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Appendix
We first briefly outline the different sections in the appendix.

• In appendix A, we provide details of our experimental setup, and provide additional empirical results on fully connected
networks, convolutional networks and residual networks with the MNIST, CIFAR-10 and CIFAR-100 datasets.

• In appendix B, we state and prove a lemma on the near orthogonality of random vectors, which we refer to in the main
text. This result is often attributed to Milman & Schechtman (1986).

• In appendix C, we provide some intuition on why many standard over-parameterized neural networks with low-rank
Hessians might have low gradient confusion for a large set of weights near the minimizer.

• In appendix D, we provide the proofs of the theorems presented in the main section. In appendix D.1, we provide
proofs of theorems 3.1 and 3.2. In appendix D.2, we provide the proof of lemma D.1, which we refer to in the main
text. In appendix D.3, we provide proofs of theorem 5.1 and corollary 5.1. In appendix D.4, we provide the proof of
theorem 4.1. In appendix D.5, we provide the proof of theorem 6.1.

• In appendix E, we briefly describe a few lemmas that we require in our analysis.

• In appendix F, we discuss the small weights assumption (assumption 1), which is required for theorem 5.1, corollary
5.1 and theorem 6.1 in the main text.

A. Additional experimental results
In this section, we present more details about our experimental setup, as well as, additional experimental results on a range
of models (MLPs, CNNs and Wide ResNets) and a range of datasets (MNIST, CIFAR-10, CIFAR-100).

A.1. MLPs on MNIST

To further test the main claims in the paper, we performed additional experiments on an image classification problem on
the MNIST dataset using fully connected neural networks. We iterated over neural networks of varying depth and width,
and considered both the identity activation function (i.e., linear neural networks) and the tanh activation function. We also
considered two different weight initializations that are popularly used and appropriate for these activation functions:

• The Glorot normal initializer (Glorot & Bengio, 2010) with weights initialized by sampling from the distribution
N
(
0, 2/(fan-in + fan-out)

)
, where fan-in denotes the number of input units in the weight matrix, and fan-out denotes

the number of output units in the weight matrix.

• The LeCun normal initializer (LeCun et al., 2012) with weights initialized by sampling from the distribution
N
(
0, 1/fan-in

)
.

We considered the simplified case where all hidden layers have the same width `. Thus, the first weight matrix W0 ∈ R`×d,
where d = 784 for the 28× 28-sized images of MNIST; all intermediate weight matrices {Wp}p∈[β−1] ∈ R`×`; and the
final layer Wβ ∈ R10×` for the 10 image classes in MNIST. We added biases to each layer, which we initialized to 0. We
used softmax cross entropy as the loss function. We use MLP-β-` to denote this fully connected network of depth β and
width `. We used the standard train-valid-test splits of 40000-10000-10000 for MNIST.

This relatively simple model gave us the ability to iterate over a large number of combinations of network architectures
of varying width and depth, and different activation functions and weight initializations. Linear neural networks are an
efficient way to directly understand the effect of changing depth and width without increasing model complexity over linear
regression. Thus, we considered both linear and non-linear neural networks in our experiments.

We used SGD with constant learning rates for training with a mini-batch size of 128 and trained each model for 40000
iterations (more than 100 epochs). The constant learning rate α was tuned over a logarithmically-spaced grid:

α ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6}.
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We ran each experiment 10 times (making sure at least 8 of them ran till completion), and picked the learning rate that
achieved the lowest training loss value on average at the end of training. Our grid search was such that the optimal learning
rate never occurred at one of the extreme values tested.

To measure gradient confusion at the end training, we sampled 1000 pairs of mini-batches each of size 128 (the same size
as the training batch size). We calculated gradients on each of these pairs of mini-batches, and then calculated the cosine
similarity between them. To measure the worse-case gradient confusion, we computed the lowest gradient cosine similarity
among all pairs. We explored the effect of changing depth and changing width on the different activation functions and
weight initializations. We plot the final training loss achieved for each model and the minimum gradient cosine similarities
calculated over the 1000 pairs of gradients at the end of training. For each point, we plot both the mean and the standard
deviation over the 10 independent runs.

The effect of depth. We first present results showing the effect of network depth. We considered a fixed width of ` = 100,
and varied the depth of the neural network, on the log scale, as:

β ∈ {3, 10, 30, 100, 300, 1000}.

Figure 5 shows results on neural networks with identity and tanh activation functions for the two weight initializations
considered (Glorot normal and LeCun normal). Similar to the experimental results in section 7, and matching our theoretical
results in sections 4 and 5, we notice the consistent trend of gradient confusion increasing with increasing depth. This
makes the networks harder to train with increasing depth, and this is evidenced by an increase in the final training loss
value. By depth β = 1000, the increased gradient confusion effectively makes the network untrainable when using tanh
non-linearities.

The effect of width. We explored the effect of width by varying the width of the neural network while keeping the depth
fixed at β = 300. We chose a very deep model, which is essentially untrainable for small widths (with standard initialization
techniques) and helps better illustrate the effects of increasing width. We varied the width of the network, again on the log
scale, as:

` ∈ {10, 30, 100, 300, 1000}.
Crucially, note that the smallest network considered here, MLP-300-10, still has more than 50000 parameters (i.e., more
than the number of training samples), and the network with width ` = 30 has almost three times the number of parameters
as the high-performing MLP-3-100 network considered in the previous section. Figure 6 show results on linear neural
networks and neural networks with tanh activations for both the Glorot normal and LeCun normal initializations. As in the
experimental results of section 7, we see the consistent trend of gradient confusion decreasing with increasing width. Thus,
wider networks become easier to train and improve the final training loss value. We further see that when the width is too
small (` = 30), the gradient confusion becomes drastically high and the network becomes completely untrainable.

A.2. Additional experimental details for CNNs and WRNs

In this section, we review the details of our setup for the image classification experiments on CNNs and WRNs on the
CIFAR-10 and CIFAR-100 datasets.

