
The Impact of Neural Network Overparameterization on
Gradient Confusion and Stochastic Gradient Descent

Karthik A. Sankararaman* 1 2 Soham De* 3 Zheng Xu 2 W. Ronny Huang 2 Tom Goldstein 2

Abstract

This paper studies how neural network architec-
ture affects the speed of training. We introduce a
simple concept called gradient confusion to help
formally analyze this. When gradient confusion
is high, stochastic gradients produced by different
data samples may be negatively correlated, slow-
ing down convergence. But when gradient confu-
sion is low, data samples interact harmoniously,
and training proceeds quickly. Through theoreti-
cal and experimental results, we demonstrate how
the neural network architecture affects gradient
confusion, and thus the efficiency of training. Our
results show that, for popular initialization tech-
niques, increasing the width of neural networks
leads to lower gradient confusion, and thus faster
model training. On the other hand, increasing
the depth of neural networks has the opposite
effect. Our results indicate that alternate initial-
ization techniques or networks using both batch
normalization and skip connections help reduce
the training burden of very deep networks.

1. Introduction
Stochastic gradient descent (SGD) (Robbins & Monro,
1951) and its variants with momentum have become the
standard optimization routine for neural networks due to
their fast convergence and good generalization properties
(Wilson et al., 2017; Sutskever et al., 2013; Smith et al.,
2020). Yet the convergence behavior of SGD on neural
networks still eludes full theoretical understanding. Fur-
thermore, it is not well understood how design choices on
neural network architecture affect training performance. In
this paper, we make progress on these open questions.

*Equal contribution 1Facebook. 2University of Maryland, Col-
lege Park. 3DeepMind, London.. Correspondence to: Karthik
A. Sankararaman <karthikabinavs@gmail.com>, Soham De <so-
hamde@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Classical stochastic optimization theory predicts that the
learning rate of SGD needs to decrease over time for con-
vergence to be guaranteed to the minimizer of a convex
function (Shamir & Zhang, 2013; Bertsekas, 2011). For
strongly convex functions for example, such results show
that a decreasing learning rate schedule of O(1/k) is re-
quired to guarantee convergence to within ε-accuracy of the
minimizer in O(1/ε) iterations, where k denotes the itera-
tion number. Such decay schemes, however, typically lead
to poor performance on standard neural network problems.

Neural networks operate in a regime where the number
of parameters is much larger than the number of training
data. In this “over-parameterized” regime, SGD seems to
converge quickly with constant learning rates. Most neu-
ral network practitioners use a constant learning rate for
the majority of training (with exponential decay only to-
wards the end of training) without seeing the method stall
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He
et al., 2016; Zagoruyko & Komodakis, 2016). With constant
learning rates, theoretical guarantees show that SGD con-
verges quickly to a neighborhood of the minimizer, but then
reaches a noise floor beyond which it stops converging; this
noise floor depends on the learning rate and the variance of
the gradients (Moulines & Bach, 2011; Needell et al., 2014).
Recent results show that convergence without a noise floor
is possible without decaying the learning rate, provided the
model is strongly convex and overfitting occurs (Schmidt &
Roux, 2013; Ma et al., 2017; Vaswani et al., 2018).

While these results do give important insights, they do not
fully explain the dynamics of SGD on neural networks,
and how they relate to over-parameterization. Furthermore,
training performance is strongly influenced by network ar-
chitecture. It is common knowledge among practitioners
that, under standard Gaussian initialization techniques (Glo-
rot & Bengio, 2010; He et al., 2015), deeper networks train
slower (Bengio et al., 1994; Saxe et al., 2013). This has
led to several innovations over the years to get deeper nets
to train more easily, such as careful initialization strategies
(Xiao et al., 2018), residual connections (He et al., 2016),
and normalization schemes like batch normalization (Ioffe
& Szegedy, 2015). Furthermore, there is evidence to indi-
cate that wider networks are faster to train (Zagoruyko &
Komodakis, 2016; Nguyen & Hein, 2017), and recent the-

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

oretical results suggest that the dynamics of SGD simplify
considerably for very wide networks (Jacot et al., 2018;
Lee et al., 2019). In this paper, we make progress on the-
oretically understanding these empirical observations and
unifying existing theoretical results. To this end, we identify
and analyze a condition that enables us to establish direct
relationships between layer width, network depth, problem
dimensionality, initialization schemes, and trainability and
SGD dynamics for over-parameterized networks.

