
A. Theoretical Analysis
A.1. The Mean-Gradient

Definition 1. The mean-gradient in a region around x of radius ε > 0 is

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ (1)

where Vε(x) ⊂ Rn is a convex subset s.t. ‖x′ − x‖ ≤ ε for all x′ ∈ Vε(x) and the integral domain is over τ s.t.
x+ τ ∈ Vε(x).

Proposition 1 (controllable accuracy). For any twice differentiable function f ∈ C1, there is κg(x) > 0, so that for any
ε > 0 the mean-gradient satisfies ‖gε(x)−∇f(x)‖ ≤ κg(x)ε for all x ∈ Ω.

Proof. Recall the Taylor theorem for a twice differentiable function f(x+ τ) = f(x) +∇f(x) · τ +Rx(τ), where Rx(τ)
is the remainder. Since the gradient is continuous,by the fundamental theorem for line integrals

f(x+ τ) = f(x) +

∫ 1

0

∇f(x+ tτ) · τdt = f(x) +∇f(x) · τ +

∫ 1

0

(∇f(x+ tτ)−∇f(x)) · τdt (2)

Since f ∈ C1+, we also have |∇f(x) − ∇f(x + τ)| ≤ κf‖τ‖. We can use this property to bound the remainder in the
Taylor expression.

Rx(τ) =

∫ 1

0

(∇f(x+ tτ)−∇f(x)) · τdt

≤ κf
∫ 1

0

‖x+ tτ − x‖ · ‖τ‖dt = κf‖τ‖2
∫ 1

0

tdt =
1

2
κf‖τ‖2

(3)

Now, by the definition of gε, an upper bound for L(gε(x)) is

L(gε(x)) ≤ L(∇f(x)) =

∫
Vε(x)

|∇f(x) · τ − f(τ) + f(s)|2dτ =

∫
Vε(x)

|Rx(τ)|2dτ

≤ 1

4
κ2f

∫
Vε(x)

|‖τ‖2|2dτ ≤ κfε4|Vε(x)| = 1

4
κ2fε

n+4|V1(x)|

To develop the lower bound we will assume that dim(span(Vε(x))) = n and we will use the following definition

Mε(x) = min
n̂

∫
Vε(x)\V ε

2
(x)

∣∣∣∣ τ‖τ‖ · n̂
∣∣∣∣2 dτ (4)

where n̂ ∈ Rn s.t. ‖n̂‖ = 1 and we assumed that V ε
2
⊂ Vε. As the dimension of Vε(x) is n, it is obvious that Mε(x) > 0.

The lower bound is

L(gε(x)) =

∫
Vε(x)

|gε(x) · τ −∇f(x) · τ +∇f(x) · τ − f(x+ τ) + f(x)|2 dτ

≥
∫
Vε(x)

(|gε(x) · τ −∇f(x) · τ | − |∇f(x) · τ − f(x+ τ) + f(x)|)2 dτ

=

∫
Vε(x)

|gε(x) · τ −∇f(x) · τ |2 dτ +

∫
Vε(x)

|∇f(x) · τ − f(x+ τ) + f(x)|2 dτ

− 2

∫
Vε(x)

|gε(x) · τ −∇f(x) · τ | · |∇f(x) · τ − f(x+ τ) + f(x)| τ

≥
∫
Vε(x)

|gε(x) · τ −∇f(x) · τ |2 dτ − 2

∫
Vε(x)

|gε(x) · τ −∇f(x) · τ | · |∇f(x) · τ − f(x+ τ) + f(x)| τ

≥
∫
Vε(x)

|gε(x) · τ −∇f(x) · τ |2 dτ − κf
∫
Vε(x)

|gε(x) · τ −∇f(x) · τ | · ‖τ‖2τ

≥ ‖gε(x)−∇f(x)‖2
∫
Vε(x)

|n̂(x) · τ |2 dτ − κf ‖gε(x)−∇f(x)‖
∫
Vε(x)

·‖τ‖3τ

≥ ‖gε(x)−∇f(x)‖2
∫
Vε(x)\V ε

2
(x)

|n̂(x) · τ |2 dτ − κf ‖gε(x)−∇f(x)‖ εn+3|V1(x)|

≥ ‖gε(x)−∇f(x)‖2
(ε

2

)2 ∫
Vε(x)\V ε

2
(x)

∣∣∣∣n̂(x) · τ

‖τ‖

∣∣∣∣2 dτ − κf ‖gε(x)−∇f(x)‖ εn+3|V1(x)|

≥ ‖gε(x)−∇f(x)‖2
(ε

2

)2
εn
∫
V1(x)\V 1

2
(x)

∣∣∣∣n̂(x) · τ

‖τ‖

∣∣∣∣2 dτ − κf ‖gε(x)−∇f(x)‖ εn+3|V1(x)|

≥ 1

4
‖gε(x)−∇f(x)‖2 εn+2M1(x)− κf ‖gε(x)−∇f(x)‖ εn+3|V1(x)|

Combining the upper and lower bound we obtain

1

4
‖gε(x)−∇f(x)‖2 εn+2M1(x)− κf ‖gε(x)−∇f(x)‖ εn+3|V1(x)| ≤ 1

4
κ2fε

n+4|V1(x)|

⇒ M1(x) ‖gε(x)−∇f(x)‖2 − 4κfε|V1(x)| ‖gε(x)−∇f(x)‖ − κ2fε2|V1(x)| ≤ 0

⇒ ‖gε(x)−∇f(x)‖ ≤ εκf
2|V1(x)|+

√
4|V1(x)|2 + |V1(x)|M1(x)

M1(x)

Proposition 2 (continuity). If f(x) is continuous in V s.t. Vε(x) ⊂ V , then the mean-gradient is a continuous function at
x.

Proof. Let us define the two-variable function L(x, g):

L(x, g) =

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ (5)

The mean-gradient is the global minimum of this function for each x. Notice that L(x, g) is a polynomial function in g

since if f is an integrable function, then we can write

L(x, g) =

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ

=

∫
Vε(x)

|g · τ |2dτ − 2

∫
Vε(x)

g · τ(f(x+ τ)− f(x))dτ +

∫
Vε(x)

|f(x+ τ)− f(x)|2dτ

= g ·A(x)g + g · b(x) + c(x)

(6)

where A(x) =
∫
Vε(x)

ττT dτ , b(x) = −2
∫
Vε(x)

τ(f(x+ τ)− f(x))dτ and c(x) =
∫
Vε(x)

|f(x+ τ)− f(x)|2dτ . Without
loss of generality for this proof, we can ignore the constant c(x) as it does not change the minimum point. In addition, note
that A(x) is constant for all x since the domain Vε(x) is invariant for x and the integrand does not depend on f .

Since L(x, g) is bounded from below, L(x, g) ≥ 0, it must have a minimum s.t. A ≥ 0. Assume that A > 0 (e.g. when Vε
is an n-ball of radius ε), then for each x there is a unique minimum for L(x, g) and this minimum is the mean-gradient
gε(x).

To show the continuity of gε(x), define F (x, g) = ∇gL(x, g), F maps R2n → Rn. Assume that for x0, gε(x0) is the
mean-gradient. Therefore, F (x0, gε(x0)) = 0. Since A > 0, this means that the derivative ∇gF (x0, gε(x0)) is invertible.
We will apply a version of the implicit function theorem (Loomis & Sternberg, 1968) (Theorem 9.3 pp. 230-231) to show
that there exists a unique and continuous mapping h(x) s.t. F (x, h(x)) = 0.

To apply the implicit function theorem, we need to show that F (x, g) is continuous and the derivative ∇gF is continuous
and invertible. The latter is obvious since ∇gF = A > 0 is a constant positive definite matrix. F (x, g) is also continuous
with respect to g, therefore it is left to verify that F (x, g) is continuous with respect to x.

Lemma A.1. If f(x) is continuous in V s.t. Vε(x) ⊂ V , then L(x, g) is continuous in x.

Proof.

|L(x, g)− L(x′, g)| = |g ·A(x)g + g · b(x)− g ·A(x′)g − g · b(x)|

= |g · b(x)− g · b(x)| ≤ ‖g‖

∥∥∥∥∥
∫
Vε(x)

τ(f(x+ τ)− f(x))dτ −
∫
Vε(x′)

τ(f(x′ + τ)− f(x′))dτ

∥∥∥∥∥
(7)

To write both integrals with the same variable, we change variables to τ = τ̃ − x in the first integrand and τ = τ̃ − x′ in the
second integrand.

|L(x, g)− L(x′, g)| ≤ ‖g‖

∥∥∥∥∥
∫
Vε(x)

(τ̃ − x)(f(τ̃)− f(x))dτ̃ −
∫
Vε(x′)

(τ̃ − x′)(f(τ̃)− f(x′))dτ̃

∥∥∥∥∥
≤ ‖g‖C1 + ‖g‖C2 + ‖g‖C3 + ‖g‖C4 + ‖g‖C5

(8)

Where

C1 = |f(x′)− f(x)|
∫
Vε(x)∩Vε(x′)

‖τ̃‖dτ̃ (9)

C2 = ‖x− x′‖
∫
Vε(x)∩Vε(x′)

|f(τ̃)|dτ̃ (10)

C3 = ‖xf(x)− x′f(x′)‖
∫
Vε(x)∩Vε(x′)

dτ̃ (11)

C4 =

∫
Vε(x)\Vε(x′)

‖τ̃ − x‖ · |f(τ̃)− f(x)|dτ̃ (12)

C5 =

∫
Vε(x′)\Vε(x)

‖τ̃ − x′‖ · |f(τ̃)− f(x′)|dτ̃ (13)

(14)

Taking x′ → x, C1, C2, C3 all go to zero as the integral is finite but x′ → x and f(x′)→ f(x). For C4 and C5, note that
the integrand is bounded but the domain size goes to zero as x′ → x. To see that we will show that |Vε(x) \ Vε(x′)| ≤
|Aε(x)| · ‖x− x′‖, where |Aε(x)| is the surface area of Vε.