WIDE RESIDUAL NETWORKS

The Wide ResNet (WRN) architecture (Zagoruyko & Komodakis, 2016) for CIFAR datasets is a stack of three groups of
residual blocks. There is a downsampling layer between two blocks, and the number of channels (width of a convolutional
layer) is doubled after downsampling. In the three groups, the width of convolutional layers is {16`, 32`, 64`}, respectively.
Each group contains βr residual blocks, and each residual block contains two 3 × 3 convolutional layers equipped with
ReLU activation, batch normalization and dropout. There is a 3× 3 convolutional layer with 16 channels before the three
groups of residual blocks. And there is a global average pooling, a fully-connected layer and a softmax layer after the three
groups. The depth of WRN is β = 6βr + 4.

For our experiments, we turned off dropout. Unless otherwise specified, we also turned off batch normalization. We added
biases to the convolutional layers when not using batch normalization to maintain model expressivity. We used the MSRA
initializer (He et al., 2015) for the weights as is standard for this model, and used the same preprocessing steps for the
CIFAR images as described in Zagoruyko & Komodakis (2016). This preprocessing step involves normalizing the images
and doing data augmentation (Zagoruyko & Komodakis, 2016). We denote this network as WRN-β-`, where β represents
the depth and ` represents the width factor of the network.
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(d) Linear NN, LeCun init
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(e) Tanh NN, Glorot init
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(f) Tanh NN, Glorot init
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(h) Tanh NN, LeCun init

Figure 5. Effect of varying depth on MLP-β-100.
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(c) Linear NN, LeCun init
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(d) Linear NN, LeCun init

101 102 103

width

0.0

0.5

1.0

1.5

2.0

2.5

fi
n
a
l 
tr

a
in

in
g
 l
o
ss

 v
a
lu

e
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(f) Tanh NN, Glorot init
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(g) Tanh NN, LeCun init
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Figure 6. Effect of varying width on MLP-300-`.

To study the effect of depth, we considered WRNs with width factor ` = 2 and depth varying as:

β ∈ {16, 22, 28, 34, 40, 52, 76, 100}.

For cleaner figures, we sometimes plot a subset of these results: β ∈ {16, 28, 40, 52, 76, 100}. To study the effect of width,
we considered WRNs with depth β = 16 and width factor varying as:

` ∈ {2, 3, 4, 5, 6}.
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CONVOLUTIONAL NEURAL NETWORKS

The WRN architecture contains skip connections that, as we show, help in training deep networks. To consider VGG-like
convolutional networks, we consider a family of networks where we remove the skip connections from WRNs. Following
the WRN convention, we denote these networks as CNN-β-`, where β denotes the depth and ` denotes the width factor.

To study the effect of depth, we considered CNNs with width factor ` = 2 and depth varying as:

β ∈ {16, 22, 28, 34, 40}.

To study the effect of width, we considered CNNs with depth β = 16 and width factor varying as:

` ∈ {2, 3, 4, 5, 6}.

HYPERPARAMETER TUNING AND OTHER DETAILS

We used SGD as the optimizer without any momentum. Following Zagoruyko & Komodakis (2016), we ran all experiments
for 200 epochs with minibatches of size 128, and reduced the initial learning rate by a factor of 10 at epochs 80 and 160. We
turned off weight decay for all our experiments.

We ran each individual experiment 5 times. We ignored any runs that were unable to decrease the loss from its initial
value. We also made sure at least 4 out of the 5 independent runs ran till completion. When the learning rate is close to the
threshold at which training is still possible, some runs may converge, while others may fail to converge. Thus, these checks
ensure that we pick a learning rate that converges reliably in most cases on each problem. We show the standard deviation
across runs in our plots.

We tuned the optimal initial learning rate for each model over a logarithmically-spaced grid:

α ∈ {101, 3× 100, 100, 3× 10−1, 10−1, 3× 10−2, 10−2, 3× 10−3, 10−3, 3× 10−4, 10−4, 3× 10−5},

and selected the run that achieved the lowest final training loss value (averaged over the independent runs). Our grid
search was such that the optimal learning rate never occurred at one of the extreme values tested. We used the standard
train-valid-test splits of 40000-10000-10000 for CIFAR-10 and CIFAR-100.

To measure gradient confusion, at the end of every training epoch, we sampled 100 pairs of mini-batches each of size 128
(the same size as the training batch size). We calculated gradients on each mini-batch, and then computed pairwise cosine
similarities. To measure the worse-case gradient confusion, we computed the lowest gradient cosine similarity among all
pairs. We also show the kernel density estimation of the pairwise gradient cosine similarities of the 100 minibatches sampled
at the end of training (after 200 epochs), to see the concentration of the distribution. To do this, we combine together the 100
samples for each independent run and then perform kernel density estimation with a gaussian kernel on this data.

A.3. Additional plots for CIFAR-10 on CNNs

In section 7, we showed results for image classification using CNNs on CIFAR-10. In this section, we show some additional
plots for this experiment. Figure 7 shows the effect of changing the depth, while figure 8 shows the effect of changing the
width factor of the CNN. We see that the final training loss and test set accuracy values show the same trends as in section 7:
deeper networks are harder to train, while wider networks are easier to train. As mentioned previously, theorems 3.1 and 3.2
indicate that we would expect the effect of gradient confusion to be more prominent near the end of training. From the plots
we see that deeper networks have higher gradient confusion close to minimum, while wider networks have lower gradient
confusion close to the minimum.

A.4. CIFAR-100 on CNNs

We now consider image classifications tasks with CNNs on the CIFAR-100 dataset. Figure 9 shows the effect of varying
depth, while figure 10 shows the effect of varying width. We notice the same trends as in our results with CNNs on
CIFAR-10. Interestingly, from the width results in figure 10, we see that while there is no perceptible change to the minimum
pairwise gradient cosine similarity, the distribution still sharply concentrates around 0 with increasing width. Thus more
gradients become orthogonal to each other with increasing width, implying that SGD on very wide networks becomes closer
to decoupling over the data samples.
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Figure 7. The effect of network depth with CNN-β-2 on CIFAR-10. The plots show the (a) final training loss values at the end of training,
(b) final test set accuracy values at the end of training, and (c) the minimum of pairwise gradient cosine similarities during training.
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Figure 8. The effect of width with CNN-16-` on CIFAR-10. The plots show the (a) final training loss values at the end of training, (b)
final test set accuracy values at the end of training, and the (c) minimum of pairwise gradient cosine similarities during training.

