
Supplementary Material: Off-Policy Actor-Critic with
Shared Experience Replay

1. Additional Experiments
1.1. Reduced Clipping in V-trace does not Enable

Shared Experience Replay

Increasing the clipping constant ρ̄ in V-trace reduces bias in
favour of increased variance. We investigate if reducing bias
in this manner enables sharing experience replay between
multiple agents in a hyper-parameter sweep. Figure 1 (left)
shows that this is not a solution, thus motivating our trust
region scheme.

1.2. Prioritized and Uniform Experience Replay,
LSTM States

With prioritized experience replay each transition τ is sam-
pled with probability P (τ) ∝ pατ , for a suitable unnormal-
ized priority score pτ and a global tunable parameter α. It
is common (Schaul et al., 2015; Horgan et al., 2018; Hessel
et al., 2017) to then weight updates computed from that sam-
ple by 1/P (τ)β for 0 < β ≤ 1, where β = 1 fully corrects
for the bias introduced in the state distribution. In one step
temporal difference methods, typical priorities are based
on the immediate TD-error, and are typically recomputed
after a transition is sampled from replay. This means low
priorities might stay low and get stale – even if the transi-
tion suddenly becomes relevant. To alleviate this issue, the
sampling distribution is mixed with a uniform, as controlled
by a third hyper parameter ε.

The performance of agents with prioritized experience re-
play can be quite sensitive to the hyper-parameters α, β, and
ε.

A critical practical consideration is how to implement ran-
dom access for recurrent memory agents such as agents
using an LSTM. Prioritized agents sample a presumably
interesting transition from the past. This transition may
be at any position within the episode. To infer the correct
recurrent memory-state at this environment-state all earlier
environment-states within that episode would need to be
replayed. A prioritized agent with a random access pattern
would thus require costly LSTM refreshes for each sampled
transition. If LSTM states are not recomputed representa-
tional missmatch (Kapturowski et al., 2019) occurs.

Sharing experience between multiple agents amplifies the

issue of LSTM state representation missmatch. Here each
agent has its own network parameters and the state repre-
sentations between agents may be arbitrarily different.

As a mitigation Kapturowski et al. (2019) use a burn-in win-
dow or to initialize with a constant starting state. We note
that those solutions can only partially mitigate the fundamen-
tal issue and that counter examples such as arbitrarily long
T-Mazes (Tolman, 1948; Olton, 1979) can be constructed
easily.

We thus advocate for uniform sampling. In our implementa-
tion we uniformly sample an episode. Then we replay each
episode from the beginning, using the most recent network
parameters to recompute the LSTM states along the way:
this is particularly critical when sharing experience between
different agents, which may have arbitrarily different state
representations.

This solution is exact and cost-efficient as it only requires
one additional forward pass for each learning step (forward
+ backward pass).

An even more cost efficient approach would be to not refresh
LSTM states at all. Naturally this comes at the cost of
representational missmatch. However it would allow for an
affordable implementation of prioritized experience replay.
We investigate this in Figure 1 (right) and observe that it is
not viable. We compare a baseline V-trace agent with no
experience replay, one with uniform experience replay, and
two different prioritized replay agents. We do not refresh
LSTM states for any of the agents.

The uniform replay agent is more data efficient then the
baseline, and also saturates at a higher level of performance.
The best prioritized replay agent uses full importance sam-
pling corrections (β = 1). However it performs no higher
than with uniform replay. We therefore we used uniform
replay with full state correction for all our investigations in
the paper.