Lemma A.2. |Vε(x) \ Vε(x′)| ≤ |Aε(x)| · ‖x− x′‖

Proof. First, note that if u ∈ Vε(x), then u+ x′− x ∈ Vε(x′). Take P ⊂ Vε s.t. p ∈ P if and only if distance(Aε(x), p) ≥
‖x− x′‖ and p ∈ Vε(x). For any p ∈ P , p− x+ x′ ∈ Vε(x), thus, following our first argument p ∈ Vε(x′).

We obtain that P ∩ Vε(x) \ Vε(x′) = Φ, thus |Vε(x) \ Vε(x′)| ≤ |Vε(x) \ P |. However, all points q ∈ Vε(x) \ P satisfy
distance(Aε(x), q) ≤ ‖x− x′‖, therefore |Vε(x) \ P | ≤ |Aε(x)| · ‖x− x′‖.

Following Lemma A.2 we obtain that the integral inC4 andC5 goes to zero and therefore the distance |L(x, g)− L(x′, g)| →
0 as x→ x′.

L(x, g) continuous in x and g with a continuous derivative in g implies that ∇gL(x, g) is continuous in x. We can now
apply Theorem 9.3 pp. 230-231 in (Loomis & Sternberg, 1968) and conclude that there is a unique continuous mapping
h(x) s.t. F (x, h(x)) = 0. Since A > 0, this means that such a mapping defines a local minimum for L(x, g) in g. Further,
since L(x, g) is a second degree polynomial in g, this is a unique global mapping. Therefore, it must be equal to gε(x) and
hence gε is continuous in x.

A.2. Parametric approximation of the mean-gradient

In this section we analyze the Monte-Carlo learning of the mean-gradient with a parametric model. Generally, we define a
parametric model gθ and learn θ∗ by minimizing the term

L(gθ, ε) =

N∑
i=1

∑
xj∈Vε(xi)

|(xj − xi) · gθ(xi)− yj + yi|2 (15)

We start by analyzing constant parameterization of the mean-gradient around a candidate xk. We consider two cases: (1)
interpolation, where there are exactly n+ 1 evaluation points; and (2) regression where there are m > n+ 1 evaluation
points. This line of arguments follows the same approach taken in (Audet & Hare, 2017), Chapter 9.

A.2.1. CONSTANT PARAMETERIZATION WITH n+ 1 INTERPOLATION POINTS

Definition A.1. A set of n+ 1 points {xi}n0 , s.t. every subset of n points spans Rn, is a poised set for constant interpolation.

Proposition A.1. For a constant paramterization g(x) = g, a poised set has a unique solution with zero regression error.

min
g

∑
i,j∈D

|(xj − xi) · g − yj + yi|2 = 0 (16)

Proof. Define the matrix X̃i ∈ Mn×n s.t. the j-th row is xi − xj and δi ∈ Rn s.t. δi,j = yj − yi. We may transform Eq.
(16) into n+ 1 sets of linear equations:

∀ i X̃ig = δi (17)

While there are n + 1 different linear systems of equations, they all have the same solution gmin. To see that, define the
system of equation X̃g̃ = r where

X̃ =

x0 1
x1 1
...

...
xn 1

 , g =

g0
g1
...

gn−1
s

 , r =

y0
y1
...
yn

 (18)

and s is an additional slack variable. For all i we can apply an elementary row operation of subtracting the i-th row s.t. the
updated system is

x0 − xi 0
...

...
xi−1 − xi 0

0 0
xi+1 − xi 0

...
...

xn − xi 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y0 − yi
...

yi−1 − yi
0

yi+1 − yi
...

yn − yi

(19)

Reducing the zeroed i-th row we get the system of equation X̃ig = δi which has a unique solution since the set {xj} \ xi
spans Rn.

Corollary A.1. For any parameterization of the form gθ = f(Wx) + b and a poised set {xj}n0 we have an optimal solution
where W ∗ = 0 and b∗ = gmin. Specifically it also holds for a Neural Network with a biased output layer.

Lemma A.3. For a poised set {xj}n0 s.t. ‖xi − xj‖ ≤ ε and a mean-gradient estimator gθ ∈ C0 with zero interpolation
error, the following holds

‖∇f(x)− gθ(x)‖ ≤ κgε (20)

Proof. f ∈ C1+, hence for any xi in the poised set and x s.t. ‖x− xi‖ ≤ ε we have

‖∇f(x)− gθ(x)‖ ≤
‖∇f(x)−∇f(xi)‖+ ‖∇f(xi)− gθ(xi)‖+ ‖gθ(xi)− gθ(x)‖ ≤ (κf + κgθ)ε+ ‖∇f(xi)− gθ(xi)‖ (21)

Where κgθ is the Lipschitz constant of gθ it is left to bound the last term. First, note that for all xj in the poised set we have
that

(xj − xi) · gθ(xi) = f(xj)− f(xi) ≤ (xj − xi) · ∇f(xi) +
1

2
κfε

2 (22)

where the last equation comes from the second error term in the Taylor series expansion in xi (see Proposition A.1).
Returning to our definition of X̃i (see proposition A.1) we can write

‖X̃i(∇f(xi)− gθ(xi))‖ =

√∑
i

|(xj − xi) · (gθ(xi)−∇f(xi))|2 ≤
1

2

√
nκfε

2 (23)

Using that property we have

‖∇f(xi)− gθ(xi)‖ = ‖X̃−1i X̃i(∇f(xi)− gθ(xi))‖ ≤ ‖X̃−1i ‖‖X̃i(∇f(xi)− gθ(xi))‖ ≤
1

2

√
nκf‖X̃−1i ‖ε

2. (24)

‖X̃−1i ‖ = 1
minσ(X̃i)

, where σ is the singular values. Notice that the rows of X̃i are xj − xi ∝ ε, thus we can scale them

by ε. In this case, since the poised set spans Rn, the minimal singular value of 1
ε X̃i is finite and does not depend on ε.

Therefore, we obtain

‖∇f(xi)− gθ(xi)‖ ≤
1

2

√
n‖(1

ε
X̃i)
−1‖κfε = O(nε) (25)

Therefore,

‖∇f(x)− gθ(x)‖ ≤
(
κf +

1

2

√
nκgθ + ‖(1

ε
X̃i)
−1‖κf

)
ε (26)

Notice that we only required gθ to be a zero-order Lipschitz continuous and we do not set any restrictions on its gradient. For
Neural Networks, having the C0 property is relatively easy, e.g. with spectral normalization (Miyato et al., 2018). However,
many NNs are not C1, e.g. NN with ReLU activations.

A.2.2. CONSTANT PARAMETERIZATION WITH m > n+ 1 REGRESSION POINTS

We can extend the results of Sec. A.2.1 to the regression problem where we have access to m > n + 1 points {xi}m−10 .
We wish to show that the bounds for a constant mean-gradient solution for the regression problem in Eq. (15) are also
controllably accurate, i.e. ‖∇f(x)− g‖ ≤ κgε. As in the interpolation case, we start with the definition of the poised set for
regression.
Definition 2 (poised set for regression). Let Dk = {(xi, yi)}m1 , m ≥ n + 1 s.t. xi ∈ Vε(xk) for all i. Define the matrix
X̃i ∈Mm×n s.t. the j-th row is xi − xj . Now define X̃ = (X̃T1 ··· X̃

T
m)

T . The set Dk is a poised set for regression in xk if
the matrix X̃ has rank n.

Intuitively, a set is poised if its difference vectors xi − xj span Rn. For the poised set, and a constant parameterization, the
solution of Eq. (27) is unique and it equals to the Least- Squares (LS) minimizer. If f has a Lipschitz continuous gradient,
then the error between gε(x) and ∇f(x) is proportional to ε. We formalize this argument in the next proposition.
Theorem 1. Let Dk be a poised set in Vε(xk). The regression problem

gMSE = arg min
g

∑
i,j∈Dk

|(xj − xi) · g − yj + yi|2 (27)

has the unique solution gMSE = (X̃T X̃)−1X̃T δ, where δ ∈ Rm2

s.t. δi·(m−1)+j = yj − yi. Further, if f ∈ C1+ and
gθ ∈ C0 is a parameterization with lower regression loss gMSE , the following holds

‖∇f(x)− gθ(x)‖ ≤ κgε (28)

Proof. The regression problem can be written as

g = arg min
g
‖X̃g − δ‖2 (29)

This is the formulation for the mean-square error problem with matrix X̃ and target δ. The minimizer of this function is the
standard mean-square error minimizer which is unique as X̃ has rank n.

g = (X̃T X̃)−1X̃T δ (30)

Lemma A.4. Let f ∈ C1+ on Bε(xj) with a Lipschitz constant κf . For any triplet xi, xj , xk s.t. ‖xi − xj‖ ≤ ε and
‖xk − xj‖ ≤ ε

|f(xk)− f(xj)− (xk − xj) · ∇f(xi)| ≤
3

2
κfε

2 (31)

Proof.

|f(xk)− f(xj)− (xk − xj) · ∇f(xi)| =
∣∣∣∣∫ 1

0

(xk − xj) · ∇f(xj + τ(xk − xj))dτ − (xk − xj) · ∇f(xi)

∣∣∣∣
=

∣∣∣∣∫ 1

0

(xk − xj) · (∇f(xj + τ(xk − xj))−∇f(xi)) dτ

∣∣∣∣
≤
∣∣∣∣∫ 1

0

‖xk − xj‖ · ‖∇f(xj + τ(xk − xj))−∇f(xi)‖dτ
∣∣∣∣

≤ κfε
∣∣∣∣∫ 1

0

‖xj + τ(xk − xj)− xi‖dτ
∣∣∣∣

≤ κfε
∣∣∣∣∫ 1

0

‖xj − xi‖+ ‖τ(xk − xj)‖dτ
∣∣∣∣

≤ κfε
∣∣∣∣ε+ ε

∫ 1

0

τdτ

∣∣∣∣
=

3

2
κfε

2

(32)

Applying the previous Lemma, for all x ∈ Vε(xk)

‖X̃∇f(x)− δ‖2 =

m−1∑
k=0

m−1∑
j=0

|(xk − xj)T∇f(x)− (f(xk)− f(xj))|2 ≤ m2

(
3

2
κfε

2

)2

(33)

hence ‖X̃∇f(x)− δ‖ ≤ 3m
2 κfε

2.