A.5. Image classification with WRNs on CIFAR-10 and CIFAR-100

We now show results for image classification problems using wide residual networks (WRNs) on CIFAR-10 and CIFAR-
100. The WRNs we consider do not have any batch normalization. Later we show results on the effect of adding batch
normalization to these networks.

Figures 11 and 12 show results on the effect of depth using WRNs on CIFAR-10 and CIFAR-100 respectively. We again see
the consistent trend of deeper networks having higher gradient confusion, making them harder to train. We further see that
increasing depth results in the pairwise gradient cosine similarities concentrating less around 0.

Figures 13 and 14 show results on the effect of width using WRNs on CIFAR-10 and CIFAR-100 respectively. We see that
increasing width typically lowers gradient confusion and helps the network achieve lower loss values. The pairwise gradient
cosine similarities also typically concentrate around 0 with higher width. We also notice from these figures that in some
cases, increasing width might lead to diminishing returns, i.e., the benefits of increased width diminish after a certain point,
as one would expect.

A.6. Effect of batch normalization and skip connections

In section 7 we showed results on the effect of adding batch normalization and skip connections to CNNs and WRNs on an
image classification task on CIFAR-10. In this section, we present similar results for image classification on CIFAR-100.
Similar to section 7, figure 15 shows that adding skip connections or batch normalization individually help in training
deeper models, but these models still suffer from worsening results and increasing gradient confusion as the network gets
deeper. Both these techniques together keep the gradient confusion relatively low even for very deep networks, significantly
improving trainability of deep models.
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Figure 9. The effect of network depth with CNN-β-2 on CIFAR-100. The plots show the (a) training loss values at the end of training, (b)
minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the pairwise gradient cosine
similarities at the end of training.
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Figure 10. The effect of width with CNN-16-` on CIFAR-100. The plots show the (a) training loss values at the end of training, (b)
minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the pairwise gradient cosine
similarities at the end of training.

B. Near orthogonality of random vectors
For completeness, we state and prove below a lemma on the near orthogonality of random vectors. This result is often
attributed to Milman & Schechtman (1986).
Lemma B.1 (Near orthogonality of random vectors). For vectors {xi}i∈[N ] drawn uniformly from a unit sphere in d
dimensions, and ν > 0,

Pr
[
∃i, j |x>i xj | > ν

]
≤ N2

√
π
8 exp

(
− d−1

2 ν2
)
.

Proof. Given a fixed vector x, a uniform random vector y satisfies |x>y| ≥ ν only if y lies in one of two spherical caps:
one centered at x and the other at −x, and both with angular radius cos−1(ν) ≤ π

2 − ν. A simple result often attributed to
Milman & Schechtman (1986) bounds the probability of lying in either of these caps as

Pr[|x>y| ≥ ν] ≤
√
π

2
exp

(
−d− 1

2
ν2
)
. (5)

Because of rotational symmetry, the bound (5) holds if both x and y are chosen uniformly at random.

We next apply a union bound to control the probability that |x>i xj | ≥ ν for some pair (i, j). There are fewer than N2/2
such pairs, and so the probability of this condition is

Pr[|x>i xj | ≥ ν, for some i, j] ≤ N2

2

√
π

2
exp

(
−d− 1

2
ν2
)
.
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Figure 11. The effect of depth with WRN-β-2 (no batch normalization) on CIFAR-10. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.
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Figure 12. The effect of depth with WRN-β-2 (no batch normalization) on CIFAR-100. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.

C. Low-rank Hessians lead to low gradient confusion
In this section, we show that low-rank random Hessians result in low gradient confusion. For clarity in presentation, suppose
each fi has a minimizer at the origin (the same argument can be easily extended to the more general case). Suppose also that
there is a Lipschitz constant for the Hessian of each function fi that satisfies ‖Hi(w)−Hi(w

′)‖ ≤ LH‖w −w′‖ (note
that this is a standard optimization assumption (Nesterov, 2018), with evidence that it is applicable for neural networks
(Martens, 2016)). Then ∇fi(w) = Hiw + e, where e is an error term bounded as: ‖e‖ ≤ 1

2LH‖w‖
2, and we use the

shorthand Hi to denote Hi(0). Then we have:

|〈∇fi(w),∇fj(w)〉| = |〈Hiw,Hjw〉|+ 〈e,Hiw +Hjw〉+ ‖e‖2

≤ ‖w‖2‖Hi‖‖Hj‖+ ‖e‖‖w‖(‖Hi‖+ ‖Hj‖) + ‖e‖2

≤ ‖w‖2‖Hi‖‖Hj‖+
1

2
LH‖w‖3(‖Hi‖+ ‖Hj‖) +

1

4
L2
H‖w‖4.

If the Hessians are sufficiently random and low-rank (e.g., of the form Hi = aia
>
i where ai ∈ RN×r are randomly sampled

from a unit sphere), then one would expect the terms in this expression to be small for all w within a neighborhood of the
minimizer.

There is evidence that the Hessian at the minimizer is very low rank for many standard over-parameterized neural network
models (Sagun et al., 2017; Cooper, 2018; Chaudhari et al., 2016; Wu et al., 2017; Ghorbani et al., 2019). While a bit
non-rigorous, the above result nonetheless suggests that for many standard neural network models, the gradient confusion
might be small for a large class of weights near the minimizer.
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Figure 13. The effect of width with WRN-16-` (no batch normalization) on CIFAR-10. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.
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Figure 14. The effect of width with WRN-16-` (no batch normalization) on CIFAR-100. The plots show the (a) training loss values at the
end of training, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training.

