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Layerwise Deviation ( ) is the sum total deviation

of the entries in all gram matrices  from their

corresponding minimum and maximum values extracted

from training data points classified as . In other words,

for all channel-pairs, if any of the computed correlation

values are greater (or lesser) than corresponding the

maximum (or minimum) value extracted for training data

points classified as ,the extent of deviation is noted. 

Pairwise Correlations between the feature-maps of

every layer are computed using Gram matrices of various

orders. In the preprocessing stage, the class-specific

element-wise minimum and maximum values are noted

for each of the gram-matrices.

Total deviation ( ) is computed by summing across the

deviations of all the layers. However, since the scale of

deviations of each layer are different, we normalize by

dividing it with , the expected deviation at layer ,

computed using the Validation Data.

Figure 1: The Schematic Diagram demonstrating the proposed algorithm

B. Description of OOD Datasets
The following includes the description of the out-of-distribution datasets:

1. TinyImagenet, a subset of ImageNet (Russakovsky et al., 2015) images, contains 10,000 test images from 200 different
classes. Each image is downsampled to size 32 x 32 and all 10,000 images are used, as given in the opensourced
version by (Liang et al., 2018).

2. LSUN, the Large-scale Scene UNderstanding dataset (Yu et al., 2015) has 10,000 test images from 10 different scenes.
Each image is downsampled to size 32 x 32 and all 10,000 images are used, as given in the opensourced version by
(Liang et al., 2018).

3. iSUN, a subset of SUN images (Xiao et al., 2010), consists of 8925 images. Each image is downsampled to size 32 x
32 and is used; the downsampled version of the dataset has been opensourced by (Liang et al., 2018).
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4. SVHN, the Street View House Numbers dataset (Netzer et al., 2011), involves recognizing digits 0-9 in natural scene
images. The test partition consisting of 26,032 images is used.

C. Detailed Ablation Results
The results in the main paper correspond to the performance obtained when considering:

1. Feature Set: all gram matrix entries

2. Metric: layerwise deviations computed with respect to the mins and maxs.

3. Aggregation Scheme: the total deviation is then computed using Eq 5.

In this section, detailed ablation results are reported by considering other options. Specifically:

1. Alternate Feature Set: In addition to considering all gram matrix entries, we consider a proper partition of the gram
matrix: strictly diagonal elements, and strictly off-diagonal elements. The diagonal elements correspond to the unary
features, while the off-diagonal elements correspond to pairwise features. This can be done by appropriately changing
the definition of variable stat in Line 7 of Algorithm 1. In these experiments, we consider row-wise sums wherever the
size of stat is O(n2); in other words, we consider row-wise sums when considering off-diagonal elements and all gram
matrix entries.

2. Alternate Metric: An alternative formulation for computing feature-wise deviations can be to compute the deviation
from the means using the one-dimensional Mahalanobis distance. In the preprocessing stage, this would be done by
storing the Means and Variances of stat (feature-wise) instead of their Mins and Maxs. Under this new alternative, the
function δ defined in Eq 3 would be redefined as:

δ(mean,variance,value) =
(value−mean)2

variance
(C.1)

Accordingly, the layerwise deviation δl can be defined as:

δl(D) =

P∑
p=1

|Gp
l (D)|∑
i=1

δ
(

Means[Dc][l][p][i],Variances[Dc][l][p][i], G
p
l (D)[i]

)
(C.2)

where Gp
l (D) would correspond to the statistic chosen in the previous step: diagonal entries only, row-wise sums of

off-diagonal entries only or row-wise sums of complete gram matrix.

We thus consider 2 options for computing the deviations: the Min/Max method presented in the main paper and the
Mean/Variance method (Gaussian) described above. While the Mean/Var assumes each entry of the gram matrix to be
normally distributed, the Min/Max assumes that each entry is uniformly distributed between the corresponding extrema
and has exponentially decreasing density beyond the extrema:

p(value|min,max) =


k if min ≤ value ≤ max

k exp
(

value−min
|min|

)
if value < min

k exp
(

max−value
|max|

)
if value > max

(C.3)

where, k = 1
max−min+ 1

|min|+
1

|max|
makes the above a valid probability density function. Note that both of the proposed

density models assume that the entries of the gram matrix are independent of each other. The corresponding δl can be
obtained as the sum of the log probability density estimates.

