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Abstract
This supplementary material provides the proof of our main results, specifically a detailed proof for Theorem 3.3
and a proof for the Proposition 3.1.

1. Proof of Theorem 3.3
1.1. Setting of the proof

For simplicity, we will only suppose the case k = 1 and we consider the following notations that will be used subsequently.

x̄ = Exi, C = E[xix
ᵀ
i ], X0 = X − x̄1ᵀ

n, C0 = E[X0X
ᵀ
0 /n].

Let
X−i = (x1, . . . ,xi−1, 0,xi, . . . ,xn)

the matrix X with a vector of zeros at its ith column.

Denote the resolvents

R =

(
XᵀX

p
+ zIn

)−1

, Q =

(
XXᵀ

p
+ zIp

)−1

, Q−i =

(
XXᵀ

p
− xix

ᵀ
i

p
+ zIp

)−1

(1)

And let

Q̃ =

(
1

c

C

1 + δ
+ zIp

)−1

, (2)

where δ is the solution to the fixed point equation

δ =
1

p
tr

(
C

(
1

c

C

1 + δ
+ zIp

)−1
)
.

1.2. Basic tools

Lemma 1.1 ((Ledoux, 2005)). Let z ∈ Eq(1 |Rp, ‖ · ‖) and M ∈ Eq(1 |Rp×n, ‖ · ‖F ). Then, for some numerical constant
C > 0

• E ‖z‖ ≤ ‖Ez‖+ C
√
p, E ‖z‖∞ ≤ ‖Ez‖∞ + C

√
log p.

• E ‖M‖ ≤ ‖EM‖+ C
√
p+ n, E ‖M‖F ≤ ‖EM‖F + C

√
pn.
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Lemma 1.2. Denote Qx̄ = (x̄x̄ᵀ + zIp)
−1, we have:

Qx̄x̄ =
x̄

‖x̄‖2 + z
and ‖Q̃x̄‖, x̄Q̃x̄ = O(1).

Moreover, if ‖x̄‖ ≥ √p, ‖Q̃x̄‖ = O(p−1/2).

Proof. Since zQx̄ = Ip −Qx̄x̄x̄
ᵀ :

zQx̄x̄ = x̄− ‖x̄‖2Qx̄x̄,

and we recover the first identity of the Lemma.

And since the matrix C0 is nonnegative symmetric, we have :

Q̃x̄ =

(
1

c

C0 + x̄x̄ᵀ

1 + δ
+ zIp

)−1

x̄ ≤ c(1 + δ)x̄

‖x̄‖2 + zc(1 + δ)
.

Therefore, x̄Q̃x̄ = c(1+δ)‖x̄‖2
‖x̄‖2+zc(1+δ) = O(1) and:

‖Q̃x̄‖ =
c(1 + δ)‖x̄‖

‖x̄‖2 + zc(1 + δ)
≤


‖x̄‖
z

= O(1) if ‖x̄‖ ≤ 1,

c(1 + δ)

‖x̄‖
= O(1) if ‖x̄‖ ≥ 1.

Proposition 1.3. x̄ᵀE[Q]x̄ = x̄ᵀQ̃x̄ +O
(√

log p
p

)
Proof. Let us bound:∣∣∣x̄ᵀQx̄− x̄ᵀQ̃x̄

∣∣∣ ≤ c−1

1 + δ

∣∣∣∣E [x̄Qxix
ᵀ
i Q̃x̄

(
1

p
xᵀ
iQ−ixi − δ

)]
+

1

p
E
[
x̄ᵀQ−ixix

ᵀ
iQCQ̃x̄

]∣∣∣∣
Now let us consider a supplementary random vector xn+1 following the same low as the xi’s and independent of X .
We divide the set I = [n + 1] into two sets I 1