D. Missing proofs
D.1. Proofs of theorems 3.1 and 3.2

This section presents proofs for the convergence theorems of SGD presented in section 3, under the assumption of low
gradient confusion. For clarity of presentation, we re-state each theorem before its proof.
Theorem 3.1. If the objective function satisfies (A1) and (A2), and has gradient confusion η, SGD converges linearly to a
neighborhood of the minima of problem (1) as:

E[F (wT )− F ?] ≤ ρT (F (w0)− F ?) + αη
1−ρ ,

where α < 2
NL , ρ = 1− 2µ

N

(
α− NLα2

2

)
, F ? = minw F (w) and w0 is the initialized weights.

Proof. Let ĩ ∈ [N ] denote the index of the realized function f̃k in the uniform sampling from {fi}i∈[N ] at step k. From
assumption (A1), we have

F (wk+1) ≤ F (wk) + 〈∇F (wk), wk+1 −wk〉+
L

2
‖wk+1 −wk‖2

= F (wk)− α〈∇F (wk), ∇f̃k(wk)〉+
Lα2

2
‖∇f̃k(wk)‖2

= F (wk)−
( α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 −

α

N

∑
∀i:i 6=ĩ

〈∇fi(wk), ∇f̃k(wk)〉
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Figure 15. The effect of adding skip connections and batch normalization to CNN-β-2 on CIFAR-100. Plots show the (a) training loss, (b)
minimum pairwise gradient cosine similarities, and the (c) test accuracies at the end of training.

≤ F (wk)−
( α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 +

α(N − 1)η

N
,

≤ F (wk)−
( α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 + αη,

where the second-last inequality follows from definition 2.1. Let the learning rate α < 2/NL. Then, using assumption (A2)
and subtracting by F ? = minw F (w) on both sides, we get

F (wk+1)− F ? ≤ F (wk)− F ? − 2µ
( α
N
− Lα2

2

)
(f̃k(wk)− f̃?k ) + αη,

where f̃?k = minw f̃k(w). It is easy to see that by definition we have, Ei[f?i ] ≤ F ?. Moreover, from assumption that

α < 2
NL , it implies that

(
α
N −

Lα2

2

)
> 0. Therefore, taking expectation on both sides we get,

E[F (wk+1)− F ?] ≤
(
1− 2µα

N
+ µLα2

)
E[F (wk)− F ?] + αη.

Writing ρ = 1− 2µα
N + µLα2, and unrolling the iterations, we get

E[F (wk+1)− F ?] ≤ ρk+1(F (w0)− F ?) +
k∑
i=0

ρiαη

≤ ρk+1(F (w0)− F ?) +
∞∑
i=0

ρiαη

= ρk+1(F (w0)− F ?) +
αη

1− ρ
.

Theorem 3.2. If the objective satisfies (A1) and has gradient confusion η, then SGD converges to a neighborhood of a
stationary point of problem (1) as:

mink=1,...,T E‖∇F (wk)‖2 ≤ ρ(F (w1)−F?)
T + ρη,

for α < 2
NL , ρ = 2N

2−NLα , and F ? = minw F (w).

Proof. From theorem 3.1, we have:

F (wk+1) ≤ F (wk)−
( α
N
− Lα2

2

)
‖∇f̃k(wk)‖2 + αη. (6)
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Now we know that:

E‖∇f̃k(wk)‖2 = E‖∇f̃k(wk)−∇F (wk)‖2 + E‖∇F (wk)‖2 ≥ E‖∇F (wk)‖2.

Thus, taking expectation and assuming the step size α < 2/(NL), we can rewrite equation 6 as:

E‖∇F (wk)‖2 ≤
2N

2α−NLα2
E[F (wk)− F (wk+1)] +

2Nη

2−NLα
.

Taking an average over T iterations, and using F ? = minw F (w), we get:

min
k=1,...,T

E‖∇F (wk)‖2 ≤
1

T

>∑
k=1

E‖∇F (wk)‖2 ≤
2N

2α−NLα2

F (w1)− F ?

T
+

2Nη

2−NLα
.

D.2. Proof of lemma D.1

Lemma D.1. Consider the set of loss-functions {fi(W)}i∈[N ] where all fi are either the square-loss function or the
logistic-loss function. Recall that fi(W) := f(W,xi). Consider a feed-forward neural network as defined in equation 4
whose weights W satisfy assumption 1. Consider the gradient∇Wfi(W) of each function fi. From definition we have that
∇Wfi(W) = ζxi(W)∇WgW(xi), where we define ζxi(W) = ∂fi(W)/∂gW. Then we have the following properties.

1. When ‖x‖ ≤ 1 for every p ∈ [β] we have ‖∇Wp
gW(xi)‖ ≤ 1.

2. There exists 0 < ζ0 ≤ 2
√
β, such that |ζxi(W)| ≤ 2 , ‖∇xiζxi(W)‖2 ≤ ζ0 , ‖∇Wζxi(W)‖2 ≤ ζ0.

Proof. The first property is a direct consequence of assumption 1 and property (P2) of the activation function.

Let W denote the tuple (Wp)p∈[β]0 . Consider |ζxi(W)| = |∂fi(W)/∂gW|. In the case of square-loss function this
evaluates to |gW(x) − C(x)| ≤ 2. In case of logistic regression, this evaluates to | −1

1+exp(C(xi)gW(xi))
| ≤ 1. Now we

consider ‖∇xiζxi(W)‖. Consider the squared loss function. We then have the following.

‖∇xiζxi(W)‖ = ‖∇xif
′(W)‖

= ‖∇xigW(xi)− C(xi)‖
≤ ‖∇xigW(xi)‖+ 1.

Likewise, consider the logistic-loss function. We then have the following.

‖∇xiζxi(W)‖ ≤
∥∥∥∥ C(xi)2

(1 + exp(C(xi)gW(xi)))2
exp(C(xi)gW(xi))

∥∥∥∥ ‖∇xigW(xi)‖

≤ ‖∇xigW(xi)‖.

Thus, it suffices to bound ‖∇xigW(xi)‖. Using assumption 1 and the properties (P1), (P2) of σ, this can be upper-bounded
by 1.

Consider ∇Wpζxi(W) for some layer index p ∈ [β]0. We will show that ‖∇Wpζxi(W)‖2 ≤ 2. Then it immediately
follows that ‖∇Wζxi(W)‖2 ≤ 2

√
β. In the case of a squared loss function. We have the following.