Notice also that if Dk is a poised set s.t. the matrix X̃ has rank n s.t. X̃† = (X̃T X̃)−1X̃T exists and we have that

‖∇f(x)− X̃†δ‖ =
∥∥∥X̃† (X̃∇f(x)− δ

)∥∥∥ ≤ ‖X̃†‖ · ‖X̃∇f(xi)− δ‖ ≤ ‖X̃†‖
3m

2
κfε

2 (34)

As in the interpolation case, we can multiply X̃† by ε to obtain a matrix which is invariant to the size of ε. Denote the scaled
pseudo-inverse as X̃‡ = ε(X̃T X̃)−1X̃T . Therefore,

‖∇f(x)− gMSE‖ ≤ ‖X̃‡‖3m

2
κfε (35)

If gθ has a lower regression error than gMSE , then there exists at least one point xi s.t. xi ∈ Dk and ‖∇f(xi)− gθ(xi)‖ ≤
‖∇f(xi)− gMSE‖. In this case we have

‖∇f(x)− gθ(x)‖ ≤ ‖∇f(x)−∇f(xi)‖+ ‖∇f(xi)− gθ(xi)‖+ ‖gθ(xi)− gθ(x)‖
≤ (κf + κgθ)ε+ ‖∇f(xi)− gθ(xi)‖
≤ (κf + κgθ)ε+ ‖∇f(xi)− gMSE‖

≤ (κf + κgθ)ε+ ‖X̃‡‖3m

2
κfε

=

(
κf + κgθ + ‖X̃‡‖3m

2
κf

)
ε

Corollary 1. For theDk poised set, any Lipschitz continuous parameterization of the form gθ(x) = F (Wx)+b, specifically
NNs, is a controllably accurate model in Vε(xk) for the optimal set of parameters θ∗.

A.3. Convergence Analysis

For clarity, we replace the subscript θ in gθ and write gε to emphasize that our model for the mean-gradient is controllably
accurate.
Theorem 2. Let f : Ω → R be a function with Lipschitz continuous gradient, i.e. f ∈ C+1 and a Lipschitz constant κf .
Suppose a controllable mean-gradient model gε with error constant κg , the gradient descent iteration xk+1 = xk−αgε(xk)

with α s.t. 5ε
‖∇f(xk)‖ ≤ α ≤ min(1

κg
, 1
κf

) guarantees a monotonically decreasing step s.t. f(xk+1) ≤ f(xk)− 2.25 ε
2

α .

Proof. For f ∈ C+1 the following inequality holds for all xk (see proof in Proposition A.1)

f(x) ≤ f(xk) + (x− xk) · ∇f(xk) +
1

2
κf‖x− xk‖2 (36)

Plugging in the iteration update xk+1 = xk − αgε(xk) we get

f(xk+1) ≤ f(xk)− αgε(xk) · ∇f(xk) + α2 1

2
κf‖gε(xk)‖2 (37)

For a controllable mean-gradient we can write ‖gε(x)−∇f(x)‖ ≤ εκg , therefore we can write gε(x) = ∇f(x) + εκgξ(x)
s.t. ‖ξ(x)‖ ≤ 1 so the inequality is

f(xk+1) ≤ f(xk)− α‖∇f(xk)‖2 − αεκgξ(xk) · ∇f(xk) + α2 1

2
κf‖∇f(x) + εκgξ(x)‖2 (38)

Using the equality ‖a+ b‖2 = ‖a‖2 + 2a · b+ ‖b‖2 and the Cauchy-Schwartz inequality inequality a · b ≤ ‖a‖‖b‖ we can
write

f(xk+1) ≤ f(xk)− α‖∇f(xk)‖2 + αεκg‖ξ(xk)‖ · ‖∇f(xk)‖+ α2 1

2
κf
(
‖∇f(x)‖2 + 2εκg‖ξ(x)‖ · ‖∇f(xk)‖+ ε2κ2g‖ξ(x)‖2

)
≤ f(xk)− α‖∇f(xk)‖2 + αεκg‖∇f(xk)‖+

α2

2
κf‖∇f(x)‖2 + α2κfεκg‖∇f(xk)‖+

α2ε2

2
κfκ

2
g

(39)
Using the requirement α ≤ min(1

κg
, 1
κf

) it follows that ακg ≤ 1 and ακf ≤ 1 so

f(xk+1) ≤ f(xk)− α‖∇f(xk)‖2 + ε‖∇f(xk)‖+
α

2
‖∇f(x)‖2 + ε‖∇f(xk)‖+

ε2

2
κg

= f(xk)− α

2
‖∇f(xk)‖2 + 2ε‖∇f(xk)‖+

ε2

2
κg

(40)

Now, for α s.t. α ≥ 5ε
‖∇f(xk)‖ then ε ≤ ‖∇f(xk)‖α5 . Plugging it to our inequality we obtain

f(xk+1) ≤ f(xk)− α

2
‖∇f(xk)‖2 +

2α

5
‖∇f(xk)‖2 +

α2

100
κg‖∇f(xk)‖2

≤ f(xk)− α

2
‖∇f(xk)‖2 +

2α

5
‖∇f(xk)‖2 +

α

100
‖∇f(xk)‖2

= f(xk)− 0.09α‖∇f(xk)‖2

≤ f(xk)− 2.25
ε2

α

(41)

Therefore, we obtain a monotonically decreasing step with finite size improvement, hence after a finite number of steps we
obtain x? for which ‖∇f(x?)‖ ≤ 5ε

α .

Corollary 2. When Theorem 2 is satisfied for all k, the gradient descent iteration converges to a stationary point x∗ s.t.
1
K

∑K
k=1 ‖f(xk)‖2 ≤ 12|f(x0)−f(x∗)|

αKK
.

Proof. Recall that for all k we have

f(xk+1) ≤ f(xk)− 0.09αk‖∇f(xk)‖2 ⇒ ‖∇f(xk)‖2 ≤ 12

αk
(f(xk)− f(xk+1)) (42)

Summing over these terms we obtain

K−1∑
k=0

‖∇f(xk)‖2 ≤
K−1∑
k=0

12

αk
(f(xk)− f(xk+1)) ≤ 12

αK

K−1∑
k=0

(f(xk)− f(xk+1)) =
12

αK
(f(x0)− f(xK)) (43)

Since the domain is bounded and the gradient is Lipschitz continuous, from the fundamental theorem of line integral it
follows that the function is bounded. Hence, a monotonically decreasing sequence bounded from below, must converge to
the sequence infimum denoted as x∗. Therefore,

K−1∑
k=0

‖∇f(xk)‖2 ≤ 12

αK
|f(x0)− f(xK)| ≤ 12

αK
|f(x0)− f(x∗)| (44)

B. The Perturbed Mean-Gradient
Definition B.1. The perturbed mean-gradient in x with averaging radius ε > 0 and perturbation radius p < ε is

gpε (x) = arg min
g∈Rn

∫∫
Vε(x)Bp(x)

|g · (τ − s)− f(τ) + f(s)|2dsdτ (45)

where Bp(x) ⊂ Vε(x) ⊂ Rn are convex subsets s.t. ‖x′ − x‖ ≤ ε for all x′ ∈ Vε(x) and the integral domain is over
τ ∈ Vε(x) and s ∈ Bp(x).

We denote Vε(x) as the averaging domain and Bp(x) as the perturbation domain and usually set |Vε| � |Bp|. The purpose
of Vε is to average the gradient in a region of radius ε and the perturbation is required to obtain smooth gradients around
discontinuity points.

Proposition B.1 (controllable accuracy). For any function f ∈ C1, there is κg > 0, so that for any ε > 0 the perturbed
mean-gradient satisfies ‖gpε −∇f(x)‖ ≤ κgε for all x ∈ Ω.

Proof. Recall the Taylor theorem for a twice differentiable function f(τ) = f(s) +∇f(s) · (τ − s) +Rs(τ), where Rs(τ)
is the reminder. Since the gradient is continuous, we can write

f(τ) = f(s) +∇f(s) · (τ − s) +

∫ 1

0

(∇f(s+ t(τ − s))−∇f(s)) · (τ − s)dt (46)

Since f ∈ C1, we also have |∇f(x)−∇f(s)| ≤ κf‖x− s‖. We can use this property to bound the reminder in the Taylor
expression.

Rs(τ) =

∫ 1

0

(∇f(s+ t(τ − s))−∇f(s)) · (τ − s)dt

≤ κf
∫ 1

0

‖s+ t(τ − s)− s‖ · ‖τ − s‖dt ≤ κf
2
‖τ − s‖2

(47)

By the definition of gpε , an upper bound for L(gpε (x)) is

L(gε(x)) ≤ L(∇f(x)) =

∫∫
Vε(x)Bp(x)

|∇f(x) · (τ − s)− f(τ) + f(s)|2dsdτ

=

∫∫
Vε(x)Bp(x)

|(∇f(x)−∇f(s) +∇f(s)) · (τ − s)− f(τ) + f(s)|2dsdτ

≤
∫∫

Vε(x)Bp(x)

|∇f(s) · (τ − s)− f(τ) + f(s)|2dsdτ

+ 2

∫∫
Vε(x)Bp(x)

‖∇f(x)−∇f(s)‖ · ‖τ − s‖ · |∇f(s) · (τ − s)− f(τ) + f(s)|dsdτ

+

∫∫
Vε(x)Bp(x)

‖∇f(x)−∇f(s)‖2 · ‖τ − s‖2dsdτ

≤
∫∫

Vε(x)Bp(x)

κ2f
4
‖τ − s‖4 + κ2f‖x− s‖ · ‖τ − s‖3 + κ2f‖x− s‖ · ‖τ − s‖2dsdτ

≤ 16κ2fε
4|Vε(x)||Bp(x)| = 16κ2fε

n+4pn|V1(x)||B1(x)|

Noticed that we used the inequalities: (1) ‖∇f(x)−∇f(s)‖ ≤ κf‖x− s‖ ≤ κfε, (2) ‖x− s‖ ≤ ε; and (3) ‖τ − s‖ ≤ 2ε.