Our contributions. Typical neural networks are over-
parameterized (i.e., the number of parameters exceed the
number of training points). In this paper, we ask how this
over-parameterization, and more specifically the network ar-
chitecture, affects the trainability of neural networks and the
dynamics of SGD. Through extensive theoretical and exper-
imental studies, we show how layer width, network depth,
initialization schemes, and other architecture choices affect
the dynamics. The following are our main contributions.1

� We identify a condition, termed gradient confusion,
that impacts the convergence properties of SGD on
over-parameterized models. We prove that high gradi-
ent confusion may lead to slower convergence, while
convergence is accelerated (and could be faster than
predicted by existing theory) if confusion is low, in-
dicating a regime where constant learning rates work
well in practice (sections 2 and 3). We use the gradi-
ent confusion condition to study the effect of various
architecture choices on trainability and convergence.

� We study the effect of neural network architecture on
gradient confusion at standard Gaussian initialization
schemes (section 4), and prove (a) gradient confusion
increases as the network depth increases, and (b) wider
networks have lower gradient confusion. These indi-
cate that deeper networks are more difficult to train and
wider networks can improve trainability of networks.
Directly analyzing the gradient confusion bound en-
ables us to derive results on the effect of depth and
width, without requiring restrictive assumptions like
large layer widths (Du et al., 2018; Allen-Zhu et al.,
2018). Our results hold for a large class of neural
networks with different non-linear activations and loss-
functions. In section 5, we present a more general
result on the effect of depth on the trainability of net-
works without assuming the network is at initialization.

� We prove that for linear neural networks, gradient con-
fusion is independent of depth when using orthogonal
initialization schemes (section 6) (Saxe et al., 2013;
Schoenholz et al., 2016). This indicates a way forward
in developing techniques for training deeper models.

1To keep the main text of the paper concise, all proofs and sev-
eral additional experimental results are delegated to the appendix.

� We test our theoretical predictions using extensive
experiments on wide residual networks (WRNs)
(Zagoruyko & Komodakis, 2016), convolutional net-
works (CNNs) and multi-layer perceptrons (MLPs) for
image classification tasks on CIFAR-10, CIFAR-100
and MNIST (section 7 and appendix A). We find that
our theoretical results consistently hold across all our
experiments. We further show that the combination of
batch normalization and skip connections in residual
networks help lower gradient confusion, thus indicat-
ing why SGD can efficiently train deep neural networks
that employ such techniques.

2. Gradient confusion

Notations. We denote vectors in bold lower-case and ma-
trices in bold upper-case. We use (W)i;j to indicate the
(i, j) cell in matrix W and (W)i for the ith row of matrix
W. kWk denotes the operator norm of W. [N] denotes
f1, 2, . . . , Ng and [N]0 denotes f0, 1, . . . , Ng.

Preliminaries. Given N training points (specified by the
corresponding loss functions ffigi2[N]), we use SGD to
solve empirical risk minimization problems of the form,

minw2Rd F (w) := minw2Rd
1
N

PN
i=1 fi(w), (1)

using the following iterative update rule for T rounds:

wk+1 = wk � αrf̃k(wk). (2)

Here α is the learning rate and f̃k is a function chosen
uniformly at random from ffigi2[N] at iteration k 2 [T].
w? = argminw F (w) denotes the optimal solution.

Gradient confusion. SGD works by iteratively selecting a
random function f̃k, and modifying the parameters to move
in the direction of the negative gradient of f̃k. It may happen
that the selected gradient rf̃k is negatively correlated with
the gradient of another termrfj . When the gradients of dif-
ferent mini-batches are negatively correlated, the objective
terms disagree on which direction the parameters should
move, and we say that there is gradient confusion.2

Definition 2.1. A set of objective functions ffigi2[N] has
gradient confusion bound η � 0 if the pair-wise inner prod-
ucts between gradients satisfy, for a fixed w 2 Rd,

hrfi(w),rfj(w)i � �η, 8i 6= j 2 [N]. (3)

Observations in simplified settings. SGD converges fast
when gradient confusion is low along its path. To see why,

2Gradient confusion is related to both gradient variance and
gradient diversity (Yin et al., 2017), but with important differences,
which we discuss in section 9. We also discuss alternate definitions
of the gradient confusion condition in section 8.