‖∇Wp
ζxi(W)‖ = ‖∇Wp

f ′(W)‖
= ‖∇Wp

gW(xi)− C(xi)‖
≤ ‖∇Wp

gW(xi)‖+ 1.

Likewise, consider the logistic-loss function. We then have the following.

‖∇Wp
ζxi(W)‖ ≤

∥∥∥∥ C(xi)2

(1 + exp(C(xi)gW(xi)))2
exp(C(xi)gW(xi))

∥∥∥∥ ‖∇Wp
gW(xi)‖

≤ ‖∇WpgW(xi)‖.

Since ‖∇WpgW(xi)‖ ≤ 1, we have that ‖∇Wpζxi(W)‖ ≤ 2 in both the cases. Thus, ζ0 = 2
√
β.
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D.3. Proofs of theorem 5.1 and corollary 5.1

In this section, we will present the proofs of theorem 5.1 and corollary 5.1.

Theorem 5.1. Let W0,W1, . . . ,Wβ satisfy assumption 1. For some fixed constant c > 0, the gradient confusion bound
(equation 3) holds with probability at least

1−N2 exp
(

−cdη2
16ζ40 (β+2)4

)
.

Proof. We show two key properties, namely bounded gradient and non negative expectation. We will then use both these
properties to complete the proof.

Bounded gradient. For every i ∈ [n] define ζxi(W) := f ′(W). For every p ∈ [β] define Hp as follows.

Hp(x) := σ(Wp · σ(Wp−1 · σ(. . . · σ(W0 · x) . . .).

Fix an i ∈ [N ]. Then we have the following recurrence

gβ(xi) := σ′(Hβ(xi))

gp(xi) := (W>
p+1 · gp+1(xi)) ·Diag(σ′(Hp(xi))) ∀p ∈ {0, 1, . . . , β − 1}.

Then the gradients can be written in terms of the above quantities as follows.

∇Wp
fi(W) = gp(xi) ·Hp−1(xi)

> ∀p ∈ [β]0.

We can write, the gradient confusion denote by hW(xi,xj), as follows.

ζxi(W)ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

 . (7)

We will now bound ‖∇(xi,xj)hW(xi,xj)‖2. Consider ∇xihW(xi,xj). This can be written as follows.

(∇xiζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇xi

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]>
. (8)

Observe that each of the entries in the diagonal matrix Diag(σ′(Hp(xi))) is at most 1. Thus, we have that
‖Diag(σ′(Hp(xi)))‖ ≤ 1.

We have the following relationship.

‖gβ(xi)‖ ≤ 1

‖gp(xi)‖ ≤ ‖W>
p+1‖‖gp+1(xi))‖‖Diag(σ′(Hp(xi)))‖ ≤ 1 ∀p ∈ {0, 1, . . . , β − 1}.

Moreover we have,

‖Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]‖ ≤ ‖Hp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)

>‖ ≤ 1.

Consider ‖∇xi

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖ for every p ∈ [β]0.

This can be upper-bounded by,

‖∇xiHp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)‖+ ‖Hp−1(xi)‖‖∇xigp(xi)
>‖‖gp(xj)‖‖Hp−1(xi)‖.
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Note that∇xiHp−1(xi) = g1(xi) ·Diag(σ′(W0 · xi)) ·W>
0 · gp(xi)>. Thus, ‖∇xiHp−1(xi)‖ ≤ 1. We will now show

that ‖∇xigp(xi)‖ ≤ β − p+ 1. We prove this inductively. Consider the base case when p = β.

‖∇xigβ(xi)‖ = ‖∇xiσ
′(Hβ(xi))‖ ≤ 1 = β − β + 1.

Now, the inductive step.

‖∇xigp(xi)‖ ≤ ‖∇xigp+1(xi)‖+ ‖∇xi Diag(σ′(Hp(xi)))‖ ≤ β − p ≤ β − p+ 1.

Thus, using equation 8 and the above arguments, we obtain, ‖∇xihW(xi,xj)‖2 ≤ ζ20 (β + 1) + ζ20 (β + 1)(β + 2) ≤
2ζ20 (β + 2)2 and thus, ‖∇(xi,xj)hW(xi,xj)‖2 ≤ 4ζ20 (β + 2)2.

Non-negative expectation.

Exi,xj [h(xi,xj)] =Exi,xj [〈∇fi(W),∇fj(W)〉]
= 〈Exi [∇fi(W)],Exj [∇fj(W)]〉
= ‖Exi [∇fi(W)]‖2 ≥ 0. (9)

We have used the fact that∇fi(W) and∇fj(W) are identically distributed and independent.

Concentration of Measure. We combine the two properties as follows. From Non-negative Expectation property and
equation 26, we have that

Pr[hW(xi,xj) ≤ −η] ≤ Pr[hW(xi,xj) ≤ E(xi,xj)[hW(xi,xj)]− η] ≤ exp

(
−cdη2

16ζ40 (β + 2)4

)
. (10)

To obtain the probability that some value of hw(∇wfi,∇wfj) lies below −η, we use a union bound. There are N(N −
1)/2 < N2/2 possible pairs of data points to consider, and so this probability is bounded above by N2 exp

(
−cdη2

16ζ40 (β+2)4

)
.

D.3.1. PROOF OF COROLLARY 5.1

Before we prove corollary 5.1 we first prove the following helper lemma.
Lemma D.2. Suppose maxW ‖∇Wfi(W)‖ ≤M, and both∇Wfi(w) and∇Wfj(W) are Lipschitz in W with constant
L. Then hW(xi,xj) is Lipschitz in W with constant 2LM.

