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A. Appendix
Results DM Control Suite In Figure 1, we show the
performance of our agent on all 20 DM Control Suite
tasks from pixels. In addition, we show videos corre-
sponding to all the plots on the project website: https:
//ramanans1.github.io/plan2explore/

Convention for plots We run every experiment with three
different random seeds. The shaded area of the graphs shows
the standard deviation in performance. All plot curves are
smoothed with a moving mean that takes into account a
window of the past 20 data points. Only Figure 5 of the main
paper was smoothed with a window of past 5 data points so
as to provide cleaner looking plots that indicate the general
trend. Low variance in all the curves consistently across all
figures suggests that our approach is very reproducible.

Rewards of new tasks To test the generalization perfor-
mance of the our agent, we define three new tasks in the
Cheetah environment:

• Cheetah Run Backward Analogous to the forward
running task, the reward r is linearly proportional to
the backward velocity vb up to a maximum of 10m/s,
which means r(vb) = max(0,min(vb/10, 1)), where
vb = −v and v is the forward velocity of the Cheetah.

• Cheetah Flip Backward The reward r is linearly
proportional to the backward angular velocity ωb up
to a maximum of 5rad/s, which means r(ωb) =
max(0,min(ωb/5, 1)), where ωb = −ω and ω is the
angular velocity about the positive Z-axis, as defined
in DeepMind Control Suite.

• Cheetah Flip Forward The reward r is linearly
proportional to the forward angular velocity ω up
to a maximum of 5rad/s, which means r(ω) =
max(0,min(ω/5, 1)).
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Environment We use the DeepMind Control Suite (Tassa
et al., 2018) tasks, a standard benchmark of tasks for con-
tinuous control agents. All experiments are performed with
only visual observations. We use RGB visual observations
with 64× 64 resolution. We have selected a diverse set of 8
tasks that feature sparse rewards, high dimensional action
spaces, and environments with unstable equilibria and en-
vironments that require a long planning horizon. We use
episode length of 1000 steps and a fixed action repeat of
R = 2 for all the tasks.

Agent implementation For implementing latent disagree-
ment, we use an ensemble of 5 one-step prediction models
with a 2 hidden-layer MLP, which takes in the RNN-state
of RSSM and the action as inputs, and predicts the encoder
features, which have a dimension of 1024. We scale the
disagreement of the predictions by 10, 000 for the final in-
trinsic reward, this was found to increase performance in
some environments. We do not normalize the rewards, both
extrinsic and intrinsic. This setup for the one-step model
was chosen over 3 other variants, in which we tried predict-
ing the deterministic, stochastic, and the combined features
of RSSM respectively. The performance benefits of this
ensemble over the variants potentially come from the large
parametrization that comes with predicting the large encoder
features.

Baselines We note that while Curiosity (Pathak et al.,
2017) uses L2 loss to train the model, the RSSM loss is
different (see (Hafner et al., 2019)); we use the full RSSM
loss as the intrinsic reward for the Curiosity comparison,
as we found it produces the best performance. Note that
this reward can only be computed when ground truth data is
available and needs a separate reward predictor to optimize
it in a model-based fashion.
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Table 1. Zero-shot performance at 3.5 million environment steps (corresponding to 1.75 agent steps times 2 for action repeat). We report
the average performance of the last 20 episodes before the 3.5 million steps point. The performance is computed by executing the mode of
the actor without action noise. Among the agents that receive no task rewards, the highest performance of each task is highlighted. The
corresponding training curves are visualized in Figure 1.

Zero-shot performance Plan2Explore Curiosity Random MAX Retrospective Dreamer

Task-agnostic experience 3.5M 3.5M 3.5M 3.5M 3.5M −
Task-specific experience − − − − − 3.5M

Acrobot Swingup 280.23 219.55 107.38 64.30 110.84 408.27
Cartpole Balance 950.97 917.10 963.40 − − 970.28
Cartpole Balance Sparse 860.38 695.83 764.48 − − 926.9
Cartpole Swingup 759.65 747.488 516.04 144.05 700.59 855.55
Cartpole Swingup Sparse 602.71 324.5 94.89 9.23 180.85 789.79
Cheetah Run 784.45 495.55 0.78 0.76 9.11 888.84
Cup Catch 962.81 963.13 660.35 − − 963.4
Finger Spin 655.4 661.96 676.5 − − 333.73
Finger Turn Easy 401.64 266.96 495.21 − − 551.31
Finger Turn Hard 270.83 289.65 464.01 − − 435.56
Hopper Hop 432.58 389.64 12.11 17.39 41.32 336.57
Hopper Stand 841.53 889.87 180.86 − − 923.74
Pendulum Swingup 792.71 56.80 16.96 748.53 1.383 829.21
Quadruped Run 223.96 164.02 139.53 − − 373.25
Quadruped Walk 182.87 368.45 129.73 − − 921.25
Reacher Easy 530.56 416.31 229.23 242.13 230.68 544.15
Reacher Hard 66.76 123.5 4.10 − − 438.34
Walker Run 429.30 446.45 318.61 − − 783.95
Walker Stand 331.20 459.29 301.65 − − 655.80
Walker Walk 911.04 889.17 766.41 148.02 538.84 965.51

Task Average 563.58 489.26 342.11 − − 694.77

Table 2. Adaptation performance after 1M task-agnostic environment steps, followed by 150K task-specific environment steps (agent
steps are half as much due to the action repeat of 2). We report the average performance of the last 20 episodes before the 1.15M steps
point. The performance is computed by executing the mode of the actor without action noise. Among the self-supervised agents, the
highest performance of each task is highlighted. The corresponding training curves are visualized in Figure 4 of the main paper.

Adaptation performance Plan2Explore Curiosity Random MAX Retrospective Dreamer

Task-agnostic experience 1M 1M 1M 1M 1M −
Task-specific experience 150K 150K 150K 150K 150K 1.15M

Acrobot Swingup 312.03 163.71 27.54 108.39 76.92 345.51
Cartpole Swingup 803.53 747.10 416.82 501.93 725.81 826.07
Cartpole Swingup Sparse 516.56 456.8 104.88 82.06 211.81 758.45
Cheetah Run 697.80 572.67 18.91 0.76 79.90 852.03
Hopper Hop 307.16 159.45 5.21 64.95 29.97 163.32
Pendulum Swingup 771.51 377.51 1.45 284.53 21.23 781.36
Reacher Easy 848.65 894.29 358.56 611.65 104.03 918.86
Walker Walk 892.63 932.03 308.51 29.39 820.54 956.53

Task Average 643.73 537.95 155.23 210.46 258.78 700.27
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Figure 1. We evaluate the zero-shot performance of the self-supervised agents as well as supervised performance of Dreamer on all tasks
from the DM control suite. All agents operate from raw pixels. The experimental protocol is the same as in Figure 3 of the main paper. To
produce this plot, we take snapshots of the agent throughout exploration to train a task policy on the downstream task and plot its zero-shot
performance. We use the same hyperparameters for all environments. We see that Plan2Explore achieves state-of-the-art zero-shot task
performance on a range of tasks. Moreover, even though Plan2Explore is a self-supervised agent, it demonstrates competitive performance
to Dreamer (Hafner et al., 2020), a state-of-the-art supervised reinforcement learning agent. This shows that self-supervised exploration is
competitive to task-specific approaches in these continuous control tasks.
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