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Abstract

This paper studies how neural network architec-
ture affects the speed of training. We introduce a
simple concept called gradient confusion to help
formally analyze this. When gradient confusion
is high, stochastic gradients produced by different
data samples may be negatively correlated, slow-
ing down convergence. But when gradient confu-
sion is low, data samples interact harmoniously,
and training proceeds quickly. Through theoreti-
cal and experimental results, we demonstrate how
the neural network architecture affects gradient
confusion, and thus the efficiency of training. Our
results show that, for popular initialization tech-
niques, increasing the width of neural networks
leads to lower gradient confusion, and thus faster
model training. On the other hand, increasing
the depth of neural networks has the opposite
effect. Our results indicate that alternate initial-
ization techniques or networks using both batch
normalization and skip connections help reduce
the training burden of very deep networks.

1. Introduction

Stochastic gradient descent (SGD) (Robbins & Monro,
1951) and its variants with momentum have become the
standard optimization routine for neural networks due to
their fast convergence and good generalization properties
(Wilson et al., 2017; Sutskever et al., 2013; Smith et al.,
2020). Yet the convergence behavior of SGD on neural
networks still eludes full theoretical understanding. Fur-
thermore, it is not well understood how design choices on
neural network architecture affect training performance. In
this paper, we make progress on these open questions.
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Classical stochastic optimization theory predicts that the
learning rate of SGD needs to decrease over time for con-
vergence to be guaranteed to the minimizer of a convex
function (Shamir & Zhang, 2013; Bertsekas, 2011). For
strongly convex functions for example, such results show
that a decreasing learning rate schedule of O(1/k) is re-
quired to guarantee convergence to within e-accuracy of the
minimizer in O(1/¢) iterations, where k denotes the itera-
tion number. Such decay schemes, however, typically lead
to poor performance on standard neural network problems.

Neural networks operate in a regime where the number
of parameters is much larger than the number of training
data. In this “over-parameterized” regime, SGD seems to
converge quickly with constant learning rates. Most neu-
ral network practitioners use a constant learning rate for
the majority of training (with exponential decay only to-
wards the end of training) without seeing the method stall
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He
et al., 2016; Zagoruyko & Komodakis, 2016). With constant
learning rates, theoretical guarantees show that SGD con-
verges quickly to a neighborhood of the minimizer, but then
reaches a noise floor beyond which it stops converging; this
noise floor depends on the learning rate and the variance of
the gradients (Moulines & Bach, 2011; Needell et al., 2014).
Recent results show that convergence without a noise floor
is possible without decaying the learning rate, provided the
model is strongly convex and overfitting occurs (Schmidt &
Roux, 2013; Ma et al., 2017; Vaswani et al., 2018).

While these results do give important insights, they do not
fully explain the dynamics of SGD on neural networks,
and how they relate to over-parameterization. Furthermore,
training performance is strongly influenced by network ar-
chitecture. It is common knowledge among practitioners
that, under standard Gaussian initialization techniques (Glo-
rot & Bengio, 2010; He et al., 2015), deeper networks train
slower (Bengio et al., 1994; Saxe et al., 2013). This has
led to several innovations over the years to get deeper nets
to train more easily, such as careful initialization strategies
(Xiao et al., 2018), residual connections (He et al., 2016),
and normalization schemes like batch normalization (Ioffe
& Szegedy, 2015). Furthermore, there is evidence to indi-
cate that wider networks are faster to train (Zagoruyko &
Komodakis, 2016; Nguyen & Hein, 2017), and recent the-



The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

oretical results suggest that the dynamics of SGD simplify
considerably for very wide networks (Jacot et al., 2018;
Lee et al., 2019). In this paper, we make progress on the-
oretically understanding these empirical observations and
unifying existing theoretical results. To this end, we identify
and analyze a condition that enables us to establish direct
relationships between layer width, network depth, problem
dimensionality, initialization schemes, and trainability and
SGD dynamics for over-parameterized networks.