3. Alternate Aggregation Scheme: In order to compute the total deviation ∆ from the layerwise deviations δl, we can
compute it by following Eq 5 or taking a simple sum as shown:

∆(D) =

L∑
l=1

δl (C.4)

We refer to Eq 5 as the normalized estimate and Eq C.4 as the unnormalized estimate.
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In all, the Table 1 reports detection rates in 12 settings: 3 choices for stat (only the diagonal entries of gram matrix G, only
the off-diagonal entries of G, or all of G) × 2 metrics for computing deviation (Min/Max or Mean/Variance) × 2 choices for
computing total deviation (Normalized sum or Unnormalized sum). All layers and all orders of gram matrix are considered
in Table 4.
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(Row-wise Sums) Diagonal Elements
Off Diagonal Elements
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CIFAR-10
(ResNet)

iSUN 99.1 96.3 95.7 73.8 99.3 97.1 97.0 90.2 99.3 97.1 97.1 89.3 99.7 99.2 98.7 96.2 99.7 99.4 99.0 98.1 99.8 99.4 99.0 98.0 97.9 95.7 95.5 92.1 98.0 96.2 96.0 93.5 98.1 96.2 96.0 93.4
LSUN 99.5 98.3 97.0 77.7 99.6 98.8 98.1 93.6 99.6 98.8 98.0 94.1 99.8 99.5 98.7 96.7 99.8 99.7 99.1 98.5 99.9 99.7 99.1 98.4 98.5 97.0 96.0 93.0 98.6 97.6 96.6 94.6 98.6 97.6 96.6 94.5
TinyImgNet 98.6 93.8 96.2 68.2 98.8 97.2 95.7 88.5 98.7 97.2 95.7 87.5 99.6 99.1 98.3 95.6 99.6 99.4 98.8 97.8 99.7 99.4 98.8 97.7 97.5 95.6 94.7 91.2 97.7 96.3 95.3 93.1 97.8 96.4 95.4 92.9
SVHN 97.8 70.7 94.8 19.9 97.6 81.1 94.8 40.7 97.6 80.2 94.9 38.2 99.5 95.2 98.9 88.4 99.4 96.2 98.8 92.0 99.5 96.2 98.9 91.8 97.0 90.1 95.0 84.7 96.6 90.9 94.9 87.0 96.7 90.8 95.1 86.7
CIFAR-100 33.3 29.4 42.5 32.9 32.9 27.2 41.8 29.3 32.9 27.4 42.2 29.2 79.7 78.4 84.9 83.3 78.8 75.8 84.1 79.0 79.0 76.1 84.2 79.2 72.4 71.7 78.2 76.8 71.5 69.1 77.4 72.1 71.7 69.4 77.4 72.2

CIFAR-100
(ResNet)

iSUN 93.8 71.8 50.0 33.8 95.4 85.9 67.2 55.0 94.8 85.3 65.4 52.8 98.7 95.5 92.1 87.8 98.9 97.4 94.5 92.7 98.8 97.3 94.2 92.3 94.5 89.3 85.4 81.1 95.3 92.2 87.9 86.1 95.6 92.0 87.6 85.6
LSUN 95.6 70.8 45.6 32.9 97.2 87.5 64.2 52.0 96.6 86.8 62.4 49.7 99.1 95.9 91.8 87.8 99.3 97.8 94.6 92.9 99.2 97.7 94.3 92.4 95.4 90.1 85.7 81.4 96.3 93.1 88.4 86.6 96.7 93.0 88.1 86.1
TinyImgNet 94.1 68.0 51.4 34.6 95.3 84.2 68.1 52.8 94.8 83.5 66.6 50.8 98.8 95.1 92.5 87.1 99.0 97.2 94.8 92.5 98.9 97.1 94.6 92.1 94.6 88.5 85.9 80.1 95.2 91.8 88.4 85.9 95.0 91.6 88.2 85.4
SVHN 83.1 29.8 53.2 26.0 79.1 34.4 51.8 29.6 80.8 33.9 55.6 29.2 96.5 84.7 92.3 80.8 95.7 86.8 91.6 83.5 96.0 86.7 92.2 83.1 90.2 77.5 85.1 73.6 89.2 80.3 84.3 75.3 89.6 80.3 84.8 74.9
CIFAR-10 12.9 18.1 19.2 18.2 11.4 17.5 17.5 17.9 12.2 17.6 18.1 18.0 69.3 71.2 76.6 74.6 67.3 70.0 75.3 71.9 67.9 70.1 75.5 72.0 64.6 66.0 71.1 69.1 63.0 64.8 69.8 66.5 63.4 65.0 70.1 66.6