Proof. We view W as flattened vector. We now prove the above result for these two vectors. For two vectors w,w′,

|hw(xi,xj)− hw′(xi,xj)|
= |〈∇wfi(w),∇wfj(w)〉 − 〈∇w′fi(w

′),∇w′fj(w
′)〉|

= |〈∇wfi(w)−∇w′fi(w
′) +∇w′fi(w

′),∇wfj(w)〉
− 〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w) +∇wfj(w)〉|

= |〈∇wfi(w)−∇w′fi(w
′),∇wfj(w)〉 − 〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w)〉|

≤ |〈∇wfi(w)−∇w′fi(w
′),∇wfj(w)〉|+ |〈∇w′fi(w

′),∇w′fj(w
′)−∇wfj(w)〉|

≤ ‖∇wfi(w)−∇w′fi(w
′)‖‖∇wfj(w)‖+ ‖∇w′fi(w

′)‖‖∇w′fj(w
′)−∇wfj(w)‖

≤ L‖w −w′‖‖∇wfj(w)‖+ ‖∇w′fi(w
′)‖L‖w′ −w‖

≤ 2LM‖w −w′‖.

Here the first inequality uses the triangle inequality, the second inequality uses the Cauchy-Schwartz inequality, and the third
and fourth inequalities use the assumptions that∇wfi(w) and ∇wfj(w) are Lipschitz in w and have bounded norm.

We are now ready to prove the corollary, which we restate here. The proof uses a standard "epsilon-net" argument; we
identify a fine net of points within the ball Br. If the gradient confusion is small at every point in this discrete set, and the
gradient confusion varies slowly enough with W, when we can guarantee small gradient confusion at every point in Br.
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Corollary 5.1. Select a point W = (W0,W1, . . . ,Wβ), satisfying assumption 1. Consider a ball Br centered at W of
radius r > 0. If the data {xi}i∈[N ] are sampled uniformly from a unit sphere, then the gradient confusion bound in equation
3 holds uniformly at all points W′ ∈ Br with probability at least

1−N2 exp
(
− cdη2

64ζ40 (β+2)4

)
, if r ≤ η/4ζ20 ,

1−N2 exp
(
− cdη2

64ζ40 (β+2)4
+

8dζ20r
η

)
, otherwise.

Proof. Define the function h+(W) = maxij hW(xi,xj). Our goal is to find conditions under which h+(W) > −η for
all W in a large set. To derive such conditions, we will need a Lipschitz constant for h+(W), which is no larger than the
maximal Lipschitz constant of hW(xi,xj) for all i, j. We have that ‖∇Wfi‖ = ‖ζxi(W)xi‖ ≤ ζ0. Now we need to get a
W-Lipschitz constants for ∇xifi = ζxi(W)xi. By lemma D.1, we have ‖∇W(ζxi(W)xi)‖ = ‖(∇Wζxi(W))xi‖ ≤ ζ0.
Using lemma D.2, we see that 2ζ20 is a Lipschitz constant for hW(xi,xj), and thus also h+(W).

Now, consider a minimizer W of the objective, and a ball Br around this point of radius r. Define the constant ε = η
4ζ20

, and
create an ε-net of points Nε = {Wi} inside the ball. This net is sufficiently dense that any W′ ∈ Br is at most ε units away
from some Wi ∈ Nε. Furthermore, because h+(W) is Lipschitz in W, |h+(W′)− h+(Wi)| ≤ 2ζ20 ε = η/2.

We now know the following: if we can guarantee that

h+(Wi) ≥ −η/2, for all Wi ∈ Nε, (11)

then we also know that h+(W′) ≥ −η for all W′ ∈ Br. For this reason, we prove the result by bounding the probability
that (11) holds. It is known that Nε can be constructed so that |Nε| ≤ (2r/ε+ 1)d = (8ζ20r/η + 1)d (see Vershynin (2018),
corollary 4.1.13). Theorem 5.1 provides a bound on the probability that each individual point in the net satisfies condition
(11). Using a union bound, we see that all points in the net satisfy this condition with probability at least

1−N2

(
8ζ20r

η
+ 1

)d
exp

(
−cd(η/2)

2

16ζ40

)
(12)

= 1−N2 exp(d log(8ζ20r/η + 1)) exp

(
− cdη

2

64ζ40

)
(13)

≥ 1−N2 exp(8dζ20r/η) exp

(
− cdη

2

64ζ40

)
(14)

= 1−N2 exp

(
− cdη

2

64ζ40
+

8dζ20r

η

)
. (15)

Finally, note that, if r < ε, then we can form a net with |Nε| = 1. In this case, the probability of satisfying (11) is at least

1−N2 exp

(
−cd(η/2)

2

64ζ40

)
.

D.4. Proof of theorem 4.1

Theorem 4.1. Let W0,W1, . . . ,Wβ be weight matrices chosen according to strategy 4.1. There exists fixed constants
c1, c2 > 0 such that we have the following.

1. Consider a fixed but arbitrary dataset x1,x2, . . . ,xN with ‖xi‖ ≤ 1 for every i ∈ [N ]. For η > 4, the gradient
confusion bound in equation 3 holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c`2β(η−4)2
64ζ40 (β+2)4

)
.

2. If the dataset {xi}i∈[N ] is such that each xi is an i.i.d. sample from the surface of d-dimensional unit sphere, then for
every η > 0 the gradient confusion bound in equation 3 holds with probability at least

1− β exp
(
−c1κ2`2

)
−N2 exp

(
−c2(`d+`2β)η2
16ζ40 (β+2)4

)
.
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Both parts in theorem 4.1 depend on the following argument. From theorem 2.3.8 and Proposition 2.3.10 in Tao (2012) with
appropriate scaling7, we have for every p = 1, . . . , β we have that the matrix norm ‖Wp‖ ≤ 1 with probability at least
1− β exp

(
−c1κ2`2

)
and ‖W0‖ ≤ 1 with probability at least 1− exp

(
−c1κ2d2

)
when the weight matrices are initialized

according to strategy 4.1. Thus, conditioning on this event it implies that these matrices satisfy assumption 1. The proof
strategy is similar to that of theorem 5.1. We will first show that the gradient of the function h(., .) as defined in equation (7)
with respect to the weights is bounded. Note that in part (1) the random variable is the set of weight matrices {Wp}p∈[β].
Thus, the dimension used to invoke theorem E.1 is at most `2β. In part (2) along with the weights, the data x ∈ Rd is also
random. Thus, the dimension used to invoke theorem E.1 is at most `d+ `2β. Combining this with theorem E.1, the bound
on the gradient of h(., .) and taking a union bound, we get the respective parts of the theorem. Thus, all it remains to prove
is the bound on the gradient of the function h(., .) as defined in equation (7) with respect to the weights conditioning on the
event that ‖Wp‖ ≤ 1 for every p ∈ {0, 1, . . . , β}.