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

Figure 1.Linear regression on an over-parameterized (d = 120)
and under-parameterized (d = 80) model withN = 100 samples
generated randomly from a Gaussian, trained using SGD with mini-
batch size 1. Plots are averaged over 3 independent runs. Gradient
cosine similarities were calculated over all pairs of gradients.

consider the case of training a logistic regression model
on a dataset withorthogonalvectors. We havef i (w) =
L (yi x>

i w); whereL : R ! R is the logistic loss,f x i gi 2 [N]

is a set of orthogonal training vectors, andyi 2 f� 1; 1g
is the label forx i . We then haver f i (w) = � i x i ; where
� i = yi L 0(yi � x>

i w): Note that the gradient confusion is 0
sincehr f i (w); r f j (w)i = � i � j hx i ; x j i = 0 , 8i; j 2 [N]
and i 6= j . Thus, an update in the gradient directionf i

hasno effect on the loss value off j for i 6= j . In this
case, SGD decouples into (deterministic) gradient descent
on each objective term separately, and we can expect to see
the fast convergence rates attained by gradient descent.

Can we expect a problem to have low gradient confusion
in practice? From the logistic regression problem, we have:
jhr f i (w); r f j (w)ij = jhx i ; x j ij � j � i � j j: This inner prod-
uct is expected to be small for allw ; the logistic loss satis�es
j� i � j j < 1, and for �xed N the quantitymaxij jhx j ; x i ij
is O(1=

p
d) wheneverf x i g are randomly sampled from a

sphere (see lemma B.1 for the formal statement).3 Thus, we
would expect a random linear model to have nearly orthog-
onal gradients, when the number of parameters is "large"
and the number of training data is "small", i.e., when the
model is over-parameterized. This is further evidenced by
a toy example in �gure 1, where we show a slightly over-
parameterized linear regression model can have much faster
convergence rates, as well as lower gradient confusion. One
can prove a similar result for problems that have random and
low-rank Hessians, which suggests that one might expect
gradient to be small near the minimizer for many standard
neural nets (see appendix C for more discussion).

The above arguments are a bit simplistic, considering toy
scenarios and ignoring issues like the effect of network
structure. In the following sections, we rigorously analyze
the effect of gradient confusion on the speed of convergence
on non-convex problems, and the effect of width and depth
of the neural network architecture on the gradient confusion.

3Generally, this is true wheneverx i = 1p
d

y i ; wherey i is an
isotropic random vector (Vershynin, 2018).

3. SGD is fast when gradient confusion is low

Several prior papers have analyzed the convergence rates
of constant learning rate SGD (Nedić & Bertsekas, 2001;
Moulines & Bach, 2011; Needell et al., 2014). These re-
sults show that for strongly convex and Lipschitz smooth
functions, SGD with a constant learning rate� converges
linearly to a neighborhood of the minimizer. The noise �oor
it converges to depends on the learning rate� and the vari-
ance of the gradients at the minimizer, i.e.,Ei kr f i (w ?)k2.
To guarantee convergence to� -accuracy in such a setting,
the learning rate needs to be small, i.e.,� = O(�), and
the method requiresT = O(1=�) iterations. Some more
recent results show convergence of constant learning rate
SGD without a noise �oor and without small step sizes for
models that can completely �t the data (Schmidt & Roux,
2013; Ma et al., 2017; Vaswani et al., 2018).