Our contributions. Typical neural networks are over-
parameterized (i.e., the number of parameters exceed the
number of training points). In this paper, we ask how this
over-parameterization, and more specifically the network ar-
chitecture, affects the trainability of neural networks and the
dynamics of SGD. Through extensive theoretical and exper-
imental studies, we show how layer width, network depth,
initialization schemes, and other architecture choices affect
the dynamics. The following are our main contributions.'

We identify a condition, termed gradient confusion,
that impacts the convergence properties of SGD on
over-parameterized models. We prove that high gradi-
ent confusion may lead to slower convergence, while
convergence is accelerated (and could be faster than
predicted by existing theory) if confusion is low, in-
dicating a regime where constant learning rates work
well in practice (sections 2 and 3). We use the gradi-
ent confusion condition to study the effect of various
architecture choices on trainability and convergence.

We study the effect of neural network architecture on
gradient confusion at standard Gaussian initialization
schemes (section 4), and prove (a) gradient confusion
increases as the network depth increases, and (b) wider
networks have lower gradient confusion. These indi-
cate that deeper networks are more difficult to train and
wider networks can improve trainability of networks.
Directly analyzing the gradient confusion bound en-
ables us to derive results on the effect of depth and
width, without requiring restrictive assumptions like
large layer widths (Du et al., 2018; Allen-Zhu et al.,
2018). Our results hold for a large class of neural
networks with different non-linear activations and loss-
functions. In section 5, we present a more general
result on the effect of depth on the trainability of net-
works without assuming the network is at initialization.

We prove that for linear neural networks, gradient con-
fusion is independent of depth when using orthogonal
initialization schemes (section 6) (Saxe et al., 2013;
Schoenholz et al., 2016). This indicates a way forward
in developing techniques for training deeper models.

!To keep the main text of the paper concise, all proofs and sev-
eral additional experimental results are delegated to the appendix.

We test our theoretical predictions using extensive
experiments on wide residual networks (WRNs)
(Zagoruyko & Komodakis, 2016), convolutional net-
works (CNNs) and multi-layer perceptrons (MLPs) for
image classification tasks on CIFAR-10, CIFAR-100
and MNIST (section 7 and appendix A). We find that
our theoretical results consistently hold across all our
experiments. We further show that the combination of
batch normalization and skip connections in residual
networks help lower gradient confusion, thus indicat-
ing why SGD can efficiently train deep neural networks
that employ such techniques.

2. Gradient confusion

Notations. We denote vectors in bold lower-case and ma-
trices in bold upper-case. We use (W);:j to indicate the
(i, 4) cell in matrix W and (W); for the i" row of matrix
W. kWK denotes the operator norm of W. [N] denotes
f1,2,...,Ngand [N]o denotes 0, 1,..., Ng.

Preliminaries. Given [V training points (specified by the
corresponding loss functions ffigiong), we use SGD to
solve empirical risk minimization problems of the form,
P
iz fiw), (D)

using the following iterative update rule for 7" rounds:

. o . 1
miny,ora F/(W) 1= minyoprd 1y

Wk+1 = Wk Ozl"fk(Wk). 2)
Here « is the learning rate and fk is a function chosen
uniformly at random from ffjgio[n; at iteration k& 2 [T].
w’ = arg min,y F (W) denotes the optimal solution.

Gradient confusion. SGD works by iteratively selecting a
random function fi, and modifying the parameters to move
in the direction of the negative gradient of fk. It may happen
that the selected gradient 1 fic is negatively correlated with
the gradient of another term I fj. When the gradients of dif-
ferent mini-batches are negatively correlated, the objective
terms disagree on which direction the parameters should
move, and we say that there is gradient confusion.”