For the lower bound we assume that p = εp̄ and p̄ < 1
4 . Note that for any other upper bound on p̄ we can derive an

alternative bound.

The lower bound is

L(gε(x)) =

∫∫
Vε(x)Bp(x)

|gε(x) · (τ − s)− f(τ) + f(s)|2dsdτ

=

∫∫
Vε(x)Bp(x)

|(gε(x)−∇f(x) +∇f(x)) · (τ − s)− f(τ) + f(s)|2dsdτ

≥
∫∫

Vε(x)Bp(x)

|(gε(x)−∇f(x)) · (τ − s)|2 − 2|(gε(x)−∇f(x)) · (τ − s)| · |∇f(x)− f(τ) + f(s)|dsdτ

≥
∫∫

Vε(x)\V 3ε
4
(x)Bp(x)

|(gε(x)−∇f(x)) · (τ − s)|2sdτ

− 4ε‖(gε(x)−∇f(x))‖
∫∫

Vε(x)Bp(x)

(|∇f(s)− f(τ) + f(s)|+ |∇f(x)−∇f(s)|) dsdτ

≥ ‖gε(x)−∇f(x)‖2
(ε

2

)2 ∫∫
Vε(x)\V 3ε

4
(x)Bp(x)

∣∣∣∣n̂(x) · τ − s
‖τ − s‖

∣∣∣∣2 sdτ
− 4ε‖(gε(x)−∇f(x))‖

∫∫
Vε(x)Bp(x)

1

2
κf‖τ − s‖2 + κf‖x− s‖2dsdτ

≥ ‖gε(x)−∇f(x)‖2εnpn
(ε

2

)2 ∫∫
V1(x)\V 3

4
(x)B1(x)

∣∣∣∣n̂(x) · τ − s
‖τ − s‖

∣∣∣∣2 sdτ − 2.5ε‖(gε(x)−∇f(x))‖εnpnκf
27

32
ε2|V1(x)||B1(x)|

=
1

4
εn+2pnM1‖(gε(x)−∇f(x))‖2 − 2.5εn+3pnκf‖(gε(x)−∇f(x))‖|V1(x)||B1(x)|

Combining the lower and upper bound we obtain

M1‖(gε(x)−∇f(x))‖2 − 10εκf‖(gε(x)−∇f(x))‖|V1(x)||B1(x)| − 64κ2fε
2|V1(x)||B1(x)| ≤ 0

⇒ ‖(gε(x)−∇f(x))‖ ≤ κgε

where

κg = κf
10|V1(x)||B1(x)|+

√
100|V1(x)|2|B1(x)|2 + 256|V1(x)||B1(x)|M1(x)

M1(x)

Proposition B.2 (continuity). If f(x) is Riemann integrable in Vε(x) ⊂ V then the perturbed mean-gradient is a continuous
function at x.

Proof. We follow the same line of arguments as in Proposition 2, yet here we need to show that L(x, g) is continuous for
any interable function f .

|L(x, g)− L(x′, g)| = |g ·A(x)g + g · b(x)− g ·A(x′)g − g · b(x)| = |g · b(x)− g · b(x)|

≤ ‖g‖

∥∥∥∥∥∥∥
∫∫

Vε(x)Bp(x)

|g · (τ − s)− f(τ) + f(s)|2dsdτ −
∫∫

Vε(x′)Bp(x′)

|g · (τ − s)− f(τ) + f(s)|2dsdτ

∥∥∥∥∥∥∥
≤ ‖g‖

∫∫
Vε(x)Bp(x)\Vε(x′)Bp(x′)

|g · (τ − s)− f(τ) + f(s)|2dsdτ

+ ‖g‖
∫∫

Vε(x′)Bp(x′)\Vε(x)Bp(x)

|g · (τ − s)− f(τ) + f(s)|2dsdτ

≤M‖g‖ · |Vε(x)Bp(x) \ Vε(x′)Bp(x′)|+M‖g‖ · |Vε(x′)Bp(x′) \ Vε(x)Bp(x)|

Applying the same arguments in Lemma A.2, we have |Vε(x)Bp(x) \ Vε(x′)Bp(x′)| ≤ |AVε(x)| · |ABp(x)|‖x − x′‖2,
where AVε(x) is the surface of Vε(x) and ABp(x) is the surface of Bp(x). Therefore, L(x, g) is continuous.

The rest of the proof, again, is identical to Proposition 2.

B.1. Monte-Carlo approximation of the perturb mean-gradient

For a parameterization gθ, we may learn the perturb mean-gradient by sampling a reference point xr and then uniformly
sampling two evaluation points xi ∼ U(Bp(xr)) xj ∼ U(Vε(xr)). With the tuples (xr, xi, xj) we minimize the following
loss

Lε,p(θ) =
∑
xr

∑
xi

∑
xj

|gθ(xr) · (xj − xi)− f(xj) + f(xi)|2

Since xi ∼ U(Bp(xr)), we can write xi = xr + ni where ni is uniformly sampled in an n-ball with p radius. To reduce the
number of evaluation points, we may choose to fix xi and sample xr = xi + nr. If we assume that ε� p then for a sample
xj ∼ U(Vε(xi)) with very high probability we have that ‖xr − xj‖ ≤ ε. So we can approximate Lε,p with

Lε,p(θ) =
∑
nr

∑
xi

∑
xj

|gθ(xi + nr) · (xj − xi)− f(xj) + f(xi)|2

C. Spline Embedding
When fitting f with a NN, we found out that feeding the input vector x directly into a Fully Connected NN provides
unsatisfactory results when the dimension of the data is too small or when the target function is too complex. Specifically,
gradient descent (with Adam optimizer (Kingma & Ba, 2014)) falls short in finding the global optimum. We did not
investigate theoretically into this phenomena, but we designed an alternative architecture that significantly improves the
learning process. This method adds a preceding embedding layer (Zhang et al., 2016) before the NN. These embeddings
represent a set of learnable Spline functions (Reinsch, 1967).

Categorical Feature embedding (Howard & Gugger, 2020) is a strong, common practice, method to learn representations of
multi-categorical information. It is equivalent to replacing the features with their corresponding one-hot vector representation
and concatenating the one-hot vectors into a single vector which is then fed to the input of a NN. An important advantage
of categorical embedding is the ability to expand the input dimension into an arbitrary large vector size. In practice, this
expansion can help in representing complex non-linear problems.

For ordinal data, however, embedding may be viewed as an unnecessary step as one can feed the data directly into a NN
input layer. Moreover, categorical feature embeddings do not preserve ordinality within each categorical variable as each
class is assigned a different independent set of learnable embeddings. Nevertheless, motivated by the ability to expand the
input dimension into an arbitrary large number, we designed an ordinal variable embedding that is Lipschitz continuous s.t.
for two relatively close inputs x1 and x2 the embedding layer outputs s(x1) and s(x2) s.t. ‖s(x1)− s(x2)‖ ≤ κs‖x1− x2‖.
To that end, for a given input vector x ∈ Rn, we define the representation as sθ : Rn → Rns , y = sθ(x), where each entry
sjθ(x

l) is a one-dimensional learnable Spline transformation. A Spline (Reinsch, 1967) is a piecewise polynomial with some
degree of smoothness in the connection points. Spline is usually used to approximate smooth functions but here we use it to
represent a learnable function.

To define a learnable spline, we need to determine the intersection points and the spline degree. Specifically, for a domain
xi ∈ [a, b] we equally divided the domain into k intersection points, where each point is also termed as knot (in this work
[a, b] = [−1, 1] and k = 21, s.t. each segment is 0.1 long). Our next step is to define the spline degree and smoothness.
We experimented with three options: (1) continuous piecewise linear splines (2) 3rd degree polynomials with continuous
second derivative, termed C2 Cubic spline and; (3) continuous C0 Cubic splines. We found out that for the purpose of EGL,
continuous piecewise linear splines yield the best performance and requires less computational effort. The explicit definition
of a piecewise linear spline is

s(x, θ) =
θi
hi

(x− ti−1) +
θi
hi

(ti − x) (48)

where θ is a k elements (k is the number of knots), ti is the location of the i-th knot and hi = ti − ti−1.

We can learn more than a single spline for each element in the x vector. In this work we learned e different splines for
each entry in x s.t. the output shape of the embedding block is n× e. It is also possible to learn two or more dimensional
splines but the number of free parameters grows to the power of the splines dimensions. Therefore, it is non practical to
calculate these high degree splines. To calculate interactions between different entries of x we tested two different methods:
(1) aggregation functions and; (2) attention aggregation after a non-local blocks (Wang et al., 2018).

In the first option, given a spline representation s(x) ∈ Rn×e an average pooling aggregation is executed along the 1st

dimension s.t. we end up with a s̄(x) ∈ Re representation vector. In the second option, the aggregation takes place after
a non-local blocks which calculates interactions between each pairs of entries in the 1st dimension of s(x) (i.e. the input
dimension). To preserve the information of the input data, we concatenated x to the output of the aggregation layer. After
the concatenation, stacks of Residual blocks (He et al., 2016) (Res-Blocks) layers have been applied to calculate the output
vector (size of 1 in IGL and size of n in EGL). The complete Spline Embedding architecture that includes both average
pooling aggregation and non-local blocks is presented in Fig. 1.

Figure 1. The Spline Architecture

2 4 6 8 10
Res Blocks

(a)

10 6

10 5

10 4

10 3

10 2

10 1

M
SE spline

fc

0 2000 4000 6000 8000 10000
step
(b)

10 3

10 2

10 1

100

101

102

Lo
ss

spline
fc

1.0 0.5 0.0 0.5 1.0
x

(c)

20

0

20

40

60

y

y
res=1
res=2
res=3
res=4
res=5
res=6
res=7
res=8
res=9
res=10

Figure 2. Comparing Spline fitting vs standard FC fitting.

