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Abstract
We evaluate a wide range of ImageNet models
with �ve trained human labelers. In our year-long
experiment, trained humans �rst annotated 40,000
images from the ImageNet and ImageNetV2 test
sets with multi-class labels to enable a semanti-
cally coherent evaluation. Then we measured the
classi�cation accuracy of the �ve trained humans
on the full task with 1,000 classes. Only the lat-
est models from 2020 are on par with our best
human labeler, and human accuracy on the 590
object classes is still 4% and 11% higher than
the best model on ImageNet and ImageNetV2,
respectively. Moreover, humans achieve the same
accuracy on ImageNet and ImageNetV2, while all
models see a consistent accuracy drop. Overall,
our results show that there is still substantial room
for improvement on ImageNet and direct accuracy
comparisons between humans and machines may
overstate machine performance.

1. Introduction
ImageNet, the most in�uential data set in machine learn-
ing, has helped to shape the landscape of machine learning
research since its release in 2009 (Deng et al., 2009; Rus-
sakovsky et al., 2015). Methods live or die by their “per-
formance” on this benchmark, measured by how frequently
images are assigned the correct label out of 1,000 possible
classes. This task is inherently an odd one: seldom do we
reduce scene analysis and visual comprehension to a single
scalar number. Though models now can nearly perform at
90% accuracy on the ImageNet (Xie et al., 2019b), we do
not have much context for what such performance means:
what kinds of errors do these models make? Are current
models nearing a fundamental Bayes error or is there still
room for improvement? Are the models overly sensitive to
labeling biases as suggested in recent work (Recht et al.,
2019)?
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In this paper, we contextualize progress on ImageNet by
comparing a wide range of ImageNet models to �ve trained
human labelers. Our year-long experiment consists of two
parts: �rst, three labelers thoroughly re-annotated 40,000
test images in order to create a testbed with minimal annota-
tion artifacts. The images are drawn from both the original
ImageNet validation set and the ImageNetV2 replication
study of Recht et al. (2019). Second, we measured the
classi�cation accuracy of the �ve trained labelers on the
full 1,000-class ImageNet task. We again utilized images
from both the original and the ImageNetV2 test sets. This
experiment led to the following contributions:

Multi-label annotations. Our expert labels quantify mul-
tiple issues with the widely usedtop-1 andtop-5 met-
rics on ImageNet. For instance, about 20% of images have
more then one valid label, which makestop-1 numbers
overly pessimistic. To ensure a consistent annotation of all
40,000 images, we created a 400-page labeling guide de-
scribing the �ne-grained class distinctions. In addition, we
enlisted the help of a dog competition judge with 20 years
of experience to validate particularly hard instances among
the 118 dog breeds in ImageNet. Interestingly, we �nd that
top-1 accuracy is almost perfectly linearly correlated with
multi-label accuracy for the models in our testbed.

Human vs. machine comparison. Building on our multi-
label annotations, we �nd that the highest accuracy achieved
by one of our human labelers is comparable to the best
model in 2020. Our �ve labelers are 3% to 9% better than
the performance levels from early 2015, when claims of
super-human accuracy on ImageNet �rst appeared (He et al.,
2015). Moreover, there are important differences in the
errors of trained humans and models. Humans make more
mistakes among the �ne-grained distinctions between ani-
mal species (especially dog breeds) and achieve higher ac-
curacy on the 590 classes of inanimate objects. In contrast,
the accuracies of models are more uniform. This shows
that there is still room for improving existing classi�cation
models: the best human achieves more than 99% accuracy
on the object classes for both ImageNet and ImageNetV2,
while the best network achieves only 95% and 89% on the
object classes in ImageNet and ImageNetV2, respectively
(see Tables 1 and 2).
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Figure 1.Multi-label accuracies for both CNN models and human participants on the ImageNet validation set versus their accuracies on
the ImageNetV2 test set. The left plot shows accuracies on all 1,000 classes, the right plot show accuracies on the 590 object classes. The
con�dence intervals are95%Clopper-Pearson con�dence intervals.

