitting).

4. Copula based HPO
We now show how the estimator introduced in the previous
section can be leveraged to design two novel HPO strategies.
We first introduce Copula Thompson sampling (CTS), a
simple method to exploit information from related tasks.
We then build on it to develop Gaussian Copula Process,
which can additionally adapt to the new task.

4.1. Copula Thompson sampling

Given the predictive distribution P (z|x) ∼
N (µθ(x), σ2

θ(x)), we can derive a Thompson sam-
pling strategy (Thompson, 1933) exploiting knowledge
from previous tasks. Given N candidate hyperparameter
configurations x1, . . . , xN , we sample from each predictive
distribution z̃i ∼ N (µθ(xi), σ

2
θ(xi)) and then evaluate

f(xi) where i = arg mini z̃i. Pseudo-code is given in
Algorithm 1.

While this approach can re-use information from previous
tasks, it does not exploit the evaluations from the current
task as each draw is independent of the observed evaluations.
This can become an issue if the new black-box significantly
differs from previous tasks. We now show that Gaussian
Copula regression can be combined with a GP to learn from
previous tasks while also adapting to the current task.

Algorithm 1 Copula Thompson sampling

Learn the parameters θ of µθ(x) and σθ(x) on hold-out
evaluations DM by minimizing (1).
while Has budget do

Sample N candidate hyperparameters x1, . . . , xN
from the search space
Draw z̃i ∼ N (µθ(xi), σ

2
θ(xi)) for i = 1, . . . , N

Evaluate f(xi) where i = arg mini z̃i
end while
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µθ(x)

σθ(x)

Figure 2. Plot of x (single learning rate in this example) against the blackbox error y in log-space (left) and z = Φ−1 ◦ F (y) (middle
and right) where F is approximated with the empirical CDF of every task. The middle plot shows a running mean fitted for every task
individually. The last plot pictures the predictive distribution of a parametric prior given by an MLP µθ(x), σθ(x). Note that since θ is
tied across all tasks, the predictions are the same for all tasks which can only work when distributions are similar across tasks.

4.2. Gaussian Copula Process

Instead of modeling observations with a GP, we model them
as a Gaussian Copula Process (GCP) (Wilson & Ghahra-
mani, 2010). Observations are mapped through the bijection
ψ = Φ−1 ◦ F , where we recall that Φ is the standard nor-
mal CDF and that F is the CDF of y. As ψ is monotonically
increasing and mapping into the line, we can alternatively
view this modeling as a warped GP (Snelson et al., 2004)
with a non-parametric warping. One advantage of this trans-
formation is that z = ψ(y) follows a normal distribution,
which may not be the case for y. In the specific case of HPO,
for instance y may represent accuracy scores in [0, 1] of a
classifier where a Gaussian cannot be used. Furthermore,
we can use the information gained on other tasks with µθ
and σθ by using them as prior mean and standard deviation.
To do so, the following residual is modeled with a GP:

r(x) =
g(x)− µθ(x)

σθ(x)

∼ GP(m(x), k(x, x′)),

where g = ψ ◦ f . We use a Matérn-5/2 covariance kernel
with automatic relevance determination hyperparameters,
and optimize the GP hyperparameters by type-II maximum
likelihood (Rasmussen & Williams, 2006). Categorical hy-
perparameters are handled by one-hot encoding. Fitting the
GP gives the predictive distribution of the residual surrogate

r̂(x) ∼ N (µr(x), σ2
r(x)).

Because µθ and σθ are deterministic functions, the predic-
tive distribution of the surrogate ĝ is given by

ĝ(x) = r̂(x)σθ(x) + µθ(x)

∼ N (µĝ(x), σ2
ĝ(x))

∼ N (µr(x)σθ(x) + µθ(x), (σr(x)σθ(x))2).