Gradient confusion is related to these results. Cauchy-
Schwarz inequality implies that ifEi kr f i (w ?)k2 = O(�),
thenEi;j jhr f i (w ?); r f j (w ?)ij = O(�), 8i; j . Thus the
gradient confusion at the minimizer is small when the vari-
ance of the gradients at the minimizer is small. Further
note that when the variance of the gradients at the mini-
mizer isO(�), a direct application of the results in Moulines
& Bach (2011) and Needell et al. (2014) shows that con-
stant learning rate SGD has fast convergence to� -accuracy
in T = O(log(1=�)) iterations, without the learning rate
needing to be small. Generally however, bounded gradient
confusion does not provide a bound on the variance of the
gradients (see section 9). Thus, it is instructive to derive con-
vergence bounds of SGD explicitly in terms of the gradient
confusion to properly understand its effect.

We �rst consider functions satisfying the Polyak-
Lojasiewicz (PL) inequality (Lojasiewicz, 1965), a condi-
tion related to, but weaker than, strong convexity, and used
in recent work (Karimi et al., 2016; De et al., 2017). We
provide bounds on the rate of convergence in terms of the
optimality gap. We start with two standard assumptions.

(A1) f f i gi 2 [N] areLipschitz smooth:
f i (w 0) � f i (w)+ r f i (w)> (w 0� w)+ L

2 kw 0� wk2:

(A2) f f i gi 2 [N] satisfy thePL inequality:
1
2 kr f i (w)k2 � � (f i (w) � f ?

i); f ?
i = min w f i (w).

We now state a convergence result of constant learning rate
SGD in terms of the gradient confusion.
Theorem 3.1. If the objective function satis�es (A1) and
(A2), and has gradient confusion� , SGD converges linearly
to a neighborhood of the minima of problem(1) as:

E[F (wT) � F ?] � � T (F (w0) � F ?) + ��
1� � ;

where� < 2
NL , � = 1 � 2�

N

�
� � NL� 2

2

�
, F ? = min w F (w)

andw0 is the initialized weights.

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

This result shows that SGD convergeslinearly to a neigh-
borhood of a minimizer, and the size of this neighborhood
depends on the level of gradient confusion. When the gra-
dient confusion is small, i.e.,� = O(�), SGD has fast con-
vergence toO(�)-accuracy inT = O(log(1=�)) iterations,
without requiring the learning rate to be vanishingly small.
We now extend this to general smooth functions.

Theorem 3.2. If the objective satis�es (A1) and has gradi-
ent confusion� , then SGD converges to a neighborhood of
a stationary point of problem(1) as:

mink=1 ;:::;T Ekr F (w k)k2 � � (F (w 1) � F ?)
T + ��;

for � < 2
NL , � = 2N

2� NL� , andF ? = min w F (w).

Thus, as long as� = O(1=T), SGD has fastO(1=T) con-
vergence on smooth non-convex functions. Theorems 3.1
and 3.2 predict an initial phase of optimization with fast con-
vergence to the neighborhood of a minimizer or a stationary
point. This behavior is often observed when optimizing
neural nets (Darken & Moody, 1992; Sutskever et al., 2013),
where a constant learning rate reaches a high level of ac-
curacy on the model. As we show in subsequent sections,
this is expected since for neural networks typically used, the
gradient confusion is expected to be low. See section 9 for
more discussion on the above results and how they relate
to previous work. We stress that our goal is not to study
convergence rates per se, nor is it to prove state-of-the-art
rate bounds for this class of problems. Rather, we show the
direct effect that the gradient confusion bound has on the
convergence rate and the noise �oor for constant learning
rate SGD. As we show in the following sections, this new
perspective in terms of the gradient confusion helps us more
directly understand how neural network architecture design
affects SGD dynamics and why.

4. Effect of neural network architecture at
Gaussian initializations

To draw a connection between neural network architecture
and training performance, we analyze gradient confusion for
generic (i.e., random) model problems using methods from
high-dimensional probability. In this section, we analyze
the effect of neural network architecture at the beginning of
training, when using standard Gaussian initialization tech-
niques. Analyzing these models at initialization is important
to understand which architectures are more easily trainable
than others. Our results cover a wide range of scenarios
compared to prior work, require minimal additional assump-
tions, and hold for a large family of neural networks with
different non-linear activation functions and loss-functions.
In particular, our results hold for fully connected networks
(and can be extended to convolutional networks) with the
square-loss and logistic-loss functions, and commonly used

non-linear activations such as sigmoid, tanh and ReLU. We
consider both the case where the input data is arbitrary but
bounded (theorem 4.1, part 1), as well as where the input
data is randomly drawn from the surface of a unit sphere
(theorem 4.1, part 2).