Table 1.Human and model multi-label accuracy on the ImageNet
validation dataset and ImageNetV2. The gap is measured as multi-
label accuracy on ImageNet validation minus multi-label accu-
racy on ImageNetV2. The con�dence intervals are 95% Clopper-
Pearson intervals. The AdvProp model (Xie et al., 2019a) is an
Ef�centNet-B8 trained with AdvProp and the FixRes model (Ma-
hajan et al., 2018; Touvron et al., 2019) is a ResNext-32x48d
trained on one billion images from Instagram.

ImageNet multi-label accuracy (%)

Participant Original V2 Gap

ResNet50 84.2[81.8, 86.4] 75.7[73.2, 78.7] 8.4
AdvProp 93.6[91.9, 95.0] 88.3[86.5, 90.6] 5.3
FixRes 95.5[94.0, 96.7] 89.6[87.9, 91.8] 5.9

Human A 91.9[90.0, 93.5] 91.1[89.6, 93.2] 0.8
Human B 94.7[93.1, 96.0] 93.9[92.6, 95.6] 0.8
Human C 96.2[94.9, 97.3] 96.7[95.9, 98.1] -0.5
Human D 95.7[94.3, 96.9] 94.8[93.7, 96.4] 0.9
Human E 97.3[96.0, 98.2] 96.5[95.6, 97.9] 0.7

Robustness to distribution shift. The common practice
in machine learning benchmarks is to draw training and test
sets from the same distribution. This setup may favor trained
models over human labelers, who are less focused on one
speci�c distribution. To investigate this hypothesis, we la-
beled images from the original ImageNet validation set and
the ImageNetV2 replication experiment. Recht et al. (2019)
closely followed the original ImageNet creation process to
build a new test set but found that even the best models
achieve 11% lower top-1 accuracy than on the original test
set. We show that all models in our testbed still see a 5%
to 8% accuracy drop for our multi-label annotations. In
contrast, all �ve human labelers have the same accuracy on
ImageNet and ImageNetV2 up to 1% (see Figure 1). This

demonstrates that robustness to small distribution shifts is
a real problem for neural networks. Neural networks have
made little to no progress in this dimension over the past
decade and even models trained on 1,000 times more data
than the standard ImageNet training set (Mahajan et al.,
2018; Touvron et al., 2019) do not close this gap.

Based on our investigation, we make the following recom-
mendations for future machine evaluations on ImageNet:

1. Measure multi-label accuracy. While top-1 accu-
racy is still a good predictor of multi-label accuracy for
models, this is not guaranteed for the future. Moreover,
multi-label accuracy is a more meaningful metric for the
ImageNet classi�cation task.

2. Report performance on dogs, other animals, and
inanimate objects separately. Label noise and ambigui-
ties are a smaller concern on the 590 object classes where
human labelers can achieve 99%+ accuracy.

3. Evaluate performance to distribution shift. Our ex-
periments show that the distribution shift from ImageNet to
ImageNetV2 does not pose a challenge to humans but leads
to substantial accuracy drops for all models. The robustness
of humans proves that classi�ers with the same accuracy on
ImageNet and ImageNetV2 exist. Finding machine models
that exhibit similar robustness is an important direction for
future research.

Finally, we caution that our human accuracies should not be
seen as the best possible performance on this task. We con-
jecture that longer training can still lead to higher accuracy
for humans, and we expect that automated methods will also
continue to improve their accuracy on ImageNet. Moreover,
classi�cation problems such as ImageNet attempt to render
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immeasurable ambiguous, cultural, and subjective aspects
of their tasks measurable in a way that does not capture
important dimensions of human experience. This makes
an overly broad interpretation of such benchmarks prob-
lematic and omits important dimensions of human abilities.
Nevertheless, we still hope that our multi-label annotations
and the associated evaluation methodology will be useful to
measure further progress of machine learning methods.