(a)

27.5

28.0

28.5

29.0

29.5

va
lu

e

f(x)
spline
fc

(b)
50

100

150

200

(c)
1000

800

600

400

200

0

200

1.0 0.5 0.0 0.5 1.0
(d)

100

0

100

200

va
lu

e

1.0 0.5 0.0 0.5 1.0
(e)

20

0

20

40

1.0 0.5 0.0 0.5 1.0
(f)

150

200

250

300

350

Figure 3. Comparing Spline fitting vs standard FC fitting.

In the next set of experiments, we evaluate the benefit of Spline embedding in 1D COCO problems. We compared the Spline
architecture in Fig. 1 to the same architecture without the spline embedding branches (x is directly fed to the FC layer input).
We used only e = 8 splines and a Res-Block layer size of 64. In Fig. 2(a), we evaluate the learning of a single problem (246,
harmonic decaying function) with different number of Res-Blocks. Here, we used a mini-batch size of 1024 and a total of
1024 mini-batches iteration to learn the function (i.e. a total of 106 samples). We see that Spline embedding obtains much
better MSE even for a single Res-Block and maintains its advantage for all the Res-Block sizes which we evaluated. Note
that each Res-Block comprises two Fully Connected layers, thus with the additional input and output layers we have 2n+ 2
FC layers for n Res-Blocks.

In Fig. 2(b) we evaluated the learning process with 2 Res-Blocks for 10240 mini-batches (107 samples). We see that Spline
embedding converges after roughly 500 minibatches while the FC layer learns very slowly. Interestingly, each significant
drop in the loss function of the FC net corresponds to a fit of a different ripple in the harmonic decaying function. It seems
like the FC architecture converges to local minima that prevent the network from fitting the entire harmonic function. This
can be seen in Fig. 2(c) where we print the results of the learned FC models for different Res-Block sizes after 1024
mini-batches. The results show that all FC networks fail to fit the harmonic function completely.

To demonstrate expressiveness of Spline embedding, we fit the 4 functions in the 1-D illustrative examples in Sec. 3 and
two additional functions: the harmonic decaying function and a noise like function. The results are presented in Fig. 3.
Remarkably, while we use only e = 8 splines which sums up to only 680 additional weights (8× 21 spline parameters and
additional 8× 64 input weights), we obtain significantly better results than the corresponding FC architecture.1

1In 1D problems there is no aggregation step.

D. Mappings
By applying the chain rule and the inverse function theorem, we can express the gradient of the original problem∇f with
the gradient of the scaled problem∇f̃ :

∂f(x)

∂xl
=

(
∂rk
∂y

)−1
∂hj(x)

∂xl
∂f̃jk(x̃)

∂x̃l
(49)

Here, ∂xl is the partial derivative with respect to the l-th entry of x (we assume that h maps each element independently
s.t. the Jacobian of h is diagonal). For strictly linear mappings, it is easy to show that this property also holds for the
mean-gradients.

Proposition D.1. Let hj : Rn → Rn and rk : R → R be two linear mapping functions s.t., rk(y) = y−µk
σk

and
hlj(x) = aljx+ blj , then the mean-gradient gε of f can be recovered from the mean-gradient g̃ε̃ of f̃ with

glε(x) =
alj
σk
g̃lε̃(x̃) (50)

where Vε is the projection h−1j (Vε̃) which is bounded by an n-ball at x with radius ε = maxl
1
alj
ε̃, i.e. for all x′ ∈

Vε(x), ‖x′ − x‖ ≤ maxl
1
alj
ε̃.

Proof. Let us write the definition of gε̃ with a variable τ̃ s.t. τ̃ ∈ Vε̃(x̃) (contrary to the original definition where τ denoted
the difference s.t. x+ τ ∈ Vε(x))

gε̃(x̃) = arg min
g

∫
τ̃∈Vε̃(x̃)

|g · (τ̃ − x̃)− f̃(τ̃) + f̃(x̃)|2dτ̃ (51)

Recall the mapping x̃ = h(x), since it is invertable mapping, there exist τ s.t. τ̃ = h(τ). Substituting τ̃ with τ , the integral
becomes

gε̃(x̃) = arg min
g

∫
τ∈h−1(Vε̃(x̃))

|g · (h(τ)− h(x))− f̃(h−1(τ)) + f̃(h−1(x))|2|det(Dh(τ))|dτ (52)

where det(Dh(τ)) denotes the determinant of the Jacobian matrix of the mapping h. This determinant is constant for linear
mapping so we can ignore it as we search for the arg-min value. We can also multiply the integral by the inverse slope 1

σr
and get

gε̃(x̃) = arg min
g

∫
τ∈h−1(Vε̃(x̃))

| 1

σr
g · (h(τ − x))− 1

σr
f̃(h−1(τ)) +

1

σr
f̃(h−1(x))|2dτ

= arg min
g

∫
τ∈h−1(Vε̃(x̃))

| 1

σr
aj � g · (τ − x)− r−1(f̃(h−1(τ))) + r−1(f̃(h−1(x)))|2dτ

= arg min
g

∫
τ∈h−1(Vε̃(x̃))

| 1

σr
aj � g · (τ − x)− f(τ) + f(x)|2dτ

(53)

Where the last equality holds since r−1 ◦ f̃ ◦ h = r−1 ◦ r ◦ f ◦ h−1 ◦ h = f . Since the mapping g → 1
σr
aj � g is bijective,

the arg-min can be rephrased as

1

σr
aj � gε̃(x̃) = arg min

g

∫
τ∈h−1(Vε̃(x̃))

|g · (τ − x)− f(τ) + f(x)|2dτ (54)

which is exactly the definition for gε so we get that gε = 1
σr
aj � gε̃(x̃), as requested. Finally, we need to show that for all

τ ∈ Vε(x), ‖τ − x‖ ≤ maxl
1
al
ε̃.

‖τ − x‖ = ‖h−1(τ̃)− h−1(x̃)‖ = ‖h−1(τ̃ − x̃)‖ ≤ ‖h−1‖‖τ̃ − x̃‖ ≤ max
l

1

al
ε̃ (55)

As discussed in Sec. 4.3, the design goals for mappings are twofold: (1) Fix the statistics of the input and output data and;
(2) maintain the linearity as much as possible. Following these two goals we explored mappings of the form y = q(la(x)),
where q is an expansion non-linear mapping Ω→ Rn for the input mapping and a squash mapping R→ R for the output
mapping. la is a linear mapping that is defined by the a parameters. For example in the scalar case we can uniquely define
the linear function by mapping x1 to y1 and x2 to y2, in this case we denote a = [(x1, y1), (x2, y2)].

D.1. Input Mapping

Given a candidate solution xj−1, we first construct a bounding-box Ωj by squeezing the previous region by a factor of γα
and placing it s.t. xj−1 is in the bounding-box center. For a region Ωj such that the upper and lower bounds are found in
[bl, bu], we, first, construct a linear mapping of the form a = [(bl,−1), (bu, 1)]. Then, our expansion function is the inverse
hyperbolic tangent arctanh(x) = 1

2 log
(

1+x
1−x

)
. This function expands [−1, 1]→ R but maintains linearity at the origin.

Given that the solution is approximately found in the center of the bounding-box we obtain high linearity except when the
solution is found on the edges.

D.2. Output Mapping

For the output mapping we first fix the statistics with a linear mapping a = [(Q0.1,−1), (Q0.9, 1)] where Q0.1 is the 0.1
quantile in the data and Q0.9 is the 0.9 quantile. This mapping is also termed as robust-scaling as unlike z-score x−µ

σ , it is
resilient to outliers. On the downside it does not necessarily fix the first and second order statistics, but these are at least
practically, bounded. The next step, i.e. squash mapping, makes sure that even outliers does not get too high values. For that
purpose, we use the squash mapping

q(x) =

− log(−x)− 1, x < −1

x, −1 ≤ x < 1

log(x) + 1, x ≥ 1

(56)

E. The Practical EGL Algorithm

Algorithm 1 Explicit Gradient Learning
Input: x0, Ω, α̃, ε̃, γα < 1, γε < 1, nmax

k = 0
j = 0
Ωj ← Ω
Map h0 : Ω→ Rn

while budget C > 0 do
Explore:

Generate samples Dk = {x̃i}m1 , x̃i ∈ Vε̃(x̃k)
Evaluate samples yi = f(h−1

0 (x̃i)), i = 1, ...,m

Add samples to the replay buffer D = D ∪Dk
Output Map:

rk = squash ◦ l[Q0.1,Q0.9]

ỹi = rk(yi) , i = 1, ...,m

Mean-Gradient learning:
θk = arg minθ

∑l−1
q=0

∑
i,j∈Dk−q

|(x̃j − x̃i) · gθ(x̃i)− x̃j + x̃i|2

Gradient Descent:
xk+1 ← xk − α̃gθk (xk)

if f(h−1
j (x̃k+1)) > f(h−1

j (x̃k)) for nmax times in a row then
Generate new trust-region s.t. |Ωj+1| = γα|Ωj | and its center at xbest
Map hj : Ω→ Rn
j ← j + 1
ε̃← γεε̃

if f(h−1
j (x̃k+1)) < f(h−1

j (x̃k)) then
xbest = h−1

j (x̃k)

k ← k + 1

return xbest

F. Supplementary details: The COCO experiment
The COCO test suite provides many Black-Box optimization problems on several dimensions (2,3,5,10,20,40). For each
dimension, there are 360 distinct problems. The problems are divided into 24 different classes, each contains 15 problems.
To visualize all problem classes, we iterate over the 2D problem set and for each class we present (Fig. 4-9) a contour
plot, 3D plot and the equivalent 1D problem (f1D(x) = f2D(x, x)) combined with the log view of the normalized problem
(f1D(x)−fm1Din
fmax
1D −fmin

1D

).