Using this predictive distribution, we can select the hyper-
parameter configuration maximizing the Expected Improve-
ment (EI) (Mockus et al., 1978) of g(x). The EI can then
be defined in closed form as

EI(x) = E[max(0, g(xmin)− ĝ(x))]

= σĝ(x)(v(x)Φ(v(x)) + φ(v(x))),

Algorithm 2 Gaussian Copula process with parametric prior

Learn the parameters θ of µθ(x) and σθ(x) on hold-out
evaluations DM by minimizing (1).
Sample an initial set of evaluations D =
{(xi, f(xi))}N0

i=1 via CTS.
while Has budget do

Estimate CDF F on the current task observations
{f(xi)} to obtain ψ
Fit the GP surrogate r̂ to the observations
{(x, ψ(y)−µθ(x)

σθ(x) ) | (x, y) ∈ D}
Sample N candidate hyperparameters x1, . . . , xN
from the search space
Compute the hyperparameter maximizing EI x∗ =
arg max EI
Evaluate y∗ = f(x∗) and update D = D ∪ {(x∗, y∗)}.

end while

where v(x) :=
µĝ(x)−g(xmin)

σĝ(x) , and Φ, φ denote the CDF and
PDF of the standard normal, respectively. When no obser-
vations are available, the empirical CDF F̃ is not defined.
Therefore, we warm-start the optimization on the new task
by sampling a set of N0 = 5 hyperparameter configurations
via Thompson sampling, as described above. Pseudo-code
is given in Algorithm 2.

4.3. Computational complexity

We assume that the tasks in DM contain n observations
each, so that we have Mn offline evaluations in total, and



A Quantile-based Approach for Hyperparameter Transfer Learning

that N evaluations have been queried for the new task. Fit-
ting a GP on all tasks costs O((Mn+N)3), which prevents
from using exact approaches when many offline evaluations
are available. As finding parameters of the parametric prior
takes O(Mn), running CTS costs O(Mn + N) and run-
ning GCP with a parametric prior costs O(Mn+N3). One
benefit of using a parametric prior is to avoid the cubical
complexity in the number of offline evaluations. The next
section demonstrates that it also improves accuracy com-
pared to state-of-the-art HPO and transfer learning methods.

5. Experiments
We consider three algorithms in the HPO context: XG-
Boost (Chen & Guestrin, 2016), a 2-layer feed-forward
neural network (FCNET) (Klein & Hutter, 2019), and the
RNN-based time series prediction model proposed in Sali-
nas et al. (2017) (DeepAR). As advocated in Eggensperger
et al. (2012) and Klein & Hutter (2019), we compute tab-
ular evaluations (log) uniformly beforehand on multiple
datasets to compare methods with sufficiently many ran-
dom repetitions. Each optimization problem is then discrete
as we select from a list of precomputed solutions. While
we consider hyperparameter spaces with small to moderate
dimensions, optimizing the acquisition over a continuous
domain is better suited in higher dimensional spaces. In
this setting, GCP is readily applicable, for instance, by opti-
mizing EI with LBFGS. We run each experiment with 30
random seeds on AWS batch with m4.xlarge instances.

We also run experiments on NAS-Bench-201 (Dong & Yang,
2020). In this benchmark, all possible 15625 configurations
of a specific cell search space were evaluated on 3 datasets.
Each architecture can be represented as 6 categorical vari-
ables, each containing 5 different types of connections. As
in Dong & Yang (2020), every model gets as input x the
concatenation of the 6 one-hot vectors, resulting in x ∈ R30.
Optimizers are allowed to query the black-box for 70 ob-
servations, which corresponds to roughly 12000 seconds
in total. More details on each black-box can be found in
Table 1, including the number of hyperparameters (HPs) for
each problem. The list of the datasets is in the appendix.

The MLP hwh(x) used to regress µθ and σθ has 3 layers
with 50 nodes, a dropout rate of 0.1 after each hidden layer
and relu activation functions. The learning rate is set to 0.01,
and ADAM is run over 1000 gradient updates three times,
lowering the learning rate by 5 each time with a batch size
of 64. In practice, optimizing the MLP take less than two
minutes on a laptop.