Definition 2.1. A set of objective functions T figizny has
gradient confusion bound np 0 if the pair-wise inner prod-
ucts between gradients satisfy, for a fixedw 2 R,

hr fi(w), rfj(w)i 7, 8i & j 2 [N]. (3)
Observations in simplified settings. SGD converges fast
when gradient confusion is low along its path. To see why,

2Gradient confusion is related to both gradient variance and
gradient diversity (Yin et al., 2017), but with important differences,
which we discuss in section 9. We also discuss alternate definitions
of the gradient confusion condition in section 8.
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3. SGD is fast when gradient confusion is low

Several prior papers have analyzed the convergence rates
of constant learning rate SGD (Nédt. Bertsekas, 2001;
Moulines & Bach, 2011; Needell et al., 2014). These re-
sults show that for strongly convex and Lipschitz smooth
functions, SGD with a constant learning rateonverges
linearly to a neighborhood of the minimizer. The noise oor
Figure 1.Linear regression on an over-parameterizée (120) it converges to depends on the learning ratend the vari-
and under-parameterized £ 80) model withN = 100 samples  ance of the gradients at the minimizer, ig.kr f;(w?)k2.
generat_ed randomly from a Gaussian, trf_iined using SGD with mi_n'r-l-o guarantee convergence taccuracy in such a setting,
bat(_:h size 1 I_3I_0ts are averaged over 3 |ndepgndent runs. Gradi e learning rate needs to be small, i.e.= O( ), and
cosine similarities were calculated over all pairs of gradients. the method requires = O(1= ) iterations. Some more
recent results show convergence of constant learning rate
SGD without a noise oor and without small step sizes for
consider the case of training a logistic regression modeinodels that can completely t the data (Schmidt & Roux,
on a dataset witlorthogonalvectors. We havé;(w) = 2013; Ma et al., 2017; Vaswani et al., 2018).
L(yixi w);whereL : R! RisthelogisticlossfXigizn]

. o Gradient confusion is related to these results. Cauchy-
is a set of orthogonal training vectors, and2 f 1;1g

Schwarz inequality implies that & kr f;(w?)k? = O( ),

is the label forx;. We then have fi(w) = iX;; where thenE.. ihr f-(w?):r £ (w?ii =
o s . . ij Jr fi(w?);r f(w?)ij = O(), 8i;j. Thus the
slin_ceyrlllr_:()élw))fir \;V)('Vly)?ui that trr:(e.g);(ra}df:gt %c;.r}fuzsm[ﬂ ]'S 0 gradient confusion at the minimizer is small when the vari-
i ’ J = i J i J - ’ ’

di 6 i Th date in th dient directi ance of the gradients at the minimizer is small. Further
andi s J. us, an update in the gradient direction note that when the variance of the gradients at the mini-

hasno effect on the IO.SS value df _f(_)r ! 61 _In this mizer isO( ), a direct application of the results in Moulines
case, SGD decouples into (deterministic) gradient descerg Bach (2011) and Needell et al. (2014) shows that con-

on each objective term separatgly, and we can EXPect {0 See, e learning rate SGD has fast convergenceaocuracy
the fast convergence rates attained by gradient descent. in T = O(log(1=)) iterations, without the learning rate

Can we expect a problem to have low gradient confusiomeeding to be small. Generally however, bounded gradient
in practice? From the logistic regression problem, we haveconfusion does not provide a bound on the variance of the
jhr fi(w);r f;(w)ij = jhxi;x;ij j i jj: Thisinner prod- gradients (see section 9). Thus, itis instructive to derive con-
uct is expected to be small for a; the logistic loss satis es  vergence bounds of SGD explicitly in terms of the gradient
jii] <,1, andfor xed N the quantitymax; jhx;;X;ij confusion to properly understand its effect.