To visualize the average convergence rate of each method, we first calculate a scaled distance between the best value at time
t and the optimal value ∆ytbest =

mink≤t yk−y∗
y0−y∗ where y∗ is the minimal value obtained from all the baselines’ test-runs. We

then average this number, for each t, over all runs in the same dimension problem set. This distance is now scaled from zero
to one and the results are presented on a log-log scale. The first-column in Fig. 4-9 presents ∆y

t

best on each problem type of
the 2D problem set and Fig. 10 show ∆y

t

best in the 40D problem set. In table 1, we present the hyperparameters used for
EGL and IGL in all our experiments (besides the ablation tests).

In future work, we will need to design a better mechanism for the ε scheduling. In problem 19 (Griewank-Rosenbrock
F8F2), the ε scheduling was too slow, and only when we used a smaller initial ε, EGL started to converge to the global
minimum (see Fig. 11(a) where we used initial ε = 0.001×

√
n, γα = 0.7 and L = 1). On the other hand, in problems, 21

(Gallagher 101 peaks) and 22 (Gallagher 21 peaks) using small ε ends up in falling to local minima, and the choice of a
larger ε could smooth the gradient which pushes xk over the local minima (see 11(b-c) respectively where we used initial
ε = 0.5×

√
n and L = 4).

In Fig. 12-17 we present a histogram of the raw and scaled cost value (after the output-mapping) of a 200 samples snapshot
from the replay buffer at different periods during the learning process (t = 1K, t = 10K, t = 100K). Typically, we expect
that problems with Normal or Uniform distributions should be easier to learn with a NN (e.g. problems 15 (Rastrigin), 18
(Schaffer F7, cond1000), 23 (ats ras)), while problems with skewed distribution or multimodal distribution are much harder
(e.g. problems 2 (Ellipsoid separable), 10 (Ellipsoid) and 11 (Discus)). However, simply, mapping from a hard distribution
into a Normal distribution is not necessarily a good choice since we lose the mapping linearity s.t. the scaled mean-gradient
may not correspond to the true mean-gradient. Thus, the output-mapping must balance between linearity and normalization.
In future work, we would like to find better, more robust output-mappings that overcome this problem. Understanding the
way that the values are distributed at run-time could also help us define a better mechanism for deciding on ε and the RB
size L. If the function outputs are close to each other, large RB could be beneficial, but if the values have high variance,
large RB could add unnecessary noise.

Table 1. The COCO experiment Hyperparameters

Parameter Value Description

n [2,3,5,10,20,40,784] coco space dimension
m 64 Exploration points
mwarmup factor 5 m×mwarmup factor to adjust the network parameters

around the TR initial point
batch 1024 Minibatch of EGL/IGL training
L 32 Number of exploration steps that constitute the replay buffer for EGL/IGL

The replay memory size is: RB = L×m
C 15× 104 Budget
α 10−2 Optimization steps’ size
g lr 10−3 gθ learning rate
γα 0.9 Trust region squeezing factor
γε 0.97 ε squeezing factor
ε 0.1×

√
n Initial exploration size

nmax 10 The number of times in a row that
f(h−1j (x̃k+1)) > f(h−1j (x̃k))

nmin 40 Minimum gradient descent iterations
p 0 Perturbation radius
gθ Spline Network architecture (SPLINE/FC)
OM log Output Mapping
OM lr 0.1 Moving average learning rate for the Output Mapping
N minibatches 60 # of mini-batches for the mean-gradient learning in each k step
Vε(x) ball-explore Vε(x) = x+ ε× U [−1, 1] (see Sec. H for details)

2 16

2 13

2 10

2 7

2 4

2 1

1: Sphere
SLSQP
Nelder Mead
COBYLA
POWELL
CG
BFGS
CMA-ES
IGL
EGL

4 2 0 2 4

4

2

0

2

4

80
90
100
110
120
130
140

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 32

2 27

2 22

2 17

2 12

2 7

2 2

2: Ellipsoid separable

4 2 0 2 4

4

2

0

2

4

1e
7

0.5
1.0
1.5
2.0
2.5

4 2 0 2 4

10 9

10 7

10 5

10 3

10 1

lo
g

vi
ew

0.0

0.2

0.4

0.6

0.8

1.0

f 1
D

2 20

2 17

2 14

2 11

2 8

2 5

2 2

3: Rastrigin separable

4 2 0 2 4

4

2

0

2

4

400
300
200
100
0

4 2 0 2 4

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 19

2 16

2 13

2 10

2 7

2 4

2 1
4: Skew Rastrigin-Bueche separ

4 2 0 2 4

4

2

0

2

4

400
200
0

200
400
600

4 2 0 2 4

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

Figure 4. Visualization problems type 1-4 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 20

2 17

2 14

2 11

2 8

2 5

2 2

5: Linear slope

4 2 0 2 4

4

2

0

2

4

0
20
40
60
80
100

4 2 0 2 4
10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 20

2 17

2 14

2 11

2 8

2 5

2 2

6: Attractive sector

4 2 0 2 4

4

2

0

2

4

250000
500000
750000
1000000
1250000
1500000
1750000

4 2 0 2 4

10 8

10 6

10 4

10 2

100

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 18

2 15

2 12

2 9

2 6

2 3

7: Step-ellipsoid

4 2 0 2 4

4

2

0

2

4

500
1000
1500
2000

4 2 0 2 4

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 15

2 13

2 11

2 9

2 7

2 5

2 3

2 1

8: Rosenbrock original

4 2 0 2 4

4

2

0

2

4

25000
50000
75000
100000
125000
150000

4 2 0 2 4

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

Figure 5. Visualization problems type 5-8 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 17

2 14

2 11

2 8

2 5

2 2

9: Rosenbrock rotated

4 2 0 2 4

4

2

0

2

4

50000
100000
150000
200000
250000
300000

4 2 0 2 4

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 25

2 21

2 17

2 13

2 9

2 5

2 1
10: Ellipsoid

4 2 0 2 4

4

2

0

2

4

1e
7

0
1
2
3
4
5
6

4 2 0 2 4

10 9

10 7

10 5

10 3

10 1

lo
g

vi
ew

0.0

0.2

0.4

0.6

0.8

1.0

f 1
D

2 33

2 28

2 23

2 18

2 13

2 8

2 3

11: Discus

4 2 0 2 4

4

2

0

2

4

1e
7

1
2
3
4
5
6
7

4 2 0 2 4

10 9

10 7

10 5

10 3

10 1

lo
g

vi
ew

0.0

0.2

0.4

0.6

0.8

1.0

f 1
D

2 32

2 27

2 22

2 17

2 12

2 7

2 2

12: Bent cigar

4 2 0 2 4

4

2

0

2

4

1e
10

0
1
2
3
4
5

4 2 0 2 4

10 12

10 10

10 8

10 6

10 4

10 2

100

lo
g

vi
ew

0.0

0.2

0.4

0.6

0.8

1.0

f 1
D

Figure 6. Visualization problems type 9-12 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 22

2 19

2 16

2 13

2 10

2 7

2 4

2 1
13: Sharp ridge

4 2 0 2 4

4

2

0

2

4

500
1000
1500
2000

4 2 0 2 4
10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 15

2 13

2 11

2 9

2 7

2 5

2 3

2 1

14: Sum of different powers

4 2 0 2 4

4

2

0

2

4

50
0
50
100
150
200
250
300

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 20

2 17

2 14

2 11

2 8

2 5

2 2

15: Rastrigin

4 2 0 2 4

4

2

0

2

4

2000
3000
4000
5000
6000
7000

4 2 0 2 4

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 20

2 17

2 14

2 11

2 8

2 5

2 2

16: Weierstrass

4 2 0 2 4

4

2

0

2

4

100
200
300
400
500
600

4 2 0 2 4

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

Figure 7. Visualization problems type 13-16 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 19

2 16

2 13

2 10

2 7

2 4

2 1

17: Schaffer F7, condition 10

4 2 0 2 4

4

2

0

2

4

0
500
1000
1500
2000
2500

4 2 0 2 4
10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 18

2 15

2 12

2 9

2 6

2 3

18: Schaffer F7, condition 1000

4 2 0 2 4

4

2

0

2

4

0
5000
10000
15000
20000
25000

4 2 0 2 4
10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 13

2 11

2 9

2 7

2 5

2 3

2 1

19: Griewank-Rosenbrock F8F2

4 2 0 2 4

4

2

0

2

4

100
0

100
200
300
400
500
600

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 13

2 11

2 9

2 7

2 5

2 3

2 1

20: Schwefel x*sin(x)

4 2 0 2 4

4

2

0

2

4

0
50000
100000
150000
200000

4 2 0 2 4

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

Figure 8. Visualization problems type 17-20 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 5

2 4

2 3

2 2

2 1

21: Gallagher 101 peaks

4 2 0 2 4

4

2

0

2

4

50
60
70
80
90
100

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 5

2 4

2 3

2 2

2 1

22: Gallagher 21 peaks

4 2 0 2 4

4

2

0

2

4

980
960
940

920

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 15

2 13

2 11

2 9

2 7

2 5

2 3

2 1

23: ats ras

4 2 0 2 4

4

2

0

2

4

10
20
30
40
50
60
70
80

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

2 6

2 5

2 4

2 3

2 2

2 1

24: Lunacek bi-Rastrigin

4 2 0 2 4

4

2

0

2

4

120
140
160
180
200

4 2 0 2 4

10 4

10 3

10 2

10 1

lo
g

vi
ew

0.2

0.4

0.6

0.8

f 1
D

Figure 9. Visualization problems type 21-24 of 2D problems. First column: The scaled distance ∆y
t

best. Second column: Counter plot.
Third column: 3D plot. Forth column: equivalent 1D problem with log view.