1.3. Evaluation Protocol

For evaluation, we average episode returns within buckets
of 1M (Atari) and 10M (DMLab) environment steps for
each agent instance, and normalize scores on each game
by using the scores of a human expert and a random agent
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Figure 1. Left Increasing the V-trace clipping constant ρ̄ does not enable shared experience replay. In fact sharing experience replay in this
particular way is worse than pure online learning. This motivates the use of our proposed trust region scheme. On a side note, increased
clipping thresholds resulting in worse performance verifies the importance of variance reduction through clipping. Right: Median human
normalized performance across 30 tasks for the best agent in a sweep, averaged across 2 replicas. All replay experiments use 50% replay
ratio and a capacity of 3 million observations. We investigate if uncorrected LSTM states can be used in combination with different
replay modes. We consider uniform sampling and prioritization via the critic’s loss, and include both full (β = 1) and partial (β = 0.5)
importance corrections

(van Hasselt et al., 2016). In the multi-task setting, we then
define the performance of each agent as the median normal-
ized score of all levels that the agent trains on. Given the
use of population based training, we need to perform the
comparisons between algorithms at the level of sweeps. We
do so by selecting the best performing agent instance within
each sweep at any time. Note that for the multi-task setting,
our approach of first averaging across many episodes, then
taking the median across games, on DMLab further down-
sampling to 100M env steps, and only finally selecting the
maximum within the sweep, results in substantially lower
variance than if we were to compute the maximum before
the median and smoothing.

All DMLab-30 sweeps are repeated 3× with the exception
of ρ = 2 and ρ = 4 in Figure 1. We then plot a shaded
area between the point-wise best and worst replica and a
solid line for the mean. Atari sweeps having 57 games
are summarized and plotted by the median of the human-
normalized scores.

2. Algorithm Pseudocode
We present algorithm pseudocode for LASER with trust
region (Algorithm 1). For clarity we present a version with-
out LSTM and focus on the single agent case. The multi-
agent case is a simple extension where all agents save to
the same replay database and also sample from the same
replay. Also each agent starts with different network param-
eters and hyper-parameters. The LSTM state recomputation
can be achieved with Replayer Threads (nearly identical
to Actor Threads) that sample entire epsiodes from replay,
step through them while reevaluating the LSTM state and

slice the experience into trajectories of length T . Similar
to regular LSTM Actor Threads from Espeholt et al. (2018)
the Replayer Threads send each trajectory together with an
LSTM state to the learning thread via a queue. The Learner
Thread initializes the LSTM with the transmitted state when
the LSTM is unrolled over the trajectory.

3. Propositions
We have stated five propositions in our paper for which we
provide proofs below.

3.1. Definitions

We recall the definitions for the importance sampling and
the V-trace return estimators:

Gπ,µzIS (st) = V (st)+

∞∑
k=0

γk
( k∏
i=0

λπ,µz (st+i)
πt+i
µz,t+i

)
δt+kV

(1)

Gπ,µzVtrace(st) =V (st) +

∞∑
k=0

γk
( k−1∏
i=0

λπ,µz (st+i)cz,t+i

)
λπ,µz (st+k)ρz,t+kδt+kV

(2)
Proposition 1. The V-trace value estimate V π̃ is biased: It
does not match the expected return of π but the return of a
related implied policy π̃ defined by equation 3 that depends
on the behaviour policy µ:

π̃µ(a|x) =
min [ρ̄µ(a|x), π(a|x)]∑
b∈A min [ρ̄µ(b|x), π(b|x)]

(3)
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Algorithm 1 Single Agent LASER with Trust Region

Initialize parameter vectors θ. Initialize π1 = πθ.
Actor Thread:
while training is ongoing do

Sample trajectory unroll u = {τt}t∈{1,...,T} of length
T by acting in the environment using the latest πk
where τt = (st, at, rt, µt = πk(st|·)).
Enqueue u into Lerner Queue, wait if full.
Add u into Replay Database.
Remove oldest episode if database has reached desired
capacity limit.

end while
Learner Thread:
Given: Batch size B, online fraction α.
for training iteration k do

Form training batch U = {ub}b∈{1,...,B} of B trajec-
tories of length T , by dequeuing Bα trajectories from
Lerner Queue and samplingB(1−α) trajectories from
Replay Database.
Evaluate the target policy πk on the sampled transitions
sb,t in U : i.e. πk(sb,t|·).
Compute behaviour relevance mask M with Mb,t =
KL(πk(sb,t|·)||µb,t) < b where µb,t, sb,t are obtained
from Ub,t.
Compute trust-region V-trace return Vt,b (see sec-
tion 3.1) where λπ,µ(sb,t) = Mb,t.
Let [LV (θ)]t,b = 1