CIFAR-10
(DenseNet)

iSUN 98.9 97.1 98.8 96.3 99.1 97.8 99.1 97.5 99.0 97.8 99.0 97.5 99.8 99.5 99.8 99.3 99.8 99.6 99.8 99.6 99.8 99.6 99.8 99.5 97.8 96.5 97.8 95.9 97.9 96.9 97.8 96.8 97.9 96.8 97.8 96.7
LSUN 99.4 98.8 99.4 98.4 99.5 99.2 99.5 99.0 99.5 99.1 99.4 98.9 99.9 99.8 99.9 99.7 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 98.7 98.0 98.6 97.4 98.6 98.2 98.5 98.1 98.6 98.1 98.5 98.1
TinyImgNet 98.7 97.5 98.6 97.0 98.8 98.0 98.8 97.7 98.8 97.9 98.7 97.7 99.7 99.5 99.7 99.3 99.7 99.6 99.7 99.5 99.7 99.6 99.7 99.5 97.9 96.8 97.8 96.3 97.8 97.1 97.7 97.0 97.9 97.0 97.7 97.0
SVHN 96.6 87.8 96.9 88.2 95.9 84.7 96.4 86.9 96.1 84.0 96.5 87.1 99.2 97.6 99.3 97.6 99.1 96.9 99.2 97.4 99.1 96.8 99.2 97.4 96.3 92.3 96.5 92.3 95.8 91.1 96.0 92.0 95.9 90.9 96.1 92.0
CIFAR-100 26.4 28.9 29.0 28.2 27.0 25.2 30.1 24.8 26.7 25.5 30.1 25.1 68.5 75.1 68.9 74.1 72.1 72.7 73.3 72.4 72.0 72.9 73.4 72.5 66.5 68.8 66.6 67.8 67.6 67.2 68.9 66.6 67.3 67.3 68.6 66.6

CIFAR-100
(DenseNet)

iSUN 96.0 84.2 95.5 91.9 96.1 88.8 95.5 95.7 95.9 88.5 95.3 95.8 99.1 97.2 98.9 98.2 99.0 97.9 98.9 99.0 99.0 97.8 98.9 99.0 95.7 91.4 95.4 93.6 95.7 92.6 95.3 95.5 95.6 92.6 95.3 95.5
LSUN 97.4 87.5 96.9 95.5 97.5 91.4 97.0 97.8 97.2 91.2 96.8 97.8 99.4 97.8 99.3 99.0 99.4 98.3 99.3 99.4 99.3 98.3 99.3 99.4 96.4 92.7 96.1 95.3 96.5 93.7 96.2 96.7 96.4 93.7 96.2 96.7
TinyImgNet 95.8 81.4 95.4 90.2 95.9 86.9 95.3 94.2 95.7 86.4 95.2 94.3 99.0 96.6 98.9 97.8 99.0 97.5 98.9 98.7 99.0 97.4 98.9 98.7 95.5 90.4 95.2 92.9 95.5 91.8 95.2 94.7 95.5 91.7 95.2 94.7
SVHN 89.4 59.7 88.8 64.5 87.3 63.2 86.4 67.4 89.3 62.9 87.9 67.3 97.4 92.5 97.3 92.6 97.0 92.7 96.9 93.4 97.3 92.7 97.1 93.4 92.4 85.7 92.0 86.0 91.7 86.0 91.4 87.1 92.4 86.2 91.9 87.1
CIFAR-10 10.5 16.4 11.1 13.7 10.6 15.6 10.2 13.9 10.6 15.6 10.2 13.8 64.4 70.1 65.0 66.7 63.7 68.3 64.2 66.2 64.2 68.7 64.6 66.2 60.6 64.9 61.3 62.2 59.7 63.4 60.5 61.6 60.4 63.8 61.0 61.5