Setting. We consider training dataD = f (x i ; C(x i))gi 2 [N];
with labeling functionC : Rd ! [� 1; 1]. For some of our
results, we consider that the data pointsf x i g are drawn
uniformly at random from the surface of ad-dimensional
unit sphere. The labeling function satis�esjC(x)j � 1 and
kr x C(x)k2 � 1 for kxk � 1: Note that this automatically
holds for every model considered in this paper where the
labeling function isrealizable(i.e., where the model can
express the labeling function using its parameters). More
generally, this assumes a Lipschitz condition on the labels
(i.e., the labels don't change too quickly with the inputs).

We consider two loss-functions: square-loss for regres-
sion and logistic loss for classi�cation. The square-loss
function is de�ned asf i (w) = 1

2 (C(x i) � gw (x i))2

and the logistic function is de�ned asf i (w) = log(1 +
exp(�C (x i)gw (x i))) . Here,gw : Rd ! R denotes the
parameterized function we �t to the training data andf i (w)
denotes the loss-function of hypothesisgw on data pointx i .

Let W 0 2 R` 1 � d andf W pgp2 [�] whereW p 2 R` p � ` p � 1

are weight matrices. LetW denote the tuple(W p)p2 [�]0 .
De�ne ` := max p2 [�] `p to be thewidth and� to be the
depthof the network. Then, the modelgW is de�ned as

gW (x) := � (W � � (W � � 1 : : : � (W 1� (W 0x)) : : :)) ;

where� denotes the non-linear activation function applied
point-wise to its arguments. We assume that the activation
is given by a function� (x) with the following properties.

� (P1) Boundedness:j� (x)j � 1 for x 2 [� 1; 1].

� (P2) Bounded differentials: Let � 0(x) and� 00(x) de-
note the �rst and second sub-differentials respectively.
Then,j� 0(x)j � 1 andj� 00(x)j � 1 for all x 2 [� 1; 1].

Whenkxk � 1, activation functions such assigmoid, tanh,
softmaxandReLUsatisfy these requirements.

Furthermore, in this section, we consider the following
Gaussian weight initialization strategy.

Strategy 4.1. W 0 2 R` � d has independentN (0; 1
d) en-

tries. For everyp 2 [�], the weightsW p 2 R` p � ` p � 1 have

independentN
�

0; 1
�` p � 1

�
entries for some constant� > 0.

This initialization strategy with different settings of� are
used almost universally for neural networks (Glorot & Ben-
gio, 2010; LeCun et al., 2012; He et al., 2015). For instance,

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

typically � = 1
2 when ReLU activations are used, and� = 1

when tanh activations are used.

Main result. The following theorem shows how the width
` := max p2 [�] `p and the depth� affect the gradient confu-
sion condition at standard initializations. We show that
as width increases (for �xed depth) or depth decreases
(for �xed width) the probability that the gradient confusion
bound (equation 3) holds increases. Thus, as the depth in-
creases (with �xed width), training a model becomes harder,
while as the width increases (with �xed depth), training a
model becomes easier. Furthermore, note that this result
also implies that training very deeplinear neural networks
(with identity activation functions) with standard Gaussian
initializations is hard. Throughout the paper, we de�ne the
parameter� 0 := 2

p
� . See the appendix (Lemma D.1) for a

more careful de�nition of this quantity.

Theorem 4.1. Let W 0; W 1; : : : ; W � be weight matrices
chosen according to strategy 4.1. There exists �xed con-
stantsc1; c2 > 0 such that we have the following.