2 (Vt,b − Vθ(st,b))2.
Let At,b = Vt,b − Vθ(st,b) and [LP (θ)]t,b =
ρt,b log[πθ(st,b|at,b)]At,b, where ρ is the clipped v-
trace importance sampling ratio.
Perform gradient update to θ using∇θ

∑
t,b[LV (θ) +

LP (θ)]t,bMt,b, denote the resulting πθ as πk+1.
end for

Proof. See Espeholt et al. (2018).

Proposition 2. The V-trace policy gradient is biased: given
the the optimal value function V ∗ the V-trace policy gradient
does not converge to a locally optimal π∗ for all off-policy
behaviour distributions µ.

Proof. Proof by contradiction:

Consider a tabular counter example with a single
(locally) optimal policy at st given by π∗(st) =
argmaxπ

[∑
a∈A π(a|st)Q∗(a, st)

]
that always selects the

action argmaxaQ
∗(a, st).

Even in this ideal tabular setting V-trace policy gradient

estimates a different π̃∗ rather than the optimal π∗ as follows

∇V ∗,π(st) = Eµ [ρt(rt + γV ∗(st+1)∇ log π(at|st)]
= Eµ [ρtQ

∗(st, at)∇ log π(at|st)]

= Eµ

[
min

[
π(at|st)
µ(at|st)

, ρ̄

]
Q∗(st, at)∇ log π(at|st)

]
= Eµ[

π(at|st)
µ(at|st)

min

[
1, ρ̄

µ(at|st)
π(at|st)

]
Q∗(st, at)∇ log π(at|st)

]
= Eπ

[
min

[
1, ρ̄

µ(at|st)
π(at|st)

]
Q∗(st, at)∇ log π(at|st)

]
= Eπ [ω(st, at)Q

∗(st, at)∇ log π(at|st)]
= Eπ [Q∗,ω(st, at)∇ log π(at|st)]

(4)

Observe how the optimal Q-function Q∗ is scaled by
ω(st, at) = min

[
1, ρ̄µ(at|st)

π(at|st)

]
≤ 1 resulting in implied

state-action values Q∗,ω. This penalizes actions where
µ(at|st)ρ̄ < π(at|st) and makes V-trace greedy w.r.t. to
the remaining ones. Thus µ can be chosen adversarially
to corrupt the optimal state action value. Note that ρ̄ is a
constant typically chosen to be 1.

To prove the lemma consider a counter example such as an
MDP with two actions and Q∗ = (2, 5) and µ = (0.9, 0.1)
and initial π = (0.5, 0.5). Here the second action with
expected return 5 is clearly favourable. Abusing notation
µ/π = (1.8, 0.2). Thus Qπ̃,ω = (2 ∗ 1, 5 ∗ 0.2) = (2, 1).
Therefore π̃∗ = (1, 0) wrongly selects the first action.

Proposition 3. Mixing on-policy data into the V-
trace policy gradient with the ratio α reduces the
bias by providing a regularization to the implied
state-action values. In the general function approx-
imation case it changes the off-policy V-trace pol-
icy gradient from

∑
s d

µ(s)Eπ [(Q(s, a)∇ log π(a|s)] to∑
sEπ [Qα(s, a)∇ log π(a|s)] where Qα = Qdπ(s)α +

Qωdµ(s)(1− α) is a regularized state-action estimate and
dπ, dµ are the state distributions for π and µ. Note that
there exists α ≤ 1 such that Qα has the same argmax (i.e.
best action) as Q.