Baselines. We compare against random search (RS) and
GP-based BO (GP), the two most popular HPO methods,
as well as four transfer learning baselines. The first one is
warm-start GP (WS-GP) (Feurer et al., 2015), which uses

tasks # datasets # HPs # evaluations objective

DeepAR 10 6 2420 quantile loss
FCNET 4 9 248832 MSE
XGBoost 9 9 45000 1-AUC
NAS-Bench-201 3 6 46875 accuracy, runtime

Table 1. Statistics of the black-boxes considered.

the best evaluation from all related tasks to warm-start the
GP after standardizing objectives values for each dataset.
The second one is AutoGP (Perrone et al., 2019), which
transfers information by fitting a bounding box that contains
the best hyperparameters from each previous task, and runs
a GP-based BO in the learned search space. The third one is
SGPT (Wistuba et al., 2018), which combines M + 1 GPs
with a specific acquisition function using rank-matching-
based weighting to transfer information across related tasks.
The last baseline is ABLR (Perrone et al., 2018), a multi-
task model consisting of a shared-across-task neural network
with a per-task Bayesian linear regression layer on top.

For NAS, we also compare with the 4 best methods out
of the 10 considered in Dong & Yang (2020): RS, REIN-
FORCE (Williams, 1992), BOHB (Falkner et al., 2018) and
REA (Real et al., 2018a).1 The transfer learning capabilities
of each method are evaluated in a leave-one-task-out set-
ting: one dataset is sequentially left out to assess how much
transfer can be achieved from the other datasets, and overall
results are aggregated.

Ablation study. In addition to comparing to baselines,
we perform an ablation to measure the benefits of 1) using
a Gaussian Copula Process rather than sampling indepen-
dently with Thompson sampling, 2) applying Gaussian Cop-
ula to normalize the data using ψ, and 3) using a parametric
prior. When ψ is not used, data is instead standardized with

z = ∆(y) =
y −E(y)√

V(y)
.

Specifically, we evaluate the following variants of our
model:

• CTS: The CTS model with a parametric prior described
in Section 4.2.

• TS: The model with a parametric prior described in
Section 4.2 where data is standardized with ∆ instead
of ψ.

• GCP+prior: The GCP model with a parametric prior
described in Section 4.2.

1These baselines are not evaluated on other black-boxes as they
are either designed for NAS or require multi-fidelity information
that is not available for all black-boxes.
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Figure 3. ADTM over iterations for baselines (left) and ablation variants (right). Methods using a parametric prior are depicted with a
square and methods using Gaussian Copula are represented by a dashed line.
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Figure 5. Performance comparison on NAS on the 3 NAS-Bench-201 datasets, with shaded areas representing 80% confidence intervals.

• GCP: A Gaussian Copula Process with a standard prior.

• GP+prior: A Gaussian Process where a parametric
prior is estimated but data is standardized with ∆ in-
stead of using ψ.

Average distance to the minimum. To be able to aggre-
gate scores over tasks, we follow the approach from Wistuba
et al. (2018) and measure performance on each task in terms
of the normalized distance to the global minimum. This is
defined as

DTMj
opt(t) =

yjopt(t)− y
j
min

yjmax − yjmin

,

where yjopt(t) denotes the best performance, averaged over
replicates of an optimizer after t iterations on task j, while
yjmin and yjmax respectively denote the minimum and maxi-
mum objective computed across all offline evaluations avail-
able for task j. This score is in [0, 1], making performance
more comparable across datasets. The average DTM across
tasks is defined as ADTMopt(t) = 1

M

∑M
j=1 DTMj

opt(t).

Figure 3 illustrates the performance of competing meth-
ods over time for each black-box in terms of ADTM.
We report the mean ADTM across all seeds, noting that
in this transfer learning setting standard deviation would
emphasize the variance coming from the different meta-
datasets. Additionally, Table 2 reports the average improve-
ment over RS, defined as the average across datasets of
1
T

∑T
t=1

DTMjRS(t)−DTMjopt(t)

DTMjRS(t)
∈ ]−∞, 1]. This shows how

much each algorithm improves over RS, whose performance
indicates the complexity of the tuning problem. Figure 4
shows the improvement over random search on each dataset.

5.1. Results Discussion

Figure 3 and Table 2 show that the Copula approach gives
consistent improvement over both GP and TS. In particular,
GCP is a strong baseline, which is expected as the modeled
data after ψ is Gaussian as opposed to a standard GP. Criti-
cally, using a parametric prior is only beneficial in combi-
nation with Gaussian Copula as evidenced by the very poor

performance of TS and GP+prior. This issue also affects
ABLR and SGPT, which are unable to consistently outper-
form GP even though they leverage additional information
from other tasks while AutoGP and WS-GP are less affected
as they only use the best hyperparameters evaluation of each
task. In addition, Figure 4 and Table 2 report results when
using Gaussian Copula in combination with these baselines
(e.g., using ψ instead of ∆ to normalize outputs). The qual-
ity of these methods is dramatically improved, showing how
they are negatively affected by heterogeneous scales and
non-normality.