We obtain the following analogue of equation (8).

(∇Wζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

(∇Wζxj (W))ζxi(W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

+

ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]>
. (16)

As in the case of the proof for theorem 5.1, we will upper-bound the `2-norm of the above expression. In particular, we
show the following.

∥∥∥(∇Wζxi(W))ζxj (W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

∥∥∥
2
≤ 2ζ20 (β + 2)2. (17)

∥∥∥(∇Wζxj (W))ζxi(W)

 ∑
p∈[β]0

Tr[Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>]

∥∥∥
2
≤ 2ζ20 (β + 2)2. (18)

∥∥∥ζxi(W)ζxj (W)
∑
p∈[β]0

[
∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)]> ∥∥∥
2
≤ 4ζ20 (β + 2)2. (19)

Equations (17) and 18 follow from the the fact that ‖(∇Wζxi(W))‖2 ≤ ζ0 and the arguments in the proof
for theorem 5.1. We will now show the proof sketch for equation (19). For every p ∈ [β]0, consider
‖∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖. Using the symmetry between xi and xj , the expression can be upper-

bounded by,

2‖∇WHp−1(xi)‖‖gp(xi)>‖‖gp(xj)‖‖Hp−1(xi)‖+ 2‖Hp−1(xi)‖‖∇Wgp(xi)
>‖‖gp(xj)‖‖Hp−1(xi)‖.

As before we can use an inductive argument to find the upper-bound and thus, we obtain the following which implies
equation (19).

‖∇W

(
Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)

)
‖ ≤ 4(β + 2)2.

Next, we show that the expected value can be lower-bounded by −4 as in the case of theorem 4.1 above. Combining these
two gives us the desired result. Consider EW[hW(xi,xj)]. We compute this expectation iteratively as follows.

EW[hW(xi,xj)]

= EW0
[EW1

[. . .EWβ
[hW(xi,xj)]

7In particular, each entry has to be scaled by 1
`

for matrices {Wp}p∈[β] and 1
d

for the matrix W0.
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≥ −4EW0

EW1

. . .EWβ

 ∑
p∈[β]0

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)

 .
The inequality combines equation 7 with Lemma D.1. We now prove the following inequality.

EW0

EW1

. . .EWβ

 ∑
p∈[β]0

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)

 ≤ 1. (20)

Consider the inner-most expectation. Note that the only random variable is Wβ . Moreover, the term inside the trace is
scalar. Note that the activation function σ satisfies |σ′(x)| ≤ 1. Using the linearity of expectation, the LHS in equation (20)
can be upper-bounded by the following.

EW0

[
EW1

[
. . .EWβ−1

[
Tr(Hβ−1(xi) ·Hβ−1(xi)

>)
]]]

(21)

+ EW0

[
EW1

[
. . .EWβ

[ ∑
p∈[β]0\{β}

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)
]]]

. (22)

The first sum in the above expression can be upper-bounded by 1, since |σ(x)| ≤ 1. We will now show that the second sum
is 0. Consider the inner-most expectation. The weights Wβ appears only in the expression gp(xi)

> · gp(xj). Moreover,
note that every entry in Wβ is an i.i.d. normal random variable with mean 0. Thus, the second summand simplifies to,

EW0

[
EW1

[
. . .EWβ−1

[ ∑
p∈[β]0\{β,β−1}

Tr(Hp−1(xi) · gp(xi)> · gp(xj) ·Hp−1(xi)
>)
]]]

.

Applying the above argument repeatedly we obtain that the second summand (equation (22)) is 0.

Thus, we obtain the inequality in equation (20) which implies that EW[hW(xi,xj)] ≥ −4.

D.5. Proof of Theorem 6.1

In this section, we prove Theorem 6.1. The proof follows similar to those in previous sub-sections; we prove a bound on the
gradient of the gradient inner-product and show that the expectation is non-negative. Combining these two with an argument
similar to equation 10 we get the theorem.

Note that the dataset is obtained by considering i.i.d. samples from a d-dimensional unit sphere. Thus, the lower-bound on
the expectation (i.e., non-negative expectation of the gradient inner-product) follows from equation 9. Thus, it remains to
prove an upper-bound on the norm of the gradient of the gradient inner-product term.

Throughout this proof, we will use g(x) as a short-hand to denote gW(x). Consider the gradient ∇Wg(x). The the ith

component of this can be written as follows.

[∇Wg(x)]i = γ2ζx(W)
(
WT

β · . . .WT
i+1 · xT ·WT

1 · . . .WT
i−1
)
. (23)

Now consider, the gradient inner-product hW(xi,xj). We want to upper-bound the quantity ‖∇(xi,xj)hW(xi,xj)‖. From
symmetry, this can be upper-bounded by 2‖∇xihW(xi,xj)‖. Consider the kth coordinate of ∇xihW(xi,xj). Using
equation 23, the assumption that {Wi}i∈[β] are orthogonal matrices and taking the gradient, this can be written as,

[∇xihW(xi,xj)]k = γ2ζxi(W)xj + α2
(
WT

β · . . .WT
i+1 · xT ·WT

1 · . . .WT
i−1
)
(∇xiζxi(W)) . (24)

Combining assumption 1 with equation 24 we have that ‖∇xihW(xi,xj)‖ is at most 2γ2β‖xj‖ ≤ 2γ2β. For the definition
of the scaling factor γ = 1√

2β
, we have that 2γ2β = 1. Thus, ‖∇(xi,xj)hW(xi,xj)‖ ≤ 2.

E. Technical lemmas
We will briefly describe some technical lemmas we require in our analysis. The following Chernoff-style concentration
bound is proved in Chapter 5 of Vershynin (2018).