Proof. Note that the on-policy policy gradient is given by

∇Jon(π) =
∑
s

dπ(s)Eπ [Q(s, a)∇ log π(a|s)]

Similarly the off-policy V-trace gradient is given by

∇Joff(π) =
∑
s

dµ(s)Eπ [ω(s, a)Q(s, a)∇ log π(a|s)]
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with the V-trace distortion factor ω(st, at) =

min
[
1, ρ̄µ(at|st)

π(at|st)

]
≤ 1 that can de-emphasize action

values and Qω(s, a) = ω(s, a)Q(s, a).

The α-interpolation of both gradients can be transformed as
follows:

∇
(
αJon + (1− α)Joff

)
(π)

= α
∑
s

dπ(s)Eπ [Q(s, a)∇ log π(a|s)]

+ (1− α)
∑
s

dµ(s)Eπ [ω(s, a)Q(s, a)∇ log π(a|s)]

=
∑
s

dπ(s)Eπ [Q(s, a)α∇ log π(a|s)]

+
∑
s

dµ(s)Eπ [Qω(s, a)(1− α)∇ log π(a|s)]

=
∑
s

Eπ [Q(s, a)dπ(s)α∇ log π(a|s)]

+
∑
s

Eπ [Qω(s, a)dµ(s)(1− α)∇ log π(a|s)]

=
∑
s

Eπ [Q(s, a)dπ(s)α∇ log π(a|s)]

+ Eπ [Qω(s, a)dµ(s)(1− α)∇ log π(a|s)]

=
∑
s

Eπ
[(
Q(s, a)dπ(s)α

]
+ Eπ

[
Qω(s, a)dµ(s)(1− α)

)
∇ log π(a|s)

]
=
∑
s

Eπ [Qα(s, a)∇ log π(a|s)]

(5)

for Qα(s, a) = Q(s, a)dπ(s)α + Qω(s, a)dµ(s)(1 − α)

Interpretation of Proposition 3 As discussed in sec-
tion 3 of the paper the V-trace policy gradient will have
the correct local fixpoint at state s if the argmax of the
state-value function is preserved despite the distortion: i.e.
if argmaxa[Q(s, a)] = argmaxa[Qω(s, a)]. Respectively
when mixing in an α ∈ [0, 1) share of online data the fix-
point will be preserved if

argmaxa[Q(s, a)] = argmaxa[Qα(s, a)] (6)

Let a∗ = argmaxb(Q, b) be any best action and A∗ be set
of best actions. Then equation 6 is equivalent to:

Qα(s, a∗) > Qα(s, b) ∀b 6∈ A∗

Using the definition of Qα this can be rewritten as:

Q(s, a∗)dπ(s)α+Qω(s, a∗)dµ(s)(1− α)

> Q(s, b)dπ(s)α+Qω(s, b)dµ(s)(1− α) ∀b 6∈ A∗

Which can be rearranged to:

[Q(s, a∗)dπ(s)−Q(s, b)dπ(s)]α

> [Qω(s, b)dµ(s)−Qω(s, a∗)dµ(s)](1− α) ∀b 6∈ A∗

By definition Q(s, a∗)dπ(s)−Q(s, b)dπ(s) > 0 ∀b 6∈ A∗,
hence:

α

1− α
>
Qω(s, b)−Qω(s, a∗)

Q(s, a∗)−Q(s, b)

dµ(s)

dπ(s)
∀b 6∈ A∗

It follows that the policy gradient will have the same local
fixpoint if

α

1− α
> max
b6∈A∗

[
Qω(s, b)−Qω(s, a∗)

Q(s, a∗)−Q(s, b)

]
dµ(s)

dπ(s)
(7)

Note that α
1−α →∞ as α→ 1. Mixing-in more online data

thus increases the left hand side. Also note that the right
hand side decreases due to dµ(s)/dπ(s) if π visits the state
s more often than µ. Furthermore the larger the action value
gap in the real Q-function Q(s, a∗)−Q(s, b) the lower the
right hand side. Finally the denominator will be negative
if maxb6∈A∗ [Qω(s, b)] < Qω(s, a∗) thus enabling correct
learning even in the pure off-policy case with α = 0.