SVHN
(ResNet)

iSUN 99.3 99.8 98.1 96.9 99.5 99.9 97.8 98.5 99.4 99.9 97.9 98.6 99.8 99.9 98.8 98.3 99.8 99.9 99.0 99.0 99.8 99.9 99.0 99.0 98.0 98.4 96.6 96.3 98.1 98.5 96.4 96.8 98.1 98.5 96.5 96.8
LSUN 99.6 99.9 98.5 97.4 99.6 99.9 98.3 99.0 99.6 99.9 98.4 99.0 99.9 99.9 98.9 98.4 99.8 99.9 99.1 99.1 99.8 99.9 99.1 99.1 98.5 98.9 96.8 96.5 98.5 98.9 96.7 97.0 98.5 98.9 96.7 97.0
TinyImgNet 99.0 99.6 97.8 96.5 99.3 99.6 97.8 98.1 99.3 99.6 98.4 99.0 99.7 99.8 98.8 98.3 99.7 99.8 99.0 99.0 99.7 99.8 99.0 99.0 97.6 98.1 96.4 96.2 97.9 98.2 96.4 96.6 97.9 98.2 96.5 96.6
CIFAR-10 82.6 93.7 86.1 86.8 85.9 94.9 86.5 90.5 85.8 94.9 86.6 90.5 96.8 98.6 97.1 97.3 97.3 98.8 97.3 97.8 97.3 98.8 97.3 97.8 91.1 94.9 92.5 94.0 92.0 95.2 92.8 94.3 92.0 95.2 92.8 94.2

SVHN
(DenseNet)

iSUN 99.3 99.6 99.4 99.1 99.3 99.4 99.4 97.9 99.4 99.4 99.4 98.0 99.8 99.9 99.9 99.8 99.8 99.9 99.8 99.5 99.8 99.9 99.8 99.5 98.3 98.8 98.4 98.3 98.4 98.5 98.4 97.3 98.3 98.6 98.4 97.3
LSUN 99.5 99.7 99.7 99.4 99.5 99.4 99.6 98.2 99.5 99.4 99.6 98.3 99.9 99.9 99.9 99.9 99.8 99.9 99.9 99.6 99.8 99.9 99.9 99.6 98.6 98.9 98.7 98.5 98.6 98.6 98.7 97.6 98.6 98.7 98.7 97.7
TinyImgNet 99.2 99.5 99.3 99.2 99.1 99.2 99.2 98.0 99.1 99.2 99.2 98.1 99.7 99.9 99.8 99.8 99.7 99.8 99.8 99.6 99.7 99.8 99.8 99.6 97.9 98.5 98.1 98.2 98.0 98.3 98.1 97.3 97.9 98.3 98.1 97.3
CIFAR-10 76.6 93.5 76.9 91.8 81.2 94.3 85.6 90.1 80.4 94.2 84.7 90.1 94.5 98.5 94.9 98.1 95.6 98.6 96.5 97.6 95.5 98.6 96.4 97.7 88.1 94.3 88.6 93.5 89.2 94.7 90.7 92.6 89.1 94.7 90.6 92.6

Summary MEAN 95.4 86.6 87.9 77.3 95.6 90.1 90.4 83.7 95.7 89.9 90.4 83.3 99.0 97.5 97.7 95.6 99.0 98.0 98.1 96.9 99.0 98.0 98.1 96.8 96.0 93.7 94.1 91.6 96.1 94.4 94.5 92.9 96.2 94.4 94.5 92.8
STD-DEV 6.2 17.2 18.1 27.0 6.0 14.7 13.5 21.3 5.7 14.9 13.5 22.0 1.3 3.4 2.7 5.2 1.3 2.9 2.2 3.9 1.2 2.9 2.2 4.0 2.9 5.2 4.5 6.8 2.8 4.5 3.9 5.6 2.8 4.5 3.9 5.7

Table 1: Detailed Ablation Results demonstrating the detection rates under 12 different settings. The MEAN and STD-DEV are computed
by using all elements in the table excepting the CIFAR-10 vs CIFAR-100 and CIFAR-100 vs CIFAR-10 entries.