isO(1=" d) whenevef x;g are randomly sampled froma \we rst consider functions satisfying the Polyak-

sphere (see lemma B.1 for the formal statem@ftus, we | gjasiewicz (PL) inequality (Lojasiewicz, 1965), a condi-

would expect a random linear model to have nearly orthogﬂon related to, but weaker than, strong convexity, and used

onal gradients, when the number of parameters is "largejn recent work (Karimi et al., 2016; De et al., 2017). We
and the number of training data is "small”, i.e., when theyqyide bounds on the rate of convergence in terms of the

model is over-parameterized. This is further evidenced bY)ptimaIity gap. We start with two standard assumptions.
a toy example in gure 1, where we show a slightly over-

parameterized linear regression model can have much fasgan) ff; 0i2(n] areLipschitz smooth

convergence rates, as well as lower gradient confusion. One Fwd  Fi(w)+r fi(w)” (WO w)+ Skw® wk:
can prove a similar result for problems that have random and

low-rank Hessians, which suggests that one might exped2) ffigiz(n satisfy thePL inequality

gradient to be small near the minimizer for many standard ~ 3kr fi(w)k?>  (fi(w) £7);f7 =min fi(w).

neural nets (see appendix C for more discussion). )
o o We now state a convergence result of constant learning rate
The above arguments are a bit simplistic, considering tosGD in terms of the gradient confusion.

scenarios and ignoring issues like the effect of newVorkl'heorem 3.1. If the objective function satis es (A1) and

structure. In the following sections, we rigorously analyze(AZ)’ and has gradient confusion SGD converges linearly
the effect of gradient confusion on the speed of convergencg) o neighborhood of the minima of probléfy) as:
on non-convex problems, and the effect of width and depth '

of the neural network architecture on the gradient confusion. ~ E[F (wt) F?1  T(F(wo) F?)+ —;
3Generally, this is true whenever = pl—ayi;whereyi isan  where < %, =1 ZW NL2 ’ ,F? =min,, F(w)

N
isotropic random vector (Vershynin, 2018). andwy is the initialized weights.
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This result shows that SGD converdieearly to a neigh-  non-linear activations such as sigmoid, tanh and ReLU. We
borhood of a minimizer, and the size of this neighborhoodconsider both the case where the input data is arbitrary but
depends on the level of gradient confusion. When the grdsounded (theorem 4.1, part 1), as well as where the input
dient confusion is small, i.e.,= O( ), SGD has fast con- data is randomly drawn from the surface of a unit sphere
vergence t@( )-accuracy inf = O(log(1=)) iterations, (theorem 4.1, part 2).

without requiring the learning rate to be vanishingly small.

We now extend this to general smooth functions. Setting. We consider training dat@ = f (x;; C(Xi))Gi2[n:

; ; ; . pd .
Theorem 3.2. If the objective satis es (A1) and has gradi- With labeling functionC: R® I [ 1;1]. For some of our

ent confusion , then SGD converges to a neighborhood of "€Sults, we consider that the data poifitsg are drawn
a stationary point of problerfi) as: uniformly at random from the surface ofdadimensional

unit sphere. The labeling function satis g(x)j 1and

Ming=y -7 EKr F(wi)k? — —(FWa) F) 4+ - kr xC(x)k> 1forkxk 1: Note that this automatically
""" T holds for every model considered in this paper where the
for < 2, = 2N andF?=min, F(w). labeling function isrealizable(i.e., where the model can

express the labeling function using its parameters). More

Thus, as long as = O(1=T), SGD has fas©(1=T) con-  generally, this assumes a Lipschitz condition on the labels
vergence on smooth non-convex functions. Theorems 3(-€., the labels don't change too quickly with the inputs).