While being able to transfer information from other datasets,
CTS is unable to benefit from observations of the current
task and is outperformed by other baselines given suffi-
ciently many observations, especially on DeepAR and XG-
Boost. On these black-boxes, we observe modest perfor-
mance for the other transfer learning baselines, which we
believe is due to the lower correlation of hyperparame-
ter performance between tasks. To investigate this fur-
ther, Figure 4 shows the average improvement over ran-
dom search computed separately on each dataset and sorted
by the prior RMSE computed on the current task2 with√

1
N

∑N
i=1 (zi − µθ(xi))2. As mentioned in Section 3, low

RMSE values indicate that the current task is similar to other
available tasks and consequently easier for transfer learning
methods. Both CTS and transfer learning baselines show
improvement over RS when the RMSE is low, while the
performance of baselines deteriorates for tasks with higher
RMSE and is even adversely affected when the test task
excessively differs from the held-out datasets. On the other
hand, being able to benefit both from other tasks and obser-
vations of the current task, GCP+prior is the best method
overall. This can be observed on all black-boxes both at the
beginning and at the end of the optimization. The results
are summarized in Table 2, which gives the average rank
of the 16 methods. Over the 26 datasets, GCP+prior is the
best method 15 times and the second best 7 times, with an
average rank of 1.5.

2Observations from the current task are only used to report
RMSE but are not used when fitting our model.
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Table 2. DTM normalized over random search (higher is better).
The best two methods are in bold and the average rank of each
method is indicated in parenthesis.

black-box DeepAR FCNET XGBoost NAS

RS (baseline) 0.00 (7.1) 0.00 (10.8) 0.00 (8.2) 0.00 (12.0)

TS -21.02 (13.0) -563.27 (13.0) -6.28 (12.7) -1.30 (14.3)
CTS (ours) 0.38 (4.5) 0.83 (2.5) 0.02 (7.4) 0.88 (2.7)
GP + prior -5.92 (11.8) -166.64 (12.0) -1.70 (11.1) -2.24 (15.3)
GCP 0.42 (4.3) 0.79 (4.0) 0.31 (3.1) 0.45 (7.3)
GCP + prior (ours) 0.73 (1.7) 0.94 (1.0) 0.37 (1.9) 0.94 (1.3)

GP -0.25 (7.9) 0.53 (8.0) 0.00 (8.6) 0.38 (8.7)
AutoGP -0.11 (7.3) 0.72 (5.2) 0.22 (4.2) 0.84 (2.3)
WS GP -0.50 (7.6) 0.73 (5.2) 0.11 (5.9) 0.62 (5.7)
ABLR -0.75 (10.2) 0.11 (10.2) -0.05 (9.1) 0.13 (10.3)
ABLR Copula 0.53 (3.1) 0.71 (5.5) 0.08 (7.0) 0.63 (5.3)
SGPT -0.38 (8.8) 0.56 (8.2) -0.01 (8.4) 0.46 (8.0)
SGPT Copula 0.44 (3.7) 0.74 (5.2) 0.28 (3.3) 0.67 (5.0)
BOHB - - - -0.19 (14.3)
R-EA - - - 0.19 (10.3)
REINFORCE - - - -0.09 (13.0)

Comparison with NAS. Figure 5 shows test accuracy
over time compared to the 4 best baselines evaluated in
Dong & Yang (2020). Interestingly, GP appears to be a
satisfactory baseline even though it is rarely evaluated in
this context (Ying et al., 2019; Dong & Yang, 2020). When
combined with a prior, both GCP and CTS converge in a
fraction of the number of iterations required by the other
baselines. The only exception is AutoGP, which GCP+prior
still outperforms given sufficiently many observations due
to its greater ability to adapt to the target task.