2. Experiment setup
We conducted our experiment in four phases: (i) initial multi-
label annotation, (ii) human labeler training, (iii) human
labeler evaluation, and (iv) �nal annotation review. Figure 2
provides a detailed timeline of the experiment. In total, �ve
human labelers participated in the experiment, denoted A
through E. All �ve participants are anonymized authors of
this manuscript. While evaluating more humans would have
provided additional information, the scale of the experiment
made it dif�cult to incentivize others to invest the time
and effort required to familiarize themselves with the1;000
ImageNet classes and to label thousands of images.

In detail, the four phases of the experiment were:

1. Initial multi-label annotation. Labelers A, B, and C
providedmulti-labelannotations for a subset of size20;000
from the ImageNet validation set and20;683images from
all three ImageNetV2 test sets collected by Recht et al.
(2019). At this point, labelers A, B, and C already had
extensive experience with the ImageNet dataset. We further
discuss the annotation process in Section 3.

2. Human labeler training. Using a subset of the remain-
ing 30;000unannotated images in the ImageNet validation
set, labelers A, B, C, D, and E underwent extensive training
to understand the intricacies of �ne-grained class distinc-
tions in the ImageNet class hierarchy. The exact training
process is detailed in Section 4.

3. Human labeler evaluation.For the human labeler eval-
uation, we generated a class-balanced random sample con-
taining1;000images from the20;000annotated images of
the ImageNet validation set and1;000 images from Ima-
geNetV2. We combined the two sets and randomly shuf�ed
the resulting2;000 images. Then, the �ve participants la-
beled these images over the course of28days.

4. Final annotation review. Lastly, all labelers reviewed
the additional annotations generated in the human labeler
evaluation phase. We discuss the main results from our
evaluation in Section 5.

3. Multi-label annotations
In this section, we describe the details of the multi-label
annotation process for the ImageNet validation dataset and

ImageNetV2. We �rst explain why multi-label annotations
are necessary for proper accuracy evaluation on ImageNet
by outlining the pitfalls of the two most widely used accu-
racy metrics,top-1 andtop-5 .

Top-1 accuracy. Top-1 accuracy is the standard accu-
racy measure used in the classi�cation literature. It mea-
sures the proportion of examples for which the predicted
label matches the single target label. However, the assump-
tion that each image has a single ground truth label from
a �xed set of classes is often incorrect. ImageNet images,
such as Figure 3a, often contain multiple objects belong-
ing to different classes (e.g.desk , laptop , keyboard ,
space bar , screen , andmouse frequently all appear
in the same image). Moreover, even for images for which a
class is prominent the ImageNet label might refer to another
class present in the image. For example, in Figure 3b the
classgown is central and appears in the foreground, but
the ImageNet label ispicket fence . As a result, one is
not guaranteed to achieve hightop-1 accuracy by identi-
fying the main objects in images. In other words,top-1
accuracy can be overly stringent by penalizing predictions
that appear in the image but do not correspond to the target
label.

Top-5 accuracy. To partially remedy issues with
top-1 , the organizers of the ImageNet challenge (Rus-
sakovsky et al., 2015) measuredtop-5 accuracy, which
considers a classi�cation correct ifany of the �ve pre-
dictions matches the target label. However, allowing
�ve guesses onall images on �ne-grained classi�cation
tasks such as ImageNet can make certain class distinc-
tions trivial. For example, there are �ve turtles in the
ImageNet class hierarchy (mud turtle , box turtle ,
loggerhead turtle , leatherback turtle , and
terrapin ), which can be dif�cult to distinguish, but given
an image of a turtle, a classi�er can guess all �ve turtle
classes to ensure that it predicts the correct label.

Multi-label accuracy. For multi-label accuracy, every im-
age has a set of target labels and a prediction is marked
correct if it corresponds toanyof the target labels for that
image. Due to the limitations oftop-1 andtop-5 ac-
curacy, as well as ambiguity in the target class for many
images, multi-label annotations are necessary for rigorous
accuracy evaluation on ImageNet.

3.1. Types of multi-label annotations
Next, we discuss three categories of multi-label annotations
that arose in our study, exempli�ed in Figure 3.