and 3.2 predict an initial phase of optimization with fast COMNwe consider two loss-functions: square-loss for regres-

vergence to the neighborhood of a minimizer or a stationary;\ 2 logistic loss for classi cation. The square-loss
point. This behavior is often observed when Optimizmgfunction is dened asfi(w) = L(C(xi) gw(xi))?
2

neural nets (Darken & Moody, 1992; Sutskever et al., 2013)and the logistic function is de ned as(w) = log(L +

where a constant learning rate reaches a high level of a%S(p( C (xi)gw (xi))). Here,gs : RY ! R denotes the

curacy on the model. As we show in subsequent SeCt'OnBarameterized function we t to the training data anéw)

this i§ expected §inge for neural networks typically u;ed, th%enotes the loss-function of hypothesis on data poink; .
gradient confusion is expected to be low. See section 9 for

more discussion on the above results and how they relateet W o 2 R'* ¢ andf W ;gy,( ; whereW ; 2 R» » *
to previous work. We stress that our goal is not to studyare weight matrices. Let/ denote the tupléW p)po( 1, -
convergence rates per se, nor is it to prove state-of-the-aR€ ne ~ := maxp, j p to be thewidthand to be the
rate bounds for this class of problems. Rather, we show théepthof the network. Then, the modegly is de ned as
direct effect that the gradient confusion bound has on the

convergence rate and the noise oor for constant learning 9w (X) := (W (W 1::0 (W1 (Wox)) ::3);

rate SGD. As we show in the following sections, this new

perspective in terms of the gradient confusion helps us mor¥/nere - denotes the non-linear activation function applied

directly understand how neural network architecture desigiPCint-wise to its arguments. We assume that the activation
affects SGD dynamics and why. is given by a function (x) with the following properties.

4. Effect of neural network architecture at (P1)Boundednessj (x)j 1forx2[ 1.1}

Gaussian initializations (P2) Bounded differentials: Let %(x) and °{x) de-
note the rst and second sub-differentials respectively.

To draw a connection between neural network architecture Thenj %x)j landj %x)j 1forallx 2 [ 1:1]

and training performance, we analyze gradient confusion for
generic (i.e., random) model problems using methods from
high-dimensional probability. In this section, we analyzeWhenkxk 1, activation functions such asgmoid tanh,
the effect of neural network architecture at the beginning ofsoftmaxandRelLUsatisfy these requirements.

training, when using standard Gaussian initialization techgyithermore, in this section, we consider the following
nigues. Analyzmg_ these models at initialization '5_'mpo_rtantGaussian weight initialization strategy.

to understand which architectures are more easily trainable - . 1

than others. Our results cover a wide range of scenariostategy 4.1. Wo 2 R ¢ has independertt (0; 3) en-
compared to prior work, require minimal additional assumpfies- Forevenp 2 [ ], the weightsV, 2 R» ¢ * have
tions, and hold for a large family of neural networks with independenN  0; ~ pl - entries for some constant 0.
different non-linear activation functions and loss-functions.

In particular, our results hold for fully connected networks This initialization strategy with different settings ofare
(and can be extended to convolutional networks) with theused almost universally for neural networks (Glorot & Ben-
square-loss and logistic-loss functions, and commonly usedio, 2010; LeCun et al., 2012; He et al., 2015). For instance,
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typically = % when RelLU activations are used, ané- 1 of the result. In particular, we assume the setting where the
when tanh activations are used. data is drawn uniformly at random from a unit sphere and
the weights lie in a ball around a local minimizer. Our results
Main result. The following theorem shows how the width hold for both fully connected networks and convolutional
T i=maxpy; ] p and the depth affect the gradient confu- networks with the square-loss and logistic-loss functions,
sion condition at standard initializations. We show thatand commonly-used non-linear activations such as sigmoid,
as width increases (for xed depth) or depth decreasegdanh, softmax and ReLU.
(for xed width) the probability that the gradient confusion
bound (equation 3) holds increasékhus, as the depth in-
creases (with xed width), training a model becomes harder
while as the width increases (with xed depth), training a
model becomes easier. Furthermore, note that this res
also implies that training very dedipear neural networks
(with identity activation functions) with standard GaussianAssumption 1(Small Weights) We assume that the oper-
initializations is hard. Throughout the paper, we de ne theator norm of the weight matricésV g;» ;, are bounded
parametero := 2" . See the appendix (Lemma D.1) for a above byl, i.e., for everyi 2 [ ]o we have&kW ik 1.
more careful de nition of this quantity.