2
and I 2

2
of same cardinality (bn+1

2 c ≤ #I 1
2
,#I 2

2
≤ dn+1

2 e), we note

X 1
2

= (xi | i ∈ I 1
2
), X 2

2
= (xi | i ∈ I 2

2
) and we introduce the diagonal matrices ∆ = diag

(
1
px

ᵀ
iQ−ixi − δ | i ∈ I 1

2

)
,

D = diag
(

1 + 1
p+1x

ᵀ
iQxi | i ∈ I 2

2

)
. We have the bound:∣∣∣∣E [x̄Qxix

ᵀ
i Q̃x̄

(
1

p
xᵀ
iQ−ixi − δ

)]∣∣∣∣
=

∣∣∣∣E [(1 +
1

p
xᵀ
n+1Qxn+1

)
xn+1Q+(n+1)xix

ᵀ
i Q̃x̄

(
1

p
xᵀ
iQ−ixi − δ

)]∣∣∣∣
=

1

p2

∣∣∣E [1ᵀDXᵀ
2
2

Q+(n+1)X 1
2
∆Xᵀ

1
2

Q̃x̄
]∣∣∣

≤

√∣∣∣∣E [ 1

p3
1ᵀDXᵀ

2
2

Q+(n+1)X 1
2
∆2Xᵀ

1
2

Q+(n+1)X 2
2
D1

]
E
[

1

p
x̄ᵀQ̃X 1

2
Xᵀ

1
2

Q̃x̄

]∣∣∣∣
≤

√√√√∣∣∣∣∣E
[∥∥∥∥1

p
Xᵀ

2
2

Q+(n+1)X 1
2

∥∥∥∥2

‖D‖2 ‖∆‖2
]
E
[
x̄Q̃CQ̃x̄

]∣∣∣∣∣ ≤ O

(√
log p

p

)
,

thanks to Lemma 1.1 and Lemma 1.2 (the spectral norm of ∆ and D is just an infinity norm if we see them as random
vectors of Rn). We can bound 1

p

∣∣∣E [x̄ᵀQ−ixix
ᵀ
iQCQ̃x̄

]∣∣∣ the same way to obtain the result of the proposition.
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Proposition 1.4. ‖E[xᵀ
iQ−iX−i]−

x̄ᵀQ̃x̄1ᵀ

1+δ ‖ = O(
√

log p)

Proof. Considering u ∈ Rn such that ‖u‖ = 1:∣∣∣∣∣E[xᵀ
iQ−iX−iu]− x̄ᵀQ̃x̄1ᵀu

1 + δ

∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

j=1
j 6=i

ujE

[
xᵀ
iQ−i

−j
xj

1 + 1
px

ᵀ
jQ−j

−i
xj
− xᵀ

i Q̃xj
1 + δ

]∣∣∣∣∣∣∣
≤
√
n

∣∣∣∣∣E
[

xᵀ
iQ−i

−j
xj

1 + 1
px

ᵀ
jQ−j

−i
xj
−

xᵀ
iQ−i

−j
xj

1 + δ

]∣∣∣∣∣+

∣∣∣∣ 1

1 + δ
E
[
xᵀ
iQ−i

−j
xj − xᵀ

i Q̃xj

]∣∣∣∣ (where i 6= j)

≤
√
n

∣∣∣∣E [x̄ᵀQxj

(
1

p
xᵀ
jQ−j

−i
xj − δ

)]∣∣∣∣+
√
n
∣∣∣E [x̄ᵀQ−i

−j
x̄− x̄ᵀQ̃x̄

]∣∣∣ ,
where the first term is treated the same way as we did in the proof of Proposition 1.3 and the second term is bounded thanks
to Proposition 1.3

1.3. Main body of the proof

Proof of Theorem 3.3. Recall the definition of the resolvents R and Q in Equation (1). The first step of the proof is to show
the concentration of R. This comes from the fact that the application Φ : X 7→ (XᵀX + zIn)−1 is 2z−3/2-Lipschitz w.r.t.
the Frobenius norm. Indeed, by the matrix identity A−B = A(B−1 −A−1)B, we have

Φ(X)− Φ(X + H) = Φ(X)(HᵀX + (X + H)ᵀH)Φ(X + H)

And by the bounds ‖AB‖F ≤ ‖A‖ · ‖B‖F , ‖Φ(X)Xᵀ‖ ≤ z−1/2 and ‖Φ(X)‖ ≤ z−1, we have

‖Φ(X + H)− Φ(X)‖F ≤
2

z3/2
‖H‖F .