Multiple objects or organisms. For images that contain
multiple objects or organisms corresponding to classes in
the ImageNet hierarchy, we added an additional target label
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Figure 2.Timeline for the four phases of our experiment. 1)Initial multi-label annotation:First, starting in November 2018, human
labelers A, B, and C annotated a set of images from ImageNetV2 and the ImageNet validation set with multi-label annotations. 2)Human
labeler training: Then, after a long break, on October 14, 2019, all �ve participants began training on a3;000 image subset of the original
ImageNet validation set. (Humans werenot trained on ImageNetV2.) 3)Human labeler evaluation:Next, starting on December 18, 2019,
humans labeled 2,000 images from a random, class-balanced sample including 1,000 images from the ImageNet validation dataset and
1,000 images from ImageNetV2. The evaluation dataset did not include any of the images used in training. 4)Final annotation review:
Finally, all �ve labelers reviewed the annotations collected for the 2,000 image evaluation dataset.

for each entity in the scene. For example, Figure 3a shows
an image with target labeldesk that also contains multiple
different objects corresponding to ImageNet classes. When
there are multiple correct objects or organisms, the target
class does not always correspond to the most central or
largest entity in the scene. For example, in Figure 3b, the
target classpicket fence appears in the background
of the image, but classesgroom , bow tie , suit , gown,
andhoopskirt all appear in the foreground.

Synonym or subset relationships.If two classes are syn-
onyms of each other, or a class is a subset of another class,
we considered both classes to be correct target labels. For
example, the ImageNet classtusker is de�ned as any
animal with visible tusks. Sincewarthog , African
elephant andIndian elephant all have prominent
tusks, these classes are all technically subsets oftusker .
Figure 3c shows anAfrican elephant that addition-
ally hastusker as a correct label.

Unclear images.In certain cases, we could not ascertain
whether a label was correct due to ambiguities in the image
or in the class hierarchy. Figure 3d shows a scene which
could arguably be either alakeshore or aseashore .

3.2. Collecting multi-label annotations
Next, we detail the process we used to collect multi-label
annotations. We �rst collected thetop-1 predictions of72
pre-trained ImageNet models published from 2012 to 2018.
Then, over a period of three months, participants A, B and
C reviewed all predictions made by the models on40;683
images from ImageNet and ImageNetV2. Participants �rst
researched class distinctions extensively – the details of this

research are covered in 4. The three participants then catego-
rizedeveryunique prediction made by the72models on the
40;683images (a total of182;597unique predictions) into
correct or incorrect , thereby allowing each image
to have multiplecorrect labels.

In total, we found that 18.2% of the ImageNet validation
images have more than one correct label. Among images
with multiple correct labels, the mean number of correct
labels per image is 2.3.

The multi-label accuracy metric. Multi-label accuracy
is computed by counting a prediction as correct if and only
if it was marked correct by the expert reviewers during
the annotation stage. We note that we performed a second
annotation stage after the human labelers completed the
experiment, as explained in Section 4.3.

In Figure 4, we plot each model'stop-5 andtop-1 accu-
racy versus its multi-label accuracy.Everymodel prediction
was reviewed individually for correctness. Highertop-1
andtop-5 accuracy correspond to higher multi-label accu-
racy with relatively few changes in model rankings across
the different metrics. However, for all models,top-1 ac-
curacy underestimates multi-label accuracy (models see a
median improvement of 8.9% when comparing multi-label
to top-1 ) while top-5 overestimates multi-label accu-
racy (models see a median drop of 7.4% when comparing
multi-label accuracy totop-5 ). While multi-label accu-
racy is highly correlated withtop-1 andtop-5 accuracy,
we assert that neithertop-1 nor top-5 measure a semanti-
cally meaningful notion of accuracy.
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(a)desk (b) picket fence (c)African elephant (d) lakeshore