By analysing the ablation results, we attempt to answer the following questions:

1. Are pairwise features more useful than unary features? We observe that the Min/Max metric can work
equally well with both unary and pairwise features; in some cases, the unary features are marginally better (Ex:
ResNet/CIFAR-10 vs SVHN) and in some cases, the pairwise features are marginally better (Ex: ResNet/CIFAR-100
vs iSUN/LSUN/TinyImgNet). Interestingly, the behavior of the Mean/Var metric is different: the performance with
pairwise features are significantly higher than with unary features in 19 out of 28 tested cases. For example, the TNR at
TPR95 for ResNet/CIFAR-100 vs TinyImgNet is 68.0 with unary features and 84.2 with pairwise features.

We notice that using the unary features (diagonal entries) sometimes did well when pairwise features (off-diagonal
entries) did not do well, and vice versa, so using both gives the kind of effect that we want in an ensemble: models that
cover and work well over different parts of the space. Therefore, an overall message of our experiments is that it is
worthwhile to consider all elements of the gram matrix.

2. Is it neccessary to use Min/Max metric? Except in 6 cases (ResNet: CIFAR-10 vs CIFAR-100, ResNet: CIFAR-100
vs CIFAR-10, DenseNet: CIFAR-10 vs CIFAR-100, DenseNet: CIFAR-100 vs CIFAR-10, ResNet: SVHN vs CIFAR-
10 and DenseNet: SVHN vs CIFAR-10), the min/max metric consistently performs better than the mean/var metric.
Additionally, it is not clear if the Mean/Var estimate performs better with normalized sums or unnormalized sums: for
example, observe that Mean/Var estimate performs very poorly with the unnormalized estimate for ResNet/CIFAR-100,
while the performance of Mean/Var for DenseNet/CIFAR-100 is competitive with the performance of Min/Max only
when an unnormalized estimate is computed.

One can observe that computing the one-dimensional Mahalanobis distance for each component of the statistic derived
from the Gram Matrix and later computing the total sum is equivalent to representing each input image by a big vector
(say, Z) derived from the Gram Matrices computed across various layers, constructing class-conditional distributions
of Z (assuming that each component of Z is normally distributed and independent of the other components) and
subsequently computing the probability of an unseen Z. In early research, we noticed the following problems with the
Mean/Var estimate:

(a) The individual components of gram matrices do not follow normal distribution strictly and Mean/Var assigns
lower probabilities to the in-distribution images as well.

(b) The total deviation ∆ – computed by simply summing across the layerwise deviations, δl – was not able to
accurately summarize the information contained in the different δls. Specifically, information about the layer
where the input example had a higher deviation was lost when a simple sum was taken.
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The proposed Min/Max idea solves problem (a) by employing a weaker metric: deviation from extrema instead of
the mean. It can also be said that the Min/Max metric considers a uniform probability density between the extrema.
Problem (b), which exists even for this newer metric, is solved by the normalization scheme described in the main
paper for computing the sum total deviation.

Higher Order Gram Matrices The Min/Max metric is a weak approximation to the true probability density. On
conducting a thorough analysis of how the OOD examples were able to fool the metric, it appeared that the intermediate
features had several tiny activations that could yield innocuous gram matrix entries. For example, observe in Fig. 2 of
the main paper that the Min/Max metric already gets a detection rate close to that of Mahalanobis by using just Order-1
Gram Matrices. Higher-order gram matrices as described in the main paper provide a natural way to mitigate these effects.
More importantly, they help in obtaining descriptive summaries of the high-dimensional feature representations through the
higher-order non-central moments – of channels and inter-channel hadamard products – contained in them

Notable observations from Figures 2 through 7 (all layers are considered but only one order of gram matrix is considered at
a time):

• Ensemble effect: In 24/28 cases, higher order gram matrices improve detection rates. Higher order gram matrices help
both the Min/Max and the Mean/Var metrics. In most cases, the even powers are more helpful than the odd powers; in
some cases, the odd powers are more helpful (Ex: DenseNet/CIFAR-100 vs CIFAR-10). Despite these variations, it is
possible to get an ensemble effect by considering all possible powers as demonstrated in the main paper.