Note that all of those conditions can be computed and
checked if an accurate Q-function and state distribution
is accessible. How to use imperfect Q-function estimates
to adaptively choose such an α remain a question for future
research.

Proposition 4. Let Gπ,µzIS be a set of importance sampling
estimators as defined in section 3.1. Note that they all have
the same fix point V π and contract with at least γ. Then the
contraction properties carry over to V πtrusted. In particular
|V πtrusted − V π|∞ ≤ γ |V − V

π|∞.

Proof. Let us consider the set of importance sampling
estimators as defined in section 3.1 and note that they
all contract to the same fixed point V π with at least∣∣Eµz|z [Gπ,µzIS (s)]− V π(s)

∣∣
∞ ≤ γ |V (s)− V π(s)|∞ for

any state s.

By Minkowski’s inequality the contraction properties of
importance sampled Monte-Carlo bootstraps carry over to
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V πtrusted which is a p(z|µz ∈Mβ,π(st)) weighted average:

|V πtrusted(s)− V π(s)|∞
=
∣∣∣Ez[Eµz|z [Gπ,µzIS (s)]

∣∣∣µz ∈Mβ,π(st)
]
− V π(s)

∣∣∣
∞

=
∣∣∣Ez[Eµz|z [Gπ,µzIS (s)]− V π(s)

∣∣∣µz ∈Mβ,π(st)
]∣∣∣
∞

≤ Ez

[ ∣∣Eµz|z [Gπ,µzIS (s)]− V π(st)
∣∣
∞

∣∣∣µz ∈Mβ,π(st)
]

< Ez

[
γ |V (s)− V π(s)|∞

∣∣∣µz ∈Mβ,π(st)
]

= γ |V (s)− V π(s)|∞
(8)

Proposition 5. Let Gπ,µzVtrace be a set of V-trace es-
timators (see section 3.1) with corresponding fixed
points V z (see equation 3) to which they con-
tract at a speed of an algorithm and behaviour
specific ηz . Then V πtrusted moves towards V β =
Ez|µz∈Mβ,π(st) [V z] shrinking the distance as follows∣∣V πtrusted − V β

∣∣
∞ < maxµz∈Mβ,π(st) |ηz(V − V z)|∞ ≤

ηmax maxµz∈Mβ,π(st) |(V − V z)|∞ with ηmax =
maxµz∈Mβ,π(st) ηz .

Proof. Recall the contraction properties of a V-trace impor-
tance sampled Monte-Carlo bootstraps Gπ,µzVtrace being∣∣Eµz|z [Gπ,µzVtrace(s)]− V z(s)

∣∣
∞ < ηz |V (s)− V z(s)|∞

for an algorithm and behaviour specific ηz < 1 for a z
dependent fixed point V z and for any bootstrap V . We then
show that V πtrusted moves towards the weighted average of
fixed points V β = Ez|µz∈Mβ,π(st) [V z], since∣∣V πtrusted(s)− V β(s)

∣∣
∞ < ηmax max

µz∈Mβ,π(st)
|V (s)− V z(s)|∞

holds for any bootstrap function V as we show below.

∣∣V πtrusted(s)− V β(s)
∣∣
∞

=
∣∣∣Ez[Eµz|z [Gπ,µzVtrace(s)]− V z(s)

∣∣∣µz ∈Mβ,π(st)
]∣∣∣
∞

≤ Ez

[ ∣∣Eµz|z [Gπ,µzVtrace(s)]− V z(s)
∣∣
∞

∣∣∣µz ∈Mβ,π(st)
]

< Ez

[
|ηz(V (s)− V z(s))|∞

∣∣∣µz ∈Mβ,π(st)
]

≤ max
µz∈Mβ,π(st)

|ηz(V (s)− V z(s))|∞

≤ ηmax max
µz∈Mβ,π(st)

|V (s)− V z(s)|∞
(9)