1. Consider a �xed but arbitrary datasetx1; x2; : : : ; xN

with kx i k � 1 for everyi 2 [N]. For � > 4, the
gradient confusion bound in equation 3 holds with
probability at least

1 � � exp
�
� c1� 2`2

�
� N 2 exp

�
� c` 2 � (� � 4) 2

64� 4
0 (� +2) 4

�
:

2. If the datasetf x i gi 2 [N] is such that eachx i is an i.i.d.
sample from the surface ofd-dimensional unit sphere,
then for every� > 0 the gradient confusion bound in
equation 3 holds with probability at least

1 � � exp
�
� c1� 2`2

�
� N 2 exp

�
� c2 (`d + ` 2 �) � 2

16� 4
0 (� +2) 4

�
:

Theorem 4.1 shows that under popular Gaussian initializa-
tions used, training becomes harder as networks get deeper.
The result however also shows a way forward: layer width
improves the trainability of deep networks. Other related
work supports this showing that when the layers are in-
�nitely wide, the learning dynamics of gradient descent
simpli�es considerably (Jacot et al., 2018; Lee et al., 2019).
Hanin & Rolnick (2018) also suggest that the width should
increase linearly with depth in a neural network to help
dynamics at the beginning of training. In section 7 and
appendix A, we show substantial empirical evidence that,
given a suf�ciently deep network, increasing the layer width
often helps in lowering gradient confusion and speeding up
convergence for a range of models.

5. A more general result on the effect of depth

While our results in section 4 hold at standard initialization
schemes, in this section we derive a more general version

of the result. In particular, we assume the setting where the
data is drawn uniformly at random from a unit sphere and
the weights lie in a ball around a local minimizer. Our results
hold for both fully connected networks and convolutional
networks with the square-loss and logistic-loss functions,
and commonly-used non-linear activations such as sigmoid,
tanh, softmax and ReLU.

We consider the same setup as in the previous section, and
assume additionally that the data pointsf x i g are drawn
uniformly from the surface of ad-dimensional unit sphere.
Additionally, instead of studying the network at initializa-
tion, we make the following assumption on the weights.

Assumption 1(Small Weights). We assume that the oper-
ator norm of the weight matricesf W i gi 2 [�]0 are bounded
above by1, i.e., for everyi 2 [�]0 we havekW i k � 1.

The operator norm of the weight matriceskW k being close
to 1 is important for the trainability of neural networks, as
it ensures that the input signal is passed through the net-
work without exploding or shrinking across layers (Glorot
& Bengio, 2010). Proving non-vacuous bounds in case of
such blow-ups in magnitude of the signal or the gradient is
not possible in general, and thus, we consider this restricted
class of weights. Most standard neural networks are trained
using weight decayregularizers of the form

P
i kWi k2

F .
This biases the weights to be small when training neural
networks in practice. See appendix F for further discussion
on the small weights assumption.

We now present a more general version of theorem 4.1.

Theorem 5.1. LetW 0; W 1; : : : ; W � satisfy assumption 1.
For some �xed constantc > 0, the gradient confusion bound
(equation 3) holds with probability at least

1 � N 2 exp
�

� cd� 2

16� 4
0 (� +2) 4

�
:

Theorem 5.1 shows that (for �xed dimensiond and number
of samplesN) when the depth� decreases, the probabil-
ity that the gradient confusion bound in equation 3 holds
increases, and vice versa. Thus, our results indicate that in
the general case when the weights are small, increasing the
network depth will typically lead to slower model training.

Note that on assumingkW k � 1 for each weight matrix
W , the dependence of gradient confusion on the width
goes away. To see why this, consider an example where
each weight matrix in the neural network has exactly one
non-zero element, which is set to 1. The operator norm of
each such weight matrix is 1, but the forward or backward
propagated signals would not depend on the width.

Note that the convergence rate results of SGD in section
3 assume that the gradient confusion bound holds at every
point along the path of SGD. On the other hand, theorem

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

5.1 shows concentration bounds for the gradient confusion
at a �xed weightW . Thus, to make the above result more
relevant for the convergence of SGD on neural networks, we
now make the concentration bound in theorem 5.1uniform
over all weights inside a ballBr of radiusr .