• In ResNet:CIFAR-10 vs CIFAR-100 and DenseNet:CIFAR-10 vs CIFAR-100, the higher order gram matrices yield
lower detection rates. We find these exceptions interesting, and would like to understand them better in future.

Summary The unambiguous message from this ablation study is that the Gram matrix contains useful information which
can be used for detecting OOD examples. While the standard Mean/Variance metric does not always work well, the
proposed Min/Max metric yields consistent performance competitive with state-of-the-art methods. The use of higher-order
Gram matrices further boosts the overall performance. Although the Min/Max method can work very well for "far-from-
distribution" examples, it does not work well when a fine grained estimate is needed (for example, CIFAR-10 vs CIFAR-100).
We hope the strong empirical proof that Gram matrices contain useful information can motivate the development of OOD
detectors with powerful density estimators.

C.1. Importance of higher-order Gram Matrices
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Figure 2: ResNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 3: ResNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 4: ResNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 5: DenseNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 6: DenseNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 7: DenseNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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C.2. Significance of Depth
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Figure 8: DenseNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 9: DenseNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 10: ResNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 11: ResNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 12: DenseNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 13: DenseNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.

D. Combining OE + Ours

In-dist
(WRN 40-2) OOD MSP Ours Ours + MSP

TNR at
TPR 95% AUROC DTACC

TNR at
TPR 95% AUROC DTACC

TNR at
TPR 95% AUROC DTACC

CIFAR-10

iSUN 98.3 99.3 96.9 98.9 99.8 97.8 99.8 99.9 99.0
LSUN (R) 98.5 99.4 97.0 99.4 99.9 98.4 99.8 99.9 99.1
LSUN (C) 98.0 99.4 96.9 89.5 97.8 92.5 98.6 99.6 97.3
TinyImgNet (R) 93.9 98.5 94.6 98.5 99.7 97.6 99.5 99.9 98.5
TinyImgNet (C) 95.2 98.7 95.2 95.9 99.1 95.7 99.1 99.8 97.8
SVHN 98.0 99.5 96.9 97.6 99.4 96.8 99.3 99.8 98.2
CIFAR-100 73.9 94.8 87.9 38.9 80.1 73.3 72.9 93.9 87.0

CIFAR-100

iSUN 50.9 89.8 82.3 96.3 99.1 95.9 95.6 98.9 96.0
LSUN (R) 58.3 92.0 84.7 98.4 99.6 97.3 97.4 99.3 97.4
LSUN (C) 69.5 94.0 86.6 69.7 92.6 85.3 83.1 96.3 89.7
TinyImgNet (R) 36.1 85.1 77.5 96.3 99.1 95.9 92.8 98.2 94.6
TinyImgNet (C) 41.6 86.3 78.6 90.1 97.7 92.8 87.1 96.9 91.1
SVHN 56.2 92.5 85.6 84.8 96.5 90.8 85.6 96.8 90.4
CIFAR-10 17.4 78.4 71.7 7.5 59.3 57.3 16.5 77.7 71.6

Table 2: Table shows results when our method is combined with OE. The experiment was conducted with WideResNet trained with
outlier-exposure, open-sourced by (Hendrycks et al., 2019). MSP uses Maximum Softmax Probability; "Ours" refers to the metric ∆ (Eq.
5); "Ours+MSP" is obtained by using ∆′(x) = ∆(x)

maxx∈Va ∆(x)
− MSP.



Appendix: Detecting Out-of-Distribution Examples with Gram Matrices

E. Few more OOD results
E.1. Comparing with OE

In-distribution OOD
OE
(Base) OE

Ours
(Base) Ours

CIFAR-10 Gaussian 85.6 99.3 43.5 100.
Rademacher 52.4 99.5 48.3 100.
Blob 83.8 99.4 52.9 99.8
Texture 57.2 87.8 37.0 85.3
SVHN 71.2 95.2 45.4 96.1
LSUN 61.3 87.9 58.2 99.5

CIFAR-100 Gaussian 45.7 87.9 18.2 100.
Rademacher 61.0 82.9 15.6 100.
Blob 62.0 87.9 38.4 98.6
Texture 28.5 45.6 19.9 68.5
SVHN 30.7 57.1 23.5 85.4
LSUN 26.0 42.5 18.2 97.2

SVHN Gaussian 94.6 100. 87.65 100.
Bernoulli 95.6 100. 92.25 100.
Blob 96.3 100. 93.35 100.
Texture 92.8 99.8 72.6 94.9
Cifar-10 94.0 99.9 73.8 83.0
LSUN 93.6 99.9 75.7 99.5

Table 3: Comparison of Mean TNR@TPR95 values.