4. Detailed Atari Results
We display the Atari per-level performance of various agents
at 50M and 200M environment steps in Table 1. The scores
correspond to the agents presented in Figure 1 of the pa-
per. The LASER scores are computed by averaging the
last 100 episode returns before 50M or respectively 200M
environment frames have been experienced. Following the
procedure defined by Mnih et al. (2015) we initialize the
environment with a random number of no-op actions (up to
37 in our case). Again following Mnih et al. (2015) episodes
are terminated after 30 minutes of gameplay. Note that Xu
et al. (2018) have not published per-level scores. Rainbow
scores are obtained from Hessel et al. (2017).
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Table 1. Per level performance of various agents corresponding to Figure 1 of the paper.

Game
LASER Shared
(sweep at 9 × 50M)

LASER Shared
(sweep at 9 × 200M)

LASER
(no sweep at 200M)

Rainbow
(no sweep at 200M)

alien 18635.3 18277.3 35565.9 9491.7
amidar 1838.3 2695 1829.2 5131.2
assault 26027.1 40603.2 21560.4 14198.5
asterix 496735.0 240770 240090 428200
asteroids 232651 257420.1 213025 2712.8
atlantis 889934.0 866584 841200 826660
bank_heist 1333.1 1712.8 569.4 1358
battle_zone 66900 131880.0 64953.3 62010
beam_rider 80830.5 125795.2 90881.6 16850.2
berzerk 46651.6 64513.1 25579.5 2545.6
bowling 42.4 47.4 48.3 30
boxing 99.8 99.4 100.0 99.6
breakout 852.5 850.3 747.9 417.5
centipede 208008 409702.8 292792 8167.3
chopper_command 24814 727333 761699.0 16654
crazy_climber 160494 88818 167820 168788.5
defender 355447 369397.0 336953 55105
demon_attack 133557 138000.6 133530 111185
double_dunk 0.1 23.5 14 -0.3
enduro 0 0 0 2125.9
fishing_derby 45.4 62.6 45.2 31.3
freeway 34.0 34.0 0 34.0
frostbite 5297.4 2230.8 5083.5 9590.5
gopher 86222.2 39721.2 114820.7 70354.6
gravitar 1360.5 2812.0 1106.2 1419.3
hero 30159.2 36510.6 31628.7 55887.4
ice_hockey 20.2 38.7 17.4 1.1
jamesbond 21663 60402.5 37999.8 19809
kangaroo 13932 14187 14308 14637.5
krull 9559.3 5743.6 9387.5 8741.5
kung_fu_master 65032 81792 607443.0 52181
montezuma_revenge 1 1 0.3 384.0
ms_pacman 6089.3 6890.7 6565.5 5380.4
name_this_game 25998.9 27910.7 26219.5 13136
phoenix 458355 628711.6 519304 108529
pitfall -0.2 -0.2 -0.6 0.0
pong 21.0 21.0 21.0 20.9
private_eye 100 100 96.3 4234.0
qbert 20283.8 24600.8 21449.6 33817.5
riverraid 24138.1 35491.5 40362.7 22920.8
road_runner 52942 63762.0 45289 62041
robotank 63.6 67.8 62.1 61.4
seaquest 1802.2 557213.3 2890.3 15898.9
skiing -8904.8 -8980.1 -29968.4 -12957.8
solaris 2222.4 3017.6 2273.5 3560.3
space_invaders 36071.4 53124.3 51037.4 18789
star_gunner 331327 602540.0 321528 127029
surround 9.8 9.8 8.4 9.7
tennis 0 0 12.2 0
time_pilot 77899 113603.0 105316 12926
tutankham 251.8 268.5 278.9 241
up_n_down 341988 368586.5 345727 125755
venture 0 0 0 5.5
video_pinball 513121 397451 511835 533936.5
wizard_of_wor 22280 45335.0 29059.3 17862.5
yars_revenge 145055 144370 166292.3 102557
zaxxon 50486 106862.0 41118 22209.5