Corollary 5.1. Select a pointW = (W 0; W 1; : : : ; W �),
satisfying assumption 1. Consider a ballBr centered at
W of radius r > 0. If the dataf x i gi 2 [N] are sampled
uniformly from a unit sphere, then the gradient confusion
bound in equation 3 holds uniformly at all pointsW 0 2 B r

with probability at least

1 � N 2 exp
�

� cd� 2

64� 4
0 (� +2) 4

�
; if r � �= 4� 2

0 ;

1 � N 2 exp
�

� cd� 2

64� 4
0 (� +2) 4 + 8d� 2

0 r
�

�
; otherwise:

Corollary 5.1 shows that the probability that the gradient
confusion bound holds decreases with increasing depth, for
all weights in a ball around the minimizer.4 This explains
why, in the general case, training very deep models might
always be hard. This raises the question why most deep
neural networks used in practice are so ef�ciently trained
using SGD. While careful Gaussian initialization strategies
prevent vanishing or exploding gradients, these strategies
still suffer from high gradient confusion for very deep net-
works unless the width is also increased with the depth, as
we show in section 4. Practitioners over the years, however,
have achieved state-of-the-art results by making networks
deeper, without necessarily making networks wider. Thus,
in section 7, we empirically study how popular techniques
used in these models like skip connections and batch nor-
malization affect gradient confusion. We �nd that these
techniques drastically lower gradient confusion, making
deep networks signi�cantly easier to train. Furthermore, in
the next section, we show how deep linear nets are train-
able when used with orthogonal initialization techniques,
indicating a way forward for training deeper models.

6. Gradient confusion is independent of depth
for orthogonal initializations

In this section, we show that for deep linear neural networks,
gradient confusion is independent of depth when the weight
matrices are initialized as orthogonal matrices.5 Consider
the following linear neural network:

gW (x) :=
 W � � W � � 1 � : : : � W 1 � x ; (4)

where the rescaling parameter
 = 1p
2�

, and assume we
use the squared loss function. Then we have the following.

4The above results automatically hold for convolutional net-
works, since a convolution operation onx can be represented as a
matrix multiplicationUx for an appropriate Toeplitz matrixU .

5An orthogonal matrixA satis�esA T � A = A � A T = I .

Theorem 6.1. Let f W i gi 2 [�] be arbitrary orthogonal ma-
trices that satisfy assumption 1. Let the datasetf x i gi 2 [N]

be such that eachx i is an i.i.d. sample from the surface
of d-dimensional unit sphere. Consider the linear neural
network in equation 4 that minimizes the empirical square
loss function. For some �xed constantc > 0, the gradient
confusion bound (equation 3) holds with probability at least

1 � N 2 exp
�
� cd� 2

�
:

From Theorem 6.1, we see that the probability does not
depend on the depth� or maximum width̀ . Thus, trainabil-
ity does not get worse with depth when using orthogonal
initializations. This result matches previous theoretical and
empirical results showing the ef�ciency of orthogonal ini-
tialization techniques for training very deep linear or tanh
networks (Saxe et al., 2013; Schoenholz et al., 2016; Xiao
et al., 2018). However, orthogonal initializations are not
compatable with non-linear activation functions like sig-
moids or ReLUs, which limit their use in practice. Nonethe-
less, this result suggests a promising direction in developing
techniques for training deeper models.

7. Experimental results

To test our theoretical results and to probe why standard
neural networks are ef�ciently trained with SGD, we now
present experimental results showing the effect of the neu-
ral network architecture on the convergence of SGD and
gradient confusion. It is worth noting that theorems 3.1
and 3.2 indicate that we would expect the effect of gradient
confusion to be most prominent closer to the end of training.

We performed experiments on wide residual networks
(WRNs) (Zagoruyko & Komodakis, 2016), convolutional
networks (CNNs) and multi-layer perceptrons (MLPs) for
image classi�cation tasks on CIFAR-10, CIFAR-100 and
MNIST. We present results for CNNs on CIFAR-10 in this
section, and present all other results in appendix A. We use
CNN-� -` to denote WRNs that have no skip connections
or batch normalization, with a depth� and width factor
`.6 We turned off dropout and weight decay for all our
experiments. We used SGD as the optimizer without any
momentum. Following Zagoruyko & Komodakis (2016),
we ran all experiments for 200 epochs with minibatches of
size 128, and reduced the initial learning rate by a factor of
10 at epochs 80 and 160. We used the MSRA initializer (He
et al., 2015) for the weights as is standard for this model,
and used the same preprocessing steps for the CIFAR-10 im-
ages as described in Zagoruyko & Komodakis (2016). We
ran each experiment 5 times, and we show the standard de-
viation across runs in our plots. We tuned the optimal initial

6The width factor denotes the number of �lters relative to the
original ResNet model (Zagoruyko & Komodakis, 2016).