Figure 3. Examples from the ImageNet validation of scenarios where multi-label annotations are necessary.Multiple objects or organisms:
In Figure 3a, the ImageNet label isdesk butscreen , monitor , coffee mug and many more objects in the scene could count as
correct labels. Figure 3b shows a scene where the target labelpicket fence is counterintuitive because it appears in the background
of the image while classesgroom , bowtie , suit , gown, and possiblyhoopskirt are more prominently displayed in the foreground.
b) Synonym or subset relationships:This image has ImageNet labelAfrican elephant , but can be labeledtusker as well, because
everyAfrican elephant with tusks is atusker . c) Unclear images:This image is labeledlakeshore , but could also be labeled
seashore as there is not enough information in the scene to distinguish the water body between a lake or sea.
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Figure 4. The relationship betweentop-1 , top-5 , and multi-label accuracy on ImageNet test for all72 models in our test bed. The
left �gure plots multi-label vs.top-1 accuracy accuracy. Multi-label accuracy makes the task easier thantop-1 accuracy, with a
median improvement of 8.9% betweentop-1 and multi-label scores. The right �gure plots multi-label vs.top-5 accuracy accuracy.
Multi-label accuracy is more stringent thantop-5 accuracy, with a median drop of 7.4% betweentop-5 and multi-label scores.

4. Human accuracy measurement process
We now describe the human evaluation portion of our ex-
periment. Annotators A, B, & C participated in the initial
annotation review and thus saw all40;683evaluation images
and labels from ImageNet and ImageNetV2. To remedy the
possibility that annotators A, B & C unintentionally mem-
orized the evaluation labels, two precautions were taken.
First, annotators A, B, & C did not look at the data for six
months. Second, we introduced annotators D & E, neither
of whom had seen the test images prior to evaluation.

4.1. Human labeler training
After a six month period of inactivity, in October 2019, all
�ve participants began a training regimen for the labeling
task. Previously, participants A, B, C undertook a similar
training for the initial multi-label annotation review. All

training was carried out using a the30;000ImageNet valida-
tion images that would not be used for the �nal evaluation.
The primary goal of training was to familiarize humans with
the ImageNet class hierarchy.

The initial human accuracy study by Russakovsky et al.
(2015) details three main failure modes of humans: �ne-
grained distinctions, class unawareness, and insuf�cient
training images. We address all three failure modes with
our training regimen:

Fine-grained distinctions. There are many dif�cult class
distinctions in ImageNet, but humans tend to struggle with
�ne-grained distinctions within the 410 animal classes and
118 dog classes. Even the scienti�c community disagrees
about the exact taxonomy of speci�c species. For instance,
while tiger beetles are often classi�ed as a subfamily



Evaluating Machine Accuracy on ImageNet

of ground beetle , this classi�cation isn't universally
accepted among entomologists (bug, 2019; Wikipedia con-
tributors, 2019). Similar issues arise in other animal families,
such as the mustelines, monkeys, and wolves.

To help humans perform well on �ne-grained class distinc-
tions, we created training tasks containing only images from
certain animal families. The training tasks gave labelers
immediate feedback on whether they had made the correct
prediction or not. These targeted training tasks were created
after labelers identi�ed classes for which they wanted addi-
tional training. Labelers trained on class-speci�c tasks for
dogs, insects, monkeys, terriers, electric rays and sting rays,
and marmots and beavers. After training, labelers reviewed
each other's annotations as a group and discussed the class
distinctions. Labelers also wrote a labeling guide contain-
ing useful information for distinguishing similar classes,
discussed in more detail in Section 4.2.

Information from the American Kennel Club (akc) was
frequently used to understand and disambiguate dif�cult
dog breeds. We also reached out to a member of the local
chapter of the club for aid with dog identi�cation. Since
some dogs may be mixed-breeds, it may be impossible
to disambiguate between similar dog breeds from pictures
alone. Fortunately, the ImageNet dog labels are of high
quality as they are derived from the Flickr image description,
which are often authored by the owner of the dog.

Class unawareness.For the 590 object categories in Ima-
geNet,recall is the primary dif�culty for untrained humans.
To address this, we built a labeling user interface that al-
lowed annotators to either search for a speci�c ImageNet
class or explore a graphical representation of the ImageNet
classes based on the WordNet (Miller, 1995) hierarchy.