Therefore, given X ∈ Eq(1 |Rp×n, ‖ · ‖F ) and since the application X 7→ R = Φ(X/
√
p) is 2z−3/2p−1/2-Lipschitz, we

have by Proposition ?? that R ∈ Eq(p−1/2 |Rn×n, ‖ · ‖F ).

The second step consists in estimating ER(z) through a deterministic matrix R̃. Indeed, by the identity (MᵀM +
zI)−1Mᵀ = Mᵀ(MMᵀ + zI)−1, the resolvent R can be expressed in function of Q as follows

R =
1

z

(
In −

XᵀQX

p

)
, (3)

thus a deterministic equivalent for R can therefore be obtained through a deterministic equivalent of the matrix XᵀQX .
However, as demonstrated in (Louart & Couillet, 2019), the matrix Q has as a deterministic equivalent the matrix Q̃ defined
in equation 2. In the following, we aim at deriving a deterministic equivalent for 1

pX
ᵀQX in function of Q̃. Let u and v

be two unitary vectors in Rn, and let us estimate

∆ ≡ E

[
uᵀ

(
XᵀQX

p
− XᵀQ̃X

p

)
v

]
=

1

p
E

[
uᵀXᵀQCQ̃Xv

1 + δ
− 1

p
uᵀXᵀQXXᵀQ̃Xv

]

With the following matrix identities (to explore the independence of the columns of X):

Q = Q−i −
1

p
Q−ixix

ᵀ
iQ , Qxi =

Q−ixi

1 + 1
px

ᵀ
iQ−ixi

, A−B = A(B−1 −A−1)B
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and the decomposition QXXᵀ =
∑n
i=1 Qxix

ᵀ
i , we obtain:

∆ =
1

p2
E

[
n∑
i=1

uᵀXᵀQ−iCQ̃Xv

1 + δ
− uᵀXᵀQ−ixix

ᵀ
i Q̃Xv

1 + 1
px

ᵀ
iQ−ixi

− 1

p

uᵀXᵀQ−ixix
ᵀ
iQCQ̃Xv

1 + δ

]

=
1

p2

n∑
i=1

E

[
uᵀXᵀ

−iQ−iCQ̃X−iv

1 + δ
−

uᵀXᵀ
−iQ−ixix

ᵀ
i Q̃X−iv

1 + 1
px

ᵀ
iQ−ixi

+
uix

ᵀ
iQ−iCQ̃X−iv

1 + δ
+

viu
ᵀXᵀ
−iQ−iCQ̃xi

1 + δ
+ uivi

xᵀ
iQ−iCQ̃xi

1 + δ

− uix
ᵀ
iQ−ixix

ᵀ
i Q̃X−iv

1 + 1
px

ᵀ
iQ−ixi

−
viu

ᵀXᵀ
−iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQ−ixi

− uivi
xᵀ
iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQ−ixi

−1

p

uᵀXᵀQ−ixix
ᵀ
iQCQ̃Xv

1 + δ

]

We can show with Holder’s inequality and the concentration bounds (mainly the fact that 1
px