The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

Lemma E.1 (Concentration of Lipshitz function over a sphere). Let x ∈ Rd be sampled uniformly from the surface of a
d-dimensional sphere. Consider a Lipshitz function ` : Rd → R which is differentiable everywhere. Let ‖∇`‖2 denote
supx∈Rd ‖∇`(x)‖2. Then for any t ≥ 0 and some fixed constant c ≥ 0, we have the following.

Pr
[∣∣∣`(x)− E[`(x)]

∣∣∣ ≥ t] ≤ 2 exp

(
−cdt

2

ρ2

)
, (25)

where ρ ≥ ‖∇`‖2.

We will rely on the following generalization of lemma E.1. We would like to point out that the underlying metric is the
Euclidean metric and thus we use the ‖.‖2-norm.
Corollary E.1. Let x,y ∈ Rd be two mutually independent vectors sampled uniformly from the surface of a d-dimensional
sphere. Consider a Lipshitz function ` : Rd × Rd → R which is differentiable everywhere. Let ‖∇`‖2 denote
sup(x,y)∈Rd×Rd ‖∇`(x,y)‖2. Then for any t ≥ 0 and some fixed constant c ≥ 0, we have the following.

Pr
[∣∣∣`(x,y)− E[`(x,y)]

∣∣∣ ≥ t] ≤ 2 exp

(
−cdt

2

ρ2

)
, (26)

where ρ ≥ ‖∇`‖2.

Proof. This corollary can be derived from lemma E.1 as follows. Note that for every fixed ỹ ∈ Rd, equation 25 holds.
Additionally, we have that the vectors x and y are mutually independent. Hence we can write the LHS of equation 26 as the
following. ∫

(ỹ)1=∞

(ỹ)1=−∞

. . .

∫
(ỹ)d=∞

(ỹ)d=−∞

Pr

[∣∣∣`(x,y)− E[`(x,y)]
∣∣∣ ≥ t ∣∣∣∣∣ y = ỹ

∣∣∣∣∣
]
φ(ỹ)d(ỹ)1 . . . d(ỹ)d.

Here φ(ỹ) refers to the pdf of the distribution of y. From independence, the inner term in the integral evaluates to
Pr
[∣∣∣`(x, ỹ)− E[`(x, ỹ)]

∣∣∣ ≥ t]. We know this is less than or equal to 2 exp
(
− cdt2

‖∇`‖22

)
. Therefore, the integral can be

upper bounded by the following.∫
(ỹ)1=∞

(ỹ)1=−∞

. . .

∫
(ỹ)d=∞

(ỹ)d=−∞

2 exp

(
− cdt2

‖∇`‖22

)
φ(ỹ)d(ỹ)1 . . . d(ỹ)d.

Since φ(ỹ) is a valid pdf, we get the required equation 26.

Additionally, we will use the following facts about a normalized Gaussian random variable.
Lemma E.2. For a normalized Gaussian x (i.e., an x sampled uniformly from the surface of a unit d-dimensional sphere)
the following statements are true.

1. ∀p ∈ [d] we have that E[(x)p] = 0.

2. ∀p ∈ [d] we have that E[(x)2p] = 1/d.

Proof. Part (1) can be proved by observing that the normalized Gaussian random variable is spherically symmetric about the
origin. In other words, for every p ∈ [d] the vectors (x1, x2, . . . , xp, . . . , xd) and (x1, x2, . . . ,−xp, . . . , xd) are identically
distributed. Hence E[xp] = E[−xp] which implies that E[xp] = 0.

Part (2) can be proved by observing that for any p, p′ ∈ [d], xp and xp′ are identically distributed. Fix any p ∈ [d]. We have
that

∑
p′∈[d] E[x2p′ ] = d× E[x2p]. Note that we have

∑
p′∈[d]

E[x2p′ ] =

∫
(x)1=∞

(x)1=−∞

. . .

∫
(x)d=∞

(x)d=−∞

∑
p′∈[d] x

2
p′∑

p′′∈[d] x
2
p′′
φ(x)d(x)1 . . . d(x)d = 1.

Therefore E[x2p] = 1/d.
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We use the following well-known Gaussian concentration inequality in our proofs (e.g., Chapter 5 in Boucheron et al.
(2013)).

Lemma E.3 (Gaussian Concentration). Let x = (x1, x2, . . . , xd) be i.i.d. N (0, ν2) random variables. Consider a Lipshitz
function ` : Rd → R which is differentiable everywhere. Let ‖∇`‖2 denote supx∈Rd ‖∇`(x)‖2. Then for any t ≥ 0, we
have the following.

Pr
[∣∣∣`(x)− E[`(x)]

∣∣∣ ≥ t] ≤ 2 exp

(
− t2

2ν2ρ2

)
, (27)

where ρ ≥ ‖∇`‖2.

F. Additional discussion of the small weights assumption (assumption 1)
Without the small-weights assumption, the signal propagated forward or the gradients ∇Wfi could potentially blow up in
magnitude, making the network untrainable. Proving non-vacuous bounds in case of such blow-ups in magnitude of the
signal or the gradient is not possible in general, and thus, we assume this restricted class of weights.

Note that the small-weights assumption is not just a theoretical concern, but also usually holds in practice. Neural networks
are often trained with weight decay regularizers of the form

∑
i ‖Wi‖2F , which keep the weights small during optimization.

The operator norm of convolutional layers have also recently been used as an effective regularizer for image classification
tasks by Sedghi et al. (2018).

In the proof of theorem 4.1 we showed that assumption 1 holds with high probability at standard Gaussian initializations
used in practice. While, in general, there is no reason to believe that such a small-weights assumption would continue to
hold during optimization without explicit regularizers like weight decay, some recent work has shown evidence that the
weights do not move too far away during training from the random initialization point for overparameterized neural networks
(Neyshabur et al., 2018; Dziugaite & Roy, 2017; Nagarajan & Kolter, 2019; Zou et al., 2018; Allen-Zhu et al., 2018; Du
et al., 2018; Oymak & Soltanolkotabi, 2018). It is worth noting though that all these results have been shown under some
restrictive assumptions, such as the width requiring to be much larger than generally used by practitioners.