Insuf�cient training images. The two annotators in (Rus-
sakovsky et al., 2015) trained on 500 and 100 images re-
spectively, and then had access to 13 training images per
class while labeling. In our experiment, human labelers had
access to 100 training images per class while labeling.

4.2. Labeling guide
During training, the participants constructed alabeling
guidethat distilled class speci�c analysis learned during
training into key discriminative traits that could be refer-
enced by the labelers during the �nal labeling evaluation.
The labeling guide contained detailed entries for 431 classes.

4.3. Final evaluation and annotation review.
On December 18th 2019,1;000images were sampled from
ImageNet Validation and1;000images were sampled from
ImageNetV2 and shuf�ed together. The datasets were sam-
pled in a class balanced manner.

Between December 19th 2019 and January 16th 2020 all 5

participants labeled 2,000 images in order to produce the
main results of this work. The only resources the labelers
had access to during evaluation were 100 randomly sampled
images from the ImageNet training set for each class, and
the labeling guide. The participants spent a median of 26
seconds per image, with a median labeling time of 36 hours
for the entire labeling task.

After the labeling task was completed, an additional multi-
label annotation session was necessary. Since each image
only contained reviewed labels for classes predicted bymod-
els, to ensure a fair multi-label accuracy, the human pre-
dictions for the 2,000 images had to be manually reviewed.
To minimize bias, participants were not allowed to view
their predicted labels after the task, and random model pre-
dictions were seeded into the annotation review such that
every image had both model and human predictions to be
reviewed. Compared to labels from the initial annotation
review from November 2018, after the �nal annotation re-
view, labels were unchanged for 1320 images, added for 531
images, and modi�ed for 239 images. The modi�cations
were due to a much greater knowledge of �ne-grained class
distinctions by the participants after the training phase.

5. Main Results
In this section we discuss two key facets of our experimental
�ndings: a comparison of human and machine accuracies
on ImageNet, and a comparison of human and machine
robustness to the distribution shift between the ImageNet
validation set and the ImageNet-V2 test set. We also con-
sider these comparisons on three restricted sets of images.

The main results of our work are illustrated in Figure 1. We
can see that all the human labelers fall close to the dotted
line, indicating they their accuracies on the two datasets
are within1%. Moreover, we can see that the accuracies of
three of the human labelers are better than the performance
of the best model on both the original ImageNet validation
set and on the ImageNet-V2 test set. Importantly, we note
that labelers D and E, who did not participate in the initial
annotation period, performed better than the best model.

Figure 1 shows that the ImageNet validation set con�dence
intervals of the best 4 humans labelers and of the best model
overlap. However, McNemar's paired test rejects the null
hypothesis that theFixResNeXt model (the best model)
and Human E (the best human labeler) have the same ac-
curacy on the ImageNet validation set distribution with a
p-value of0:037. In Figure 1 we observe that the con�dence
intervals of Humans C, D, and E on the ImageNetV2 test set
do not overlap with the con�dence interval of the best model.
McNemar's test between Human B and theFixResNeXt
model on ImageNetV2 yields a p-value of2 � 10� 4.

Dif�cult images: One of the bene�ts of our experiments is
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Table 2.Human and model multi-label accuracy on three subsets of the ImageNet and ImageNetV2 test sets. These results suggest that
human labelers have an easier time identifying objects than dogs and organisms. Moreover, human labelers are highly accurate on images
on which they spent little time to assign a label.

ImageNet multi-label accuracy (%)

All Images Without Dogs Objects Only Fast Images
Participant Original V2 Original V2 Original V2 Original V2

resnet50 84.2 75.7 84.9 76.8 82.5 72.8 86.8 79.6
AdvProp 93.6 88.3 94.1 89.3 92.3 86.7 94.9 91.3