ᵀ
iQ−ixi concentrates around

δ) developed in (Louart & Couillet, 2019), that most of the above quantities vanish asymptotically. As a toy example, we
consider the following term:∣∣∣∣∣ 1

p2

n∑
i=1

E

[
uᵀXᵀ

−iQ−iCQ̃X−iv

1 + δ
−

uᵀXᵀ
−iQ−ixix

ᵀ
i Q̃X−iv

1 + 1
px

ᵀ
iQ−ixi

]∣∣∣∣∣
=

∣∣∣∣∣ 1

p2

n∑
i=1

E

[
uᵀXᵀ

−iQ−ixix
ᵀ
i Q̃X−iv

δ − 1
px

ᵀ
iQ−ixi

(1 + δ)(1 + 1
px

ᵀ
iQ−ixi)

]∣∣∣∣∣
≤

∣∣∣∣∣ 1

p2

n∑
i=1

E
[
(uᵀXᵀ

−iQ−ixi)(x
ᵀ
i Q̃X−iv)

(
δ − 1

p
xᵀ
iQ−ixi

)]∣∣∣∣∣
≤

∣∣∣∣∣∣1p
n∑
i=1

(
E

[(
1
√
p
uᵀXᵀ

−iQ−ixi

)3
]
E

[(
1
√
p
xᵀ
i Q̃X−iv

)3
]
E

[(
δ − 1

p
xᵀ
iQ−ixi

)3
]) 1

3

∣∣∣∣∣∣
= O

(
1
√
p

)
Similarly, we can show that:∣∣∣∣∣ 1

p2

n∑
i=1

E

[
uix

ᵀ
iQ−iCQ̃X−iv

1 + δ
+

viu
ᵀXᵀ
−iQ−iCQ̃xi

1 + δ

+uivi
xᵀ
iQ−iCQ̃xi

1 + δ
− 1

p

uᵀXᵀQ−ixix
ᵀ
iQCQ̃Xv

1 + δ

]∣∣∣∣∣ = O
(

1
√
p

)

Finally, the remaining terms in ∆ can be estimated as follows:

∆ =
1

p2

n∑
i=1

E

[
−uix

ᵀ
iQ−ixix

ᵀ
i Q̃X−iv

1 + 1
px

ᵀ
iQ−ixi

−
viu

ᵀXᵀ
−iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQxi

− uivi
xᵀ
iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQ−ixi

]
+O

(
1
√
p

)

= −2

p

δuᵀ1x̄ᵀQ̃x̄1ᵀv

1 + δ
− δ2uᵀv

1 + δ
+O

(√
log p

p

)
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Where the last equality is obtained through the following estimation:

1

p2

n∑
i=1

E

[
viu

ᵀXᵀ
−iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQ−ixi

]
=

1

p

n∑
i=1

E

viuᵀXᵀ
−iQ−ixi

(
1
px

ᵀ
i Q̃xi(1 + δ)− δ

(
1 + 1

px
ᵀ
i Q̃xi

))
(

1 + 1
px

ᵀ
iQ−ixi

)
(1 + δ)


+

1

p

n∑
i=1

viδE[uᵀXᵀ
−iQ−ixi]

(1 + δ)

With the following bound:∣∣∣∣1pxᵀ
i Q̃xi(1 + δ)− δ

(
1 +

1

p
xᵀ
i Q̃xi

)∣∣∣∣
=

∣∣∣∣1pxᵀ
i Q̃xi(1 + δ)− δ(1 + δ) + δ(1 + δ)− δ

(
1 +

1

p
xᵀ
i Q̃xi

)∣∣∣∣
≤
∣∣∣∣1pxᵀ

i Q̃xi − δ
∣∣∣∣ (1 + 2δ),

we have again with Holder’s inequality and Proposition 1.4:

1

p2

n∑
i=1

E

[
viu

ᵀXᵀ
−iQ−ixix

ᵀ
i Q̃xi

1 + 1
px

ᵀ
iQxi

]
=

1

p

n∑
i=1

viδu
ᵀ1x̄ᵀQ̃x̄

1 + δ
+O

(√
log p

p

)

Now that we estimated ∆, it remains to estimate E[ 1
pX

ᵀQ̃X]. Indeed, given two unit norm vectors u, v ∈ Rn we have:

E
[

1

p
uᵀXᵀQ̃Xv

]
=

1

p

n∑
i,j=1

uivjE[xᵀ
i Q̃xj ] =

1

p

n∑
i=1

n∑
j=1
j 6=i

uivjx̄
ᵀQ̃x̄ +

n∑
i=1

uiviδ

=
1

p
x̄ᵀQ̃x̄uᵀ11ᵀv + (δ − 1

p
x̄ᵀQ̃x̄)uᵀv =

1

p
x̄ᵀQ̃x̄uᵀM1v

ᵀ + δuᵀv +O
(

1

p

)
since we have x̄ᵀQ̃x̄ = O(1) by Lemma 1.2; we introduced the matrix M1 = 11ᵀ. Therefore we have the following
estimation:

1

p
E [XᵀQX] =

δ

1 + δ
In +

1

p

(
1− δ
1 + δ

)
x̄ᵀQ̃x̄M1 +O‖·‖

(√
log p

p

)

where A = B +O‖·‖(α(p)) means that ‖A−B‖ = O(α(p)). Finally, since R concentrates around its mean, we can then
conclude:

R =
1

z

(
In −

1

p
XᵀQX

)
=

1

z

1

1 + δ
In +

δ − 1

pz(δ + 1)
x̄ᵀQ̃x̄M1 +O‖·‖

(√
log p

p

)
.

2. Proof of Proposition 3.1
Proof. Since the Lipschitz constant of a composition of Lipschitz functions is bounded by the product of their Lipschitz
constants, we consider the case N = 1 and a linear activation function. In this case, the Lipschitz constant corresponds to
the largest singular value of the weight matrix. We consider the following notations for the proof

W̄t = Wt − ηEt with [Et]i,j ∼ N (0, 1)

Wt+1 = W̄t −max(0, σ̄1,t − σ∗) ū1,tv̄
ᵀ
1,t
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where σ̄1,t = σ1(W̄t), ū1,t = u1(W̄t) and v̄1,t = v1(W̄t). The effect of spectral normalization is observed in the case
where σ∗ > σ̄1,t, otherwise the Lipschitz constant is bounded by σ∗. We therefore have

‖W̄t‖2F ≤ ‖Wt‖2F + η2d1d0 (4)

‖Wt+1‖2F = ‖W̄t‖2F + σ2
∗ − σ̄2

1,t (5)

• If ‖Wt+1‖F ≥ ‖Wt‖F , we have by equation 4 and equation 5

‖W̄t‖2F ≤ ‖W̄t‖2F + σ2
∗ − σ̄2

1,t + η2d1d0 ⇒ ‖W̄t‖ = σ̄1,t ≤
√
σ2
∗ + η2d1d0 = δ

And since ‖Wt+1‖ ≤ ‖W̄t‖, we have ‖Wt+1‖ ≤ δ.

• Otherwise, if there exits τ such that ‖Wτ+1‖F < ‖Wτ‖F , then for all ε > 0 there exists an iteration τ ′ ≥ τ such
that ‖Wτ ′‖ ≤ δ + ε. Indeed, otherwise we denote εt = ‖Wt‖2 − δ2 and εt > 0 for all t ≥ τ . And if for all t ≥ τ ,
‖Wt+1‖F ≤ ‖Wt‖F , we have by equation 4 and equation 5

‖Wt‖2F − ‖Wt+1‖2F ≥ ‖W̄t‖2 − δ2 ≥ ‖Wt+1‖2 − δ2 = εt+1

Integrating the above expression from τ to T − 1 ≥ τ , we end up with

‖Wτ‖2F − ‖WT ‖2F ≥
T−1∑
t=τ

εt ⇒ 0 ≤ ‖WT ‖2F ≤ ‖Wτ‖2F −
T−1∑
t=τ

εt,

therefore, when T →∞, εt has to tend to 0 otherwise the right hand-side of the last inequality will tend to −∞ which
is absurd.
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