We consider the same setup as in the previous section, and
assume additionally that the data poiftgg are drawn
uniformly from the surface of d-dimensional unit sphere.
ﬁdditionally, instead of studying the network at initializa-
L{lon, we make the following assumption on the weights.

The operator norm of the weight matrideé#/ k being close

chosen according to strategy 4.1. There exists xed Cont_o 1 is important for the trainability of neural networks, as

i it ensures that the input signal is passed through the net-
: > . . . L.
stantsc;; ¢; > 0 such that we have the following work without exploding or shrinking across layers (Glorot

& Bengio, 2010). Proving non-vacuous bounds in case of
such blow-ups in magnitude of the signal or the gradient is
not possible in general, and thus, we consider this restricted
class of weights. Most standard neural netw|grks are trained
using weight decayregularizers of the form ; kW; k2.
22 N2exp o (#? . This biases the weights to be small when training neural
64 5( +2 " networks in practice. See appendix F for further discussion
on the small weights assumption.

with kxjk 1 for everyi 2 [N]. For > 4, the
gradient confusion bound in equation 3 holds with
probability at least

1 exp ¢

2. Ifthe datasef x; g N is such that eacl; is ani.i.d.
sample from the surface dédimensional unit sphere, We now present a more general version of theorem 4.1.

then for every > 0 the gradient confusion bound i Theorem 5.1. LetW o;Waii W satisfy assumption 1.
equation 3 holds with probability at least For some xed constart > 0, the gradient confusion bound
. de2 ) 2 (equation 3) holds with probability at least
1 exp ¢ 22 NZ2exp ize(g(+7+z))4
an initial L N?exp gt
Theorem 4.1 shows that under popular Gaussian initializa- o( +2)

tions used, training becomes harder as networks get deeper.

The result however also shows a way forward: layer widthTheorem 5.1 shows that (for xed dimensidrand number
improves the trainability of deep networks. Other relatedof samplesN ) when the depth decreases, the probabil-
work supports this showing that when the layers are inity that the gradient confusion bound in equation 3 holds
nitely wide, the learning dynamics of gradient descent increases, and vice versa. Thus, our results indicate that in
simpli es considerably (Jacot et al., 2018; Lee et al., 2019)the general case when the weights are small, increasing the
Hanin & Rolnick (2018) also suggest that the width shouldnetwork depth will typically lead to slower model training.
increase linearly with depth in a neural network to help
dynamics at the beginning of training. In section 7 an

appendix A’. we show substantigl empi.rical evidence_thatgoes away. To see why this, consider an example where
given a suf glently dgep netvyork, Increasing the layer \.N'dth each weight matrix in the neilral network has exactly one
often helps in lowering gradient confusion and speeding lJpnon—zero element, which is set to 1. The operator norm of

convergence for a range of models. each such weight matrix is 1, but the forward or backward
propagated signals would not depend on the width.

Note that on assumingWV k 1 for each weight matrix
, the dependence of gradient confusion on the width

5. A more general result on the effect of depth . .
Note that the convergence rate results of SGD in section

While our results in section 4 hold at standard initialization 3 assume that the gradient confusion bound holds at every
schemes, in this section we derive a more general versiopoint along the path of SGD. On the other hand, theorem
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5.1 shows concentration bounds for the gradient confusioiftheorem 6.1. Letf W g;,[ ; be arbitrary orthogonal ma-
ata xed weightW . Thus, to make the above result more trices that satisfy assumption 1. Let the datdsey;,
relevant for the convergence of SGD on neural networks, wde such that eack; is an i.i.d. sample from the surface
now make the concentration bound in theoremuniform  of d-dimensional unit sphere. Consider the linear neural
over all weights inside a baB, of radiusr. network in equation 4 that minimizes the empirical square
Corollary 5.1. Selecta poinW = (W oW 1:::::W ) loss function. For some xed constamt> 0O, the gradient

satisfying assumption 1. Consider a bBl centered a confusion bound (equation 3) holds with probability at least
W of radiusr > 0. If the datafx;gj,n; are sampled
uniformly from a unit sphere, then the gradient confusion
bound in equation 3 holds uniformly at all point¢°2 B,