FixResNeXt 95.5 89.6 96.0 90.1 95.0 89.1 96.2 92.3

Human A 91.9 91.1 94.2 93.4 97.0 96.7 97.6 97.5
Human B 94.7 93.9 96.9 96.0 98.3 97.8 98.5 98.5
Human C 96.2 96.7 98.4 98.6 99.1 99.8 99.1 99.7
Human D 95.7 94.8 97.3 96.6 98.8 98.4 99.3 98.3
Human E 97.2 96.5 98.7 97.3 98.8 97.0 99.5 98.6

the potential insight into the failure modes of image classi-
�cation models. To have a point of comparison let us start
with the human labelers. There were10 images which were
misclassi�ed byall human labelers. These images consisted
of one image of a monkey and nine images of dogs. On
the other hand, there were27 images misclassi�ed byall
72 models considered by us. Interestingly,19 out of these
images correspond to object classes and8 correspond to
organism classes. We note that there are only two images
that were misclassi�ed by all models and human labelers,
both of them containing dogs. Four of the27 images which
were dif�cult for the models are displayed in Figure 5. It
is interesting that the failure cases of the models consist of
many images of objects while the failure cases of human
labelers are exclusively images of animals.

Figure 5.Four images which were misclassi�ed by all72models,
two from ImageNet (top left and bottom right) and two from
ImageNetv2. The target correct labels for these images arecup ,
yawl , nail , andspotlight

Accuracies without dogs: To understand the extent to
which models are better than the human labelers at clas-
sifying dogs and animals, we compute their accuracies on
two restricted sets of images. First, we computed accura-
cies by excluding the118dog classes. In this case, Table 2
shows an increase in the accuracy of the best model ((Tou-
vron et al., 2019)) by0:6% on ImageNet images and by
1:1%on ImageNetV2 images. However, the mean increase
of the human labelers' accuracies is1:9% on ImageNet and
1:8% on ImageNetV2. Before we interpret this result, we
must establish whether the changes in accuracies shown
in Table 2 are meaningful. There are882non-dog classes
in ImageNet. We use the bootstrap to estimate changes in
accuracies when the data is restricted to882classes. We
compute accuracies over1000trials as follows: we sample
without replacement882classes and compute the accuracies
of the human labelers on the images whose main labels are
in the sampled classes. All trials yield smaller changes in
accuracy than those shown in Table 2. This simulation indi-
cates that the increase in human performance on non-dog
images is signi�cant.

Therefore, the relative gap between human labelers and
models increases on both ImageNet and ImageNetV2 when
we remove the images containing dogs. This suggests that
the dog images are more dif�cult for the human labelers
participating in our experiment than for the models.

Accuracies on objects:To further understand the strengths
and weaknesses of the models and human labelers, we com-
pute their accuracies on the subset of data which have ob-
jects as their main labels, as opposed to organisms. There
are590object classes. In Table 2 we can see the stark con-
trast in performance between human labelers and models on
images of objects. The mean increase of the human labelers'
accuracies is3:3% on ImageNet and3:4% on ImageNetV2,
whereas the accuracy of the best model decreased by0:5%
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on both ImageNet and ImageNetV2. A bootstrap simulation
similar to the one described for the “Without Dogs” com-
parison reveals that human accuracy increase is signi�cant.
This result suggests that images of objects are substantially
easier for the human labelers than the models.

Accuracies on fast images:Whereas CNN models spend
the same amount of time classifying different images, the
human labelers spent anywhere from a couple of seconds
to 40 minutes labeling one image. What does the amount
of time spent by humans labeling an image say about that
image? We compute accuracies of all models and human
labelers on the subset of images for which the median time
spent by the human labelers to label it was at most60sec-
onds. Out of a total of2000images used in the evaluation,
there are756such images from ImageNet (77%of images)
and714such images from ImageNetV2 (73%of images).
We observe a dramatic increase in the accuracies of the hu-
man labelers, suggesting that human labelers know when an
image is dif�cult for them and spend more time labeling it.
The accuracies of the models also increase on “Fast Images.”
This result is intuitive, suggesting that images that humans
label quickly are more likely to be correctly classi�ed by
models. We present results for these images in Table 2.