The Impact of Neural Network Overparameterization on Gradient Confusion and Stochastic Gradient Descent

(a) (b) (c)

Figure 2.The effect of network depth with CNN-� -2 on CIFAR-10 for depths� = 16, 22, 28, 34 and 40. Plots show the (a) convergence
curves for SGD, (b) minimum of pairwise gradient cosine similarities at the end of training, and the (c) kernel density estimate of the
pairwise gradient cosine similarities at the end of training (over all independent runs).

learning rate for each model over a logarithmically-spaced
grid and selected the run that achieved the lowest training
loss value. To measure gradient confusion, at the end of
every training epoch, we sampled 100 pairs of mini-batches
each of size 128 (the same size as the training batch). We
calculated gradients on each mini-batch, and then computed
pairwise cosine similarities. See appendix A.2 for more
details on the experimental setup and architectures used.

Effect of depth. To test our theoretical results, we consider
CNNs with a �xed width factor of 2 and varying network
depth. From �gure 2, we see that our theoretical results are
backed by the experiments: increasing depth slows down
convergence, and increases gradient confusion. We also
notice that with increasing depth, the density of pairwise
gradient cosine similarities concentrates less sharply around
0, which makes the network harder to train.

Effect of width. We now consider CNNs with a �xed
depth of 16 and varying width factors. From �gure 3, we
see that increasing width results in faster convergence and
lower gradient confusion. We further see that gradient co-
sine similarities concentrate around 0 with growing width,
indicating that SGD decouples across the training samples
with growing width. Note that the smallest network consid-
ered (CNN-16-2) is still over-parameterized and achieves a
high level of performance (see appendix A.3).

Effect of batch normalization and skip connections. Al-
most all state-of-the-art neural networks currently contain
both skip connections and normalization layers. To help un-
derstand why such neural networks are so ef�ciently trained
using SGD with constant learning rates, we test the effect of
adding skip connections and batch normalization to CNNs
of �xed width and varying depth. Figure 4 shows that adding
skip connections or batch normalization individually help
in training deeper models, but these models still suffer from
worsening results and increasing gradient confusion as the

network gets deeper. When these techniques are used to-
gether, the model has relatively low gradient confusion even
for very deep networks, signi�cantly improving trainability
of deep models. Note that our observations are consistent
with prior work (De & Smith, 2020; Yang et al., 2019).

8. Alternate de�nitions of gradient confusion

Note that the gradient confusion bound� in equation 3 is
de�ned for the worst-case gradient inner product. However,
all the results in this paper can be trivially extended to using
a bound on the average gradient inner product of the form:

P N
i;j =1 hr f i (w); r f j (w)i =N2 � � �:

In this case, all theoretical results would remain the same
up to constants. We can also de�ne a normalized variant of
the gradient confusion condition:

hr f i (w); r f j (w)i =(kr f i (w)kkr f j (w)k) � � �:

This condition inherently makes an additional assumption
that the norm of the stochastic gradients,kr f i (w)k, is
bounded, and thus the gradient variance is also bounded
(see discussion in section 9). Thus, while all our theoretical
results would qualitatively remain the same under this con-
dition, we can prove tighter versions of our current results.

Finally, note that gradient confusion condition in equation
3 is applicable even when the stochastic gradients are av-
eraged over minibatches of sizeB . The variance of the
gradient inner product scales down as1=B2 in this case,
and thus� is expected to decrease asB grows.

9. Related work

The gradient confusion bound and our theoretical results
have interesting connections to prior work. In this section,
we brie�y discuss some of these connections.