5.2. Multi-Objective Optimization

The goal of multi-objective optimization (MO) is to opti-
mize multiple objectives f1, . . . , fL simultaneously. This is
relevant to many applications including NAS, where the de-
vice on which the model is deployed comes with additional
memory or latency constraints (Tan et al., 2018; Elsken et al.,
2019). Typically, no single solution minimizes all objectives
at once and one seeks instead Pareto-optimal solutions. A
solution x dominates x′ if fl(x) ≤ fl(x′) for all l ≤ L and
there exists l′ ≤ L such that fl′(x) < fl′(x

′). The Pareto
front is the set of all Pareto-optimal solutions, defined as
points that are not dominated by any other points.

A simple approach to MO is to scalarize the objective values
y1, . . . , yL as

∑L
l=1 αlyl and fall back to single-objective

minimization. However, combining multiple objectives
poses challenges similar to the ones from the transfer learn-
ing setting. Objectives typically have different scales and
mixing them linearly only allows for convex level sets,
which is a poor approximation of the Pareto frontier ge-
ometry. We illustrate this behavior in Figure 6: no mixture
coefficient properly approximates the Pareto front of latency
and prediction error on Cifar10. On the other hand, as Bi-
nois et al. (2015) observed in the context of Pareto front

estimation, averaging the two Gaussian Copula objectives
provides a good approximation of the Pareto front.

Motivated by this property, we extend our methods to MO by
simply averaging observations from Gaussian Copulas. We
compare with EHI (Emmerich et al., 2011), SMS (Ponweiser
et al., 2008), SUR (Picheny, 2015) and EMI (Svenson &
Santner, 2016), implemented in GPareto (Binois & Picheny,
2019). The suffix +MO is used to indicate a scalarization of
the objective obtained by averaging observations after apply-
ing Z = ψ for methods using Copula and Z = ∆ for others.
Performance at each BO iteration is evaluated by comput-
ing the Pareto hypervolume error, namely the hypervolume
difference with the Pareto front. Consistently with the re-
sults of the previous section, linear scalarization performs
poorly and both GP+prior and TS are strongly outperformed
while GCP+prior and CTS compete or outperform GPareto
baselines.

6. Hardware Specification
We used AWS batch with m4.xlarge instances for most of
our experiments. Beside RS whose cost is almost negligible,
evaluating an optimizer takes around 5 minutes for a seed.
Excluding GPareto and NAS baselines, we then estimate
the cost of running our experiments to be num methods×
num seeds× num datasets× optimizer time ≈ 12× 30×
26× 300, which is around 32 days of a single machine.

7. Conclusions
We introduced a new class of methods to accelerate hyper-
parameter optimization by exploiting evaluations from pre-
vious tasks. The key idea was to leverage a semi-parametric
Gaussian Copula prior to account for the different scale and
noise levels across tasks. Experiments showed that com-
peting methods are outperformed on both HPO and NAS,
and our approach deals with heterogeneous tasks more ro-
bustly than a number of transfer learning strategies recently
proposed in the literature. Finally, we showed that our frame-
work seamlessly extends to combine multiple metrics, such
as test error and latency, in a multi-objective BO framework.

A number of directions for future work are open. First,
one could combine our Copula-based HPO strategies with
Hyperband-style optimizers (Li et al., 2016). In addition,
one could generalize our approach to deal with settings in
which related problems are not limited to the same algorithm
run over different datasets. This would allow for different
hyperparameter dimensions across tasks, or perform transfer
learning across different black-boxes.
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Figure 6. Latency and test error for each architecture evaluated on Cifar10. Colors represent values scalarized with αZ(yerror) + (1−
α)Z(ylatency) for α ∈ {0.25, 0.5, 0.75}, Z = ∆ for the first three plots, and α = 0.5, Z = ψ for the rightmost plot (lowest values are
green, highest values are red). Level sets are linear for Z = ∆ and no single value of α can approximate the geometry of the Pareto front.
In contrast, ψ better approximates the shape of the front, which is followed closely by the top values of the scalarized objective.
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Figure 7. NAS multi-objective experiments. Hypervolume error at each iteration, with shaded areas representing 80% confidence intervals.
Methods using a parametric prior are depicted with a square and methods using Gaussian Copula are represented by a dashed line.
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