6. Related Work
Human accuracy on ImageNet. In the context of the
ImageNet challenge, Russakovsky et al. (2015) studied the
accuracy of two trained humans on1;500and258ImageNet
images, respectively. The widely publicized human baseline
on ImageNet is the top-5 accuracy of the labeler who labeled
1,500 images. As mentioned in the introduction, our study
goes beyond their comparison in three ways: multi-label
accuracy, more labelers, and a focus on robustness to small
distribution shift. While some of our �ndings differ, other
results from (Russakovsky et al., 2015) are consistent with
ours. For instance, both experiments found that the time
spent per image was approximately one minute, with a long
tail due to dif�cult images.

Human performance in computer vision broadly.
There have been several recent studies of humans in vari-
ous areas of computer vision. For instance, Elsayed et al.
(2018) construct adversarial examples that fool both models
andtime-limitedhumans. Geirhos et al. (2017) conducted
psychophysical trials to investigate human robustness to syn-
thetic distribution sh�ts, and Geirhos et al. (2018) studied
characteristics used by humans to make object recognition
decisions. In a similar vein, Zhu et al. (2016) contrast the ef-
fect of foreground and background objects on performance
by humans and trained models.

Multi-label annotations. In this work, we contribute
multi-label annotations for ImageNet and ImageNetV2. Pre-

viously, Stock & Cissé (2017) studied the multi-label nature
of ImageNet and found thattop-1 accuracy can under-
estimate multi-label by as much as13:2%. The results of
this work largely agree with our study. We hope the public
release of our multi-label annotations will allow an accurate
evaluation of all future models.

ImageNet inconsistencies and label error. During our
annotation review, we recorded all incorrectly classi�ed im-
ages we found in ImageNet and ImageNetV2. With the help
of experts from the Cornell Lab of Ornithology,Van Horn
et al. (2015) estimate that at least 4% of birds are misclassi-
�ed in ImageNet. Within the bird classes, (Van Horn et al.,
2015) also observe inconsistencies in ImageNet's taxonomic
structure which lead to weak class boundaries. We found
that these taxonomic issues are present in the majority of
the �ne-grained organism classes.

Distribution shift. There is a growing body of work
studying methods for addressing the challenge of distri-
bution shift. For instance, the goal of distributionally robust
optimization (DRO) is to �nd models that minimize the
worst case expected error over a set of probability distri-
butions (Abadeh et al., 2015; Ben-Tal et al., 2013; Delage
& Ye, 2010; Duchi et al., 2019; Esfahani & Kuhn, 2018;
Sagawa et al., 2019; Sinha et al., 2017). A similar yet dif-
ferent line of work has focused on �nding models that have
low error rates on adversarial examples (worst case small
perturbations to data points in the test set) (Biggio & Roli,
2018; Biggio et al., 2013; Goodfellow et al., 2014; Madry
et al., 2017). The work surrounding both DRO and adver-
sarial examples has developed valuable ideas, but neither
line of work has been shown to resolve the drop in accuracy
between ImageNet and ImageNetV2.

7. Conclusion & Future Work
Achieving truly reliable machine learning will require a
deeper understanding of the input changes a model should
be robust to. Such understanding can likely guide research
on more robust methods and is essential for developing
meaningful tests of reliable performance. For tasks where
human-like generalization is the ultimate goal, comparing
model performance to human generalization can provide
valuable information about the desired robustness properties.
Our work is a step in this direction. Our results highlight that
robustness to small, naturally occuring distribution shifts is
a performance dimension not addressed by current bench-
marks, but easily handled by humans. Besides the obvious
direction of improving model robustness to such distribution
shifts, there are further avenues for future work:

Robustness of non-expert labelers.A natural question is
whether labelers with less training exhibit similar robust-
ness to the distribution shift from ImageNet to ImageNetV2.



Evaluating Machine Accuracy on ImageNet

Since untrained labelers will likely be in a lower accuracy
regime, this would further illustrate that human robustness is
a more stable property than direct accuracy measurements.

Other generalization dimensions. What further dimen-
sions of human generalization are current models clearly
lacking? Other forms of natural distribution shift such as
robustness to temporal changes could be one candidate (Gu
et al., 2019; Shankar et al., 2019).
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