2 20

2 15

2 10

2 5

1: Sphere
SLSQP
Nelder Mead
COBYLA
POWELL
CG
BFGS
CMA-ES
IGL
EGL

2 34

2 27

2 20

2 13

2 6

2: Ellipsoid separable

2 5

2 3

2 1

3: Rastrigin separable

2 22

2 17

2 12

2 7

2 2
4: Skew Rastrigin-Bueche separ

2 22

2 17

2 12

2 7

2 2
5: Linear slope

2 25

2 19

2 13

2 7

2 1
6: Attractive sector

2 23

2 18

2 13

2 8

2 3

7: Step-ellipsoid

2 28

2 22

2 16

2 10

2 4

8: Rosenbrock original

2 20

2 15

2 10

2 5

9: Rosenbrock rotated

2 16

2 12

2 8

2 4

20 10: Ellipsoid

2 32

2 25

2 18

2 11

2 4

11: Discus

2 24

2 19

2 14

2 9

2 4

12: Bent cigar

2 10

2 8

2 6

2 4

2 2

13: Sharp ridge

2 20

2 16

2 12

2 8

2 4

14: Sum of different powers

2 17

2 13

2 9

2 5

2 1
15: Rastrigin

2 15

2 12

2 9

2 6

2 3

16: Weierstrass

2 5

2 3

2 1

17: Schaffer F7, condition 10

2 15

2 12

2 9

2 6

2 3

18: Schaffer F7, condition 1000

2 12

2 9

2 6

2 3

19: Griewank-Rosenbrock F8F2

2 17

2 13

2 9

2 5

2 1
20: Schwefel x*sin(x)

2 12

2 9

2 6

2 3

21: Gallagher 101 peaks

2 10

2 7

2 4

2 1

22: Gallagher 21 peaks

2 10

2 8

2 6

2 4

2 2

23: ats ras

2 10

2 8

2 6

2 4

2 2

24: Lunacek bi-Rastrigin

Figure 10. The scaled distance ∆y
t

best per problem type on 40D

210 212 214 216

(a)

2 13

2 11

2 9

2 7

2 5

2 3

2 1

yt be
st

19: Griewank-Rosenbrock
SLSQP
Nelder Mead
COBYLA
POWELL
CG
BFGS
CMA-ES
IGL
EGL

210 212 214 216

(b)

2 20

2 17

2 14

2 11

2 8

2 5

2 2

21: Gallagher 101P

210 212 214 216

(c)

2 4

2 3

2 2

2 1

22: Gallagher 21P

Figure 11. The scaled distance ∆y
t

best with different ε on 40D. (a) problem type 19, (b) problem type 21, (c) problem type 22

120 140

(a1)

1:
 S

ph
er

e

1K cost values

3.2 3 2.8 2.6

(a2)

1K scaled values

80 82 84 86

(a3)

10K cost values

2 1 0 1 2

(a4)

10K scaled values

79.48 79.482 79.484 79.486

(a5)

100K cost values

2 0 2 4

(a6)

100K scaled values

1 M 2 M 3 M

(b1)

2:
 E

llip
so

id
 se

pa
ra

bl
e

2 1 0 1

(b2)
0 200 k 400 k 600 k 800 k

(b3)
2 0 2

(b4)
5 k 10 k 15 k

(b5)
5 0 5

(b6)

200 400 600

(c1)

3:
 R

as
tri

gi
n

se
pa

ra
bl

e

2 1 0

(c2)
200 0 200

(c3)
2 0 2

(c4)
340 338 336 334

(c5)
2 0 2 4

(c6)

200 400 600

(d1)4:
 S

ke
w

Ra
st

rig
in

-B
ue

ch
e

se
pa

r

3 2 1 0 1

(d2)
0 200

(d3)
1 0 1 2

(d4)
335 330

(d5)
2 0 2 4

(d6)

Figure 12. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 1-4

500 550 600

(a1)

5:
 L

in
ea

r s
lo

pe

1K cost values

3.8 3.6 3.4

(a2)

1K scaled values

8.3 8.2 8.1 8

(a3)

10K cost values

3.6 3.5 3.4 3.3 3.2

(a4)

10K scaled values

9.20974 9.20972 9.2097 9.20968

(a5)

100K cost values

3.8 3.7 3.6 3.5 3.4

(a6)

100K scaled values

50 k 100 k 150 k 200 k

(b1)

6:
 A

ttr
ac

tiv
e

se
ct

or

3 2.8 2.6 2.4

(b2)
0 5 k 10 k

(b3)
0 2

(b4)
25 50 75 100 125

(b5)
5 0 5 10

(b6)

400 600

(c1)

7:
 S

te
p-

el
lip

so
id

2.5 2

(c2)
100 150 200

(c3)
2 0 2

(c4)
96.75 97 97.25 97.5

(c5)
500 m 250 m 0 250 m 500 m

(c6)

10 k 20 k 30 k 40 k

(d1)

8:
 R

os
en

br
oc

k
or

ig
in

al

2.5 2 1.5

(d2)
250 500 750 1 k

(d3)
2 0 2

(d4)
183.5 184 184.5 185 185.5

(d5)
2.5 0 2.5 5

(d6)

Figure 13. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 5-8

0 1 k 2 k 3 k

(a1)

9:
 R

os
en

br
oc

k
ro

ta
te

d

1K cost values

2 0 2

(a2)

1K scaled values

0 500 1 k

(a3)

10K cost values

2 0 2

(a4)

10K scaled values

157.4 157.6 157.8 158

(a5)

100K cost values

2 0 2

(a6)

100K scaled values

1 M 2 M

(b1)

10
: E

llip
so

id

2.8 2.6 2.4

(b2)
0 500 k 1 M

(b3)
2 0 2

(b4)
8 k 10 k

(b5)
5 2.5 0 2.5 5

(b6)

0 500 k 1 M 1.5 M

(c1)

11
: D

isc
us

2 0 2

(c2)
0 500 k 1 M 1.5 M

(c3)
2 0 2 4

(c4)
0 5 k 10 k

(c5)
2.5 0 2.5 5 7.5

(c6)

60 M 80 M 100 M 120 M

(d1)

12
: B

en
t c

ig
ar

2.5 2 1.5

(d2)
0 2.5 M 5 M 7.5 M

(d3)
2 0 2

(d4)
0 1 k 2 k 3 k 4 k

(d5)
2 0 2

(d6)

Figure 14. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 9-12

1.4 k 1.6 k 1.8 k 2 k

(a1)

13
: S

ha
rp

 ri
dg

e

1K cost values

3.4 3.2 3 2.8

(a2)

1K scaled values

200 400 600

(a3)

10K cost values

2 1 0 1 2

(a4)

10K scaled values

42.5 45 47.5 50

(a5)

100K cost values

2 0 2

(a6)

100K scaled values

40 35 30 25

(b1)

14
: S

um
 o

f d
iff

er
en

t p
ow

er
s

2.75 2.5 2.25 2

(b2)
52 51 50

(b3)
2 0 2

(b4)
52.34 52.33 52.32

(b5)
2 0 2

(b6)

2 k 2.2 k 2.4 k

(c1)

15
: R

as
tri

gi
n

3 2 1

(c2)
1.3 k 1.4 k 1.5 k 1.6 k 1.7 k

(c3)
2 0 2

(c4)
1.114 k 1.116 k 1.118 k

(c5)
0 2 4

(c6)

100 125 150 175

(d1)

16
: W

ei
er

st
ra

ss

2 0 2

(d2)
80 100 120

(d3)
2 0 2

(d4)
71.6 71.7 71.8

(d5)
2 0 2

(d6)

Figure 15. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 13-16

10 8 6 4

(a1)

17
: S

ch
af

fe
r F

7,
 c

on
d1

0

1K cost values

2 1 0 1

(a2)

1K scaled values

14 12 10 8

(a3)

10K cost values

2 0 2

(a4)

10K scaled values

15.8 15.7 15.6

(a5)

100K cost values

2 0 2

(a6)

100K scaled values

10 20 30

(b1)

18
: S

ch
af

fe
r F

7,
 c

on
d1

00
0

2 1 0

(b2)
10 5

(b3)
2 1 0 1 2

(b4)
16.2 16 15.8

(b5)
2 1 0 1 2

(b6)

96 94 92 90 88

(c1)

19
: G

rie
wa

nk
-R

os
en

br
oc

k

2 0 2

(c2)
96 94 92 90 88

(c3)
2 1 0 1 2

(c4)
101 100.5 100 99.5

(c5)
2 0 2

(c6)

0 1 k 2 k

(d1)

20
: S

ch
we

fe
l x

*s
in

(x
)

2 1.5 1 500 m

(d2)
500 400 300 200 100

(d3)
0 2 4 6

(d4)
544.23 544.22 544.21

(d5)
2 0 2

(d6)

Figure 16. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 17-20

60 70 80 90 100

(a1)

21
: G

al
la

gh
er

 1
01

P

1K cost values

4 3.5

(a2)

1K scaled values

41 42 43

(a3)

10K cost values

2 0 2 4

(a4)

10K scaled values

40.25 40.5 40.75 41 41.25

(a5)

100K cost values

3 3.25 3.5 3.75

(a6)

100K scaled values

940 935 930

(b1)

22
: G

al
la

gh
er

 2
1P

4.25 4 3.75 3.5 3.25

(b2)
982 980 978

(b3)
2 1 0 1 2

(b4)
981.711981.71981.709981.708981.707

(b5)
2 0 2

(b6)

10 20 30

(c1)

23
: a

ts
 ra

s

2 0 2

(c2)
10 20 30

(c3)
2 0 2

(c4)
10 12.5 15 17.5 20

(c5)
0 1 2 3

(c6)

600 700 800 900

(d1)

24
: L

un
ac

ek
 b

i-R
as

tri
gi

n

2 0 2

(d2)
500 600 700 800

(d3)
2 1 0 1 2

(d4)
240 260 280

(d5)
2 0 2

(d6)

Figure 17. Histogram plot of a snapshot of 200 samples from the RB around different times (t = 1K, t = 10K, t = 100K) with and
without OM for problems 21-24

G. Supplementary details: latent space search

Figure 18. The image-generative BBO task

In this experiment, the task is to utilize a pre-trained Black-Box face image generator and generate a realistic face image
with target face attributes and face landmark points. Formally, we have 4 Black-Box networks that constitute our BBO
problem:

1. Generator G : z → x, where z ∼ N (0, In) and x is an RGB image with H = 218, W = 178.

2. Discriminator D : x→ R s.t. positive D(x) indicate poor fake images while negative D(x) indicates real or a good
fake image.