Following (Hendrycks et al., 2019), we created the gaussian, rademacher, blob and bernoulli synthetic datasets. Their
descriptions are as follows: Gaussian anomalies have each dimension i.i.d. sampled from an isotropic Gaussian distribution.
Rademacher anomalies are images where each dimension is -1 or 1 with equal probability, so each dimension is sampled
from a symmetric Rademacher distribution. Bernoulli images have each pixel sampled from a Bernoulli distribution if the
input range is [0, 1]. Blobs data consist of algorithmically generated amorphous shapes with definite edges. Textures is a
dataset of describable textural images (Cimpoi et al., 2014).

E.2. Comparing with DPN, VD and Semantic.

OOD Method
TNR

@
TPR95

AUROC Detection
Accuracy

LSUN

DPN 42.60 90.20 79.50
VD 92.30 98.30 94.10
Baseline 49.80 91.00 85.30
ODIN 82.10 94.10 86.70
Mahalanobis 98.80 99.70 97.70
Ours 99.85 99.89 98.66

Tiny
ImgNet

DPN 71.60 93.00 86.40
VD 82.90 96.80 91.30
Baseline 41.00 91.00 85.10
ODIN 67.90 94.00 86.50
Mahalanobis 97.10 99.50 96.30
Ours 99.48 99.72 97.82

SVHN

DPN 79.90 95.90 87.30
VD 71.30 93.20 86.40
Baseline 50.50 89.90 85.10
ODIN 70.30 96.70 91.10
Mahalanobis 87.80 99.10 95.80
Ours 98.14 99.50 96.71

(a) ResNet/CIFAR-10

OOD Method
TNR

@
TPR95

AUROC Detection
Accuracy

iSUN

Semantic 41.60 85.20 88.40
VD 80.20 94.20 87.80
Baseline 16.89 75.80 70.11
ODIN 45.21 85.48 78.47
Mahalanobis 89.91 97.91 93.05
Ours 95.12 98.9 95.18

LSUN

Semantic 20.50 79.00 57.80
VD 85.50 95.90 90.40
Baseline 18.80 75.80 69.90
ODIN 23.20 85.60 78.30
Mahalanobis 90.89 98.2 93.5
Ours 97.14 99.28 96.19

Tiny
ImgNet

Semantic 37.60 83.10 75.60
VD 83.70 95.30 89.70
Baseline 20.40 77.20 70.80
ODIN 36.1 87.6 80.1
Mahalanobis 90.92 98.20 93.30
Ours 95.12 98.97 95.13

(b) ResNet/CIFAR-100

Table 4: We compare our method with DPN, VD and Semantic by reporting results where available.
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E.3. Results for Fully-connected Networks

Architecture OOD Method TNR @ TPR95 AUROC Detection Accuracy

300
KMNIST Baseline 47.66 73.96 73.91

Ours 98.57 99.66 97.37

Fashion-MNIST Baseline 44.93 66.93 71.07
Ours 93.51 98.64 94.36

300-150
KMNIST Baseline 59.79 75.17 79.49

Ours 97.8 99.4 96.55

Fashion-MNIST Baseline 70.73 77.10 83.00
Ours 95.2 99.00 95.17

300-150-50
KMNIST Baseline 70.4 79.75 83.38

Ours 97.5 99.11 96.4

Fashion-MNIST Baseline 73.92 76.54 84.67
Ours 95.7 98.94 95.48

Table 5: The method even works quite well with a fully-connected neural network trained on MNIST. The results are shown for 300-unit
single layer MLP, 300-150 two-layer MLP and 300-150-50 MLP.

F. SVHN images

Figure 14: Some images selected from the test partition of SVHN which have unusual feature correlations as determined by our method.
Some images we found interesting include what appears to be a porch lamp (Row 2 Col 5) and an 8 inside a 0 (Row 2 Col 3).
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