1 NZ2?exp cd? :

with probability at least From Theorem 6.1, we see that the probability does not
42 ) depend on the depthor maximum width'. Thus, trainabil-
1 NZexp 646?(7%4 ; ifr =44 ity does not get worse with depth when using orthogonal
) od 2 8d 2r , initializations. This result matches previous theoretical and
1 N-<exp + =0 otherwise

64 5( +2) 4 empirical results showing the ef ciency of orthogonal ini-
tialization techniques for training very deep linear or tanh
Corollary 5.1 shows that the probability that the gradientnetworks (Saxe et al., 2013; Schoenholz et al., 2016; Xiao
confusion bound holds decreases with increasing depth, faet al., 2018). However, orthogonal initializations are not
all weights in a ball around the minimiz&iThis explains compatable with non-linear activation functions like sig-
why, in the general case, training very deep models mightmoids or ReLUs, which limit their use in practice. Nonethe-
always be hard. This raises the question why most deeless, this result suggests a promising direction in developing
neural networks used in practice are so ef ciently trainedtechniques for training deeper models.

using SGD. While careful Gaussian initialization strategies

prevent vanishing or exploding gradients, these strategieg. Experimental results

still suffer from high gradient confusion for very deep net-

works unless the width is also increased with the depth, a$o test our theoretical results and to probe why standard
we show in section 4. Practitioners over the years, howeveneural networks are ef ciently trained with SGD, we now
have achieved state-of-the-art results by making networkpresent experimental results showing the effect of the neu-
deeper, without necessarily making networks wider. Thusial network architecture on the convergence of SGD and
in section 7, we empirically study how popular techniquesgradient confusion. It is worth noting that theorems 3.1
used in these models like skip connections and batch noand 3.2 indicate that we would expect the effect of gradient
malization affect gradient confusion. We nd that these confusion to be most prominent closer to the end of training.
techniques drastically lower gradient confusion, making\N

deep networks signi cantly easier to train. Furthermore, in e performed experiments on wide residual networks
b S SIg y e ' .AWRNS) (Zagoruyko & Komodakis, 2016), convolutional
the next section, we show how deep linear nets are train-

ble when d with orthogonal initialization techni networks (CNNs) and multi-layer perceptrons (MLPSs) for
ab'ie when use orthogonal alization tec ques:Image classi cation tasks on CIFAR-10, CIFAR-100 and
indicating a way forward for training deeper models.

MNIST. We present results for CNNs on CIFAR-10 in this
section, and present all other results in appendix A. We use
6. Gradient confusion is independent of depth  CNN- -* to denote WRNSs that have no skip connections
for orthogonal initializations or batch normalization, with a depth and width factor
) ) ) .5 We turned off dropout and weight decay for all our
In this section, we show that for deep linear neural ”etworksexperiments. We used SGD as the optimizer without any
gradient confusion is independent of depth when the weighf,omentum. Following Zagoruyko & Komodakis (2016),
matrices are i'nitialized as orthogonal matriéeSonsider we ran all experiments for 200 epochs with minibatches of
the following linear neural network: size 128, and reduced the initial learning rate by a factor of
— .. ) 10 at epochs 80 and 160. We used the MSRA initializer (He
Gy ()= W W 2 W X “) et al., 2015) for the weights as is standard for this model,

where the rescaling parameter= 912: and assume we and used the same preprocessing steps for the CIFAR-10 im-
use the squared loss function. Then we have the following.29€s as described in Zagoruyko & Komodakis (2016). We
ran each experiment 5 times, and we show the standard de-