3. Attribute Classifier A : x→ R40 where each element in A(x) is the probability of a single attribute (out of 40 different
attributes).

4. Landmark points Estimator L : x→ R68 predicts the location of 68 different landmark points.

In addition, every BBO problem is characterized by two external parameters

1. Target attributes a a vector of 40 Booleans.

2. Target landmark points l ∈ R68 a vector of 68 landmark points locations.

The overall cost function is defined as

fal(z) = λaLa(G(z)) + λlLl(G(z)) + λg tanh(D(G(z)))

Where:

1. La is the Cross-Entropy loss between the generated face attributes as measured by the classifier and the desired set of
attributes a.

2. Ll is the MSE between the generated landmark points and the desired set of landmarks l.

3. D(G(z)) is the discriminator output, positive for low-quality images and negative for high-quality images.

The objective is to find z∗ that minimizes fal. A graphical description of the BBO problem is given in Fig. 18. We used a
constant starting point z0, sampled from N (0, In) for all our runs. To generate different problems, we sampled a target

Table 2. Latent-Space Search Hyperparameters

Parameter Value Description

n 512 Latent space dimension
λa 1 Attributes score weight
λd 2 Discriminator score weight
λl 100 Landmarks score weight
m 32 Exploration points
batch 1024 Minibatch of EGL/IGL training
L 64 Number of exploration steps that constitute the replay buffer for EGL/IGL

The replay memory size is: RB = L×m
C 104 Budget
φ 2

3π Cone exploration angle
α 0.02 Optimization steps’ size
g lr 10−3 gθ learning rate
γα 0.9 Trust region squeezing factor
γε 0.95 ε squeezing factor

image xT from the CelebA dataset. We used its attributes as the target attribute and used its landmark points estimation
l = L(xT) as the target landmarks. Note that the target image xT was never revealed to the EGL optimizer, only its
attributes and landmark points.

We applied the same EGL algorithm as in the COCO experiment with the Spline Embedding network architecture and with
two notable changes: (1) a set of slightly modified hyperparameters (See Table 2); and (2) a modified exploration domain
Vε. The main reason for these adjustments was the high computational cost (comparing to the COCO experiment) of each
different z vector. This led us to squeeze the budget C to only 104 evaluations and the number of exploration points to only
m = 32. For such a low number of exploration points around each candidate (in a n = 512 dimension space), we designed
an exploration domain Vε, termed cone-explore which we found out to be more efficient than the uniform exploration inside
an n-ball with ε radius that was executed in the COCO experiment. A description of the cone-explore method is given in
Sec. H.

Additional results of EGL and IGL are given in Fig. 21 and Fig. 22. We also evaluated two classical algorithms: GC and
CMA-ES, both provided unsatisfying results (see Fig. 20). We observed that CG converged to local minima around the
initial point z0 while CMA-ES converged to points that have close landmark point but poor discrimination score. We did not
investigate into this phenomena but we postulate that it is the result of different landscapes statistics of the two factors in the
cost function, i.e. Ll(G(z)) and tanh(D(G(z))) which fool the CMA-ES algorithm.

0 2000 4000 6000 8000 10000
step

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

co
st

egl
igl

Figure 19. Average cost during training.

Male
Mature

BlackWavy
Sideburns
Chubby
Goatee

Male
Young

BrownWavy
Attractive

Pointy_Nose

Male
Mature

StraightRecedingBlack
Goatee

Double_Chin
High_Cheekbones

Female
Young

WavyBrown
Pointy_Nose

High_Cheekbones
Heavy_Makeup

Female
Young

StraightWavyBlond
Heavy_Makeup
Narrow_Eyes

High_Cheekbones

Female
Young

BrownWavy
Big_Lips

Pale_Skin
Heavy_Makeup

Female
Young

StraightBrown
Pointy_Nose
Narrow_Eyes

Wearing_Lipstick

Male
Young

StraightBrown
Pointy_Nose

High_Cheekbones
Big_Nose

CG
14.46

CMA
1.54

Target

Figure 20. Baselines results: CG and CMA

Female
Young

Straight
Attractive

Bangs
High_Cheekbones

Female
Young

WavyBrown
Attractive

Pointy_Nose

Female
Young

BlondWavy
Attractive

High_Cheekbones
Wearing_Lipstick

Female
Mature

WavyBrown
Wearing_Lipstick
High_Cheekbones

Heavy_Makeup

Male
Mature
Black

Mustache
Big_Lips
Goatee

Female
Young
Blond

Heavy_Makeup
Attractive
Big_Lips

Male
Young

Receding
Goatee

Double_Chin
Big_Lips

Male
Mature
Gray

Mustache
Big_Nose

Male
Young
Black

Bushy_Eyebrows

Female
Young

RecedingStraightBlack
Wearing_Lipstick
Heavy_Makeup

Bushy_Eyebrows

Male
Young

Straight
Pointy_Nose
Attractive

Female
Young

StraightBlond
Attractive

Heavy_Makeup
Wearing_Lipstick

EGL

IGL

Target

Figure 21. Searching latent space of generative models with EGL and IGL

Female
Young
Wavy

Attractive
Wearing_Lipstick
Heavy_Makeup

Female
Young
Blond

Attractive
Narrow_Eyes

Heavy_Makeup

Female
Young

Wearing_Lipstick
Wearing_Hat

Heavy_Makeup

Female
Young

BlondWavy
High_Cheekbones

Pointy_Nose
Wearing_Lipstick

Female
Young

BlondWavyReceding
Heavy_Makeup

Wearing_Lipstick

Male
Mature

High_Cheekbones
Big_Nose
Attractive

Male
Mature

WavyBrown
Goatee
Chubby

Sideburns

Male
Mature
Gray

Mustache
High_Cheekbones

Double_Chin

Male
Young

Mustache
High_Cheekbones
Bushy_Eyebrows

Female
Young
Wavy

Wearing_Lipstick
Heavy_Makeup

Attractive

Female
Young

WavyBlack
Wearing_Lipstick

Attractive
Heavy_Makeup

Female
Young
Wavy

Bushy_Eyebrows
Heavy_Makeup

Attractive

EGL

IGL

Target

Figure 22. Searching latent space of generative models with EGL and IGL

H. Gradient Guided Exploration
In high-dimensional problems and low budgets, sampling n+ 1 exploration points for each new candidate xk may consume
the entire budget too fast without being able to take enough optimization steps. In practice, EGL works even with m� n+1
exploration points, however, we observed that one can improve the efficiency when m� n+ 1 by sampling the exploration
points non uniformly around the candidate xk. Specifically, using the previous estimation of the gradient to determine the
search direction. Hence, we term this approach as gradient guided exploration.

In the COCO experiment (Sec. 5) we sampled the exploration points uniformly around each candidate. In other words, our
Vε domain was an n-ball with ε radius, we term this method as ball-explore. Ball-explore does not make any assumptions
on the gradient direction at xk and does not use any a-priori information. However, for continuous gradients, we do have
a-priori information on the gradient direction as we have our previous estimator gθk−1

. Since xk is relatively close to xk−1,
the learned model gθk−1

can be used as a first-order approximation for the gradient in xk, i.e. gθk−1
(xk).

If gθk−1
(xk) is a good approximation for gε(xk), then sampling points in a perpendicular direction to the mean-gradient, i.e. x

s.t. (x−xk)·gθk−1
(xk) = 0, adds little information since f(x)−f(xk) ≈ 0 so the loss |(x−xk)·gθk−1

(xk)−f(x)+f(xk)|2
is very small. Therefore, we experimented with sampling points inside the intersection of a n-ball Bε(xk) and a cone with
apex at xk, direction −gθk−1

(xk) and some hyperparameter cone-angle of φ. The distance vector x− xk of a point inside
such a cone has high cosine similarity with the mean-gradient and we postulate that this should improve the efficiency
of the learning process. We term this alternative exploration method as cone-explore and denote the cone domain as
Cφε (x, gθk−1

(xk)).

For high dimensions, cone-explore significantly reduces the exploration volume. A simple upper bound for the cone-to-ball
volume ratio show that it decays exponentially in n

|Cφε |
|Bε|

≤
√
πΓ(n+1

2)

nΓ(n2 + 1)
(sinφ)

n−1 (57)

Unfortunately, cone-explore is not suitable for non-continuous gradients or too large optimization steps. To take into account
gradient discontinuities, we suggest to sample half of the points inside the cone and half inside an n-ball.

In Fig. 23 we present an ablation test in the 784D COCO problem set of cone-explore and 1
2 -cone- 12 -ball explore with

respect to the standard ball-explore. In this experiment, we used only m = 32 exploration points around each candidate.
The results show that sampling half of the exploration points inside a cone improved the results by 18%. We found out that
the strategy also improves the results in the latent space search experiment, yet we did not conduct a full ablation test.

On the downside, we found out that if m ≈ n then cone-explore hurts the performance. We hypothesize that near local
minima, where the exact direction of the gradient is important, the mean-gradient learned with cone-explore has lower
accuracy and therefore, ball-explore with sufficient sampling points converges to better solutions.

50K 100K 150K
t

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

BALL_CONE
BALL
CONE

Figure 23. Ablation test on the 784D COCO problem set: Cone-explore vs Ball-explore

References
Audet, C. and Hare, W. Derivative-free and blackbox optimization. Springer, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

Howard, J. and Gugger, S. fastai: A layered api for deep learning. arXiv preprint arXiv:2002.04688, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Loomis, L. H. and Sternberg, S. Advanced calculus. World Scientific, 1968.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv
preprint arXiv:1802.05957, 2018.

Reinsch, C. H. Smoothing by spline functions. Numerische mathematik, 10(3):177–183, 1967.

Wang, X., Girshick, R., Gupta, A., and He, K. Non-local neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7794–7803, 2018.

Zhang, W., Du, T., and Wang, J. Deep learning over multi-field categorical data. In European conference on information
retrieval, pp. 45–57. Springer, 2016.