“The above results automatically hold for convolutional net-viation across runs in our plots. We tuned the optimal initial
works, since a convolution operation grcan be representedasa
matrix multiplicationUx for an appropriate Toeplitz matrid . 5The width factor denotes the number of lters relative to the
5An orthogonal matriA satisesAT A= A AT = 1. original ResNet model (Zagoruyko & Komodakis, 2016).
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(@) (b) (c)

Figure 2.The effect of network depth with CNN-2 on CIFAR-10 for depths = 16, 22, 28, 34 and 40. Plots show the (a) convergence
curves for SGD, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training (over all independent runs).

learning rate for each model over a logarithmically-spacedetwork gets deeper. When these techniques are used to-
grid and selected the run that achieved the lowest trainingether, the model has relatively low gradient confusion even
loss value. To measure gradient confusion, at the end dbr very deep networks, signi cantly improving trainability
every training epoch, we sampled 100 pairs of mini-batche®f deep models. Note that our observations are consistent
each of size 128 (the same size as the training batch). Weith prior work (De & Smith, 2020; Yang et al., 2019).
calculated gradients on each mini-batch, and then computed

pairwise cosine similarities. See appendix A.2 for moreg Alternate de nitions of gradient confusion

details on the experimental setup and architectures used.

Effect of depth. To test our theoretical results, we consider Note that the gradient confuspn bpunah equation 3 is
de ned for the worst-case gradient inner product. However,

CNNs with a xed width factor of 2 and varying network o - .
: all the results in this paper can be trivially extended to using

depth. From gure 2, we see that our theoretical results are e i

. . ; a bound on the average gradient inner product of the form:
backed by the experiments: increasing depth slows down
convergence, and increases gradient confusion. We also l’\J‘ _ hrfi(w);r fj (w)i=N2
notice that with increasing depth, the density of pairwise . ’ . _
gradient cosine similarities concentrates less sharply arounk this case, all theoretical results would remain the same
0, which makes the network harder to train. up to constants. We can also de ne a normalized variant of

. . ) the gradient confusion condition:
Effect of width. We now consider CNNs with a xed

depth of 16 and varying width factors. From gure 3, we  hr fi(w);r fj(w)i=(kr f;(w)kkr f;(w)k)

see that increasing width results in faster convergence and . L N )
lower gradient confusion. We further see that gradient co! Nis condition inherently makes an additional assumption
sine similarities concentrate around 0 with growing width,that the norm of the stochastic gradierks, f; (w)k, is
indicating that SGD decouples across the training sampledounded, and thus the gradient variance is also bounded
with growing width. Note that the smallest network consid-(see discussion in section 9). Thus, while all our theoretical

ered (CNN-16-2) is still over-parameterized and achieves sesults would qualitatively remain the same under this con-
high level of performance (see appendix A.3). dition, we can prove tighter versions of our current results.

Effect of batch normalization and skip connections. Al-  Finally, note that gradient confusion condition in equation
most all state-of-the-art neural networks currently contairs IS @pplicable even when the stochastic gradients are av-
both skip connections and normalization layers. To help un€raged over minibatches of sige The variance of the
derstand why such neural networks are so ef ciently traineddradient inner product scales down&eB? in this case,
using SGD with constant learning rates, we test the effect ofNd thus is expected to decreaseBgrows.

adding skip connections and batch normalization to CNNs

of xed width and varying depth. Figure 4 shows that adding 9. Related work

skip connections or batch normalization individually help ) ) )
in training deeper models, but these models still suffer from! he gradient confusion bound and our theoretical results

worsening results and increasing gradient confusion as thgaVve interesting connections to prior work. In this section,
we brie y discuss some of these connections.



