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Abstract
We evaluate a wide range of ImageNet models
with ve trained human labelers. In our year-long
experiment, trained humans rst annotated 40,000
images from the ImageNet and ImageNetV2 test
sets with multi-class labels to enable a semanti-
cally coherent evaluation. Then we measured the
classi cation accuracy of the ve trained humans
on the full task with 1,000 classes. Only the lat-
est models from 2020 are on par with our best
human labeler, and human accuracy on the 590
object classes is still 4% and 11% higher than
the best model on ImageNet and ImageNetV2,
respectively. Moreover, humans achieve the same
accuracy on ImageNet and ImageNetV2, while all
models see a consistent accuracy drop. Overall,
our results show that there is still substantial room
forimprovement on ImageNet and direct accuracy
comparisons between humans and machines may
overstate machine performance.

In this paper, we contextualize progress on ImageNet by
comparing a wide range of ImageNet models to ve trained
human labelers. Our year-long experiment consists of two
parts: rst, three labelers thoroughly re-annotated 40,000
testimages in order to create a testbed with minimal annota-
tion artifacts. The images are drawn from both the original
ImageNet validation set and the ImageNetV2 replication
study of Recht et al. (2019). Second, we measured the
classi cation accuracy of the ve trained labelers on the
full 1,000-class ImageNet task. We again utilized images
from both the original and the ImageNetV2 test sets. This
experiment led to the following contributions:

Multi-label annotations.  Our expert labels quantify mul-
tiple issues with the widely usddp-1 andtop-5 met-

rics on ImageNet. For instance, about 20% of images have
more then one valid label, which makiegp-1 numbers
overly pessimistic. To ensure a consistent annotation of all
40,000 images, we created a 400-page labeling guide de-
scribing the ne-grained class distinctions. In addition, we
enlisted the help of a dog competition judge with 20 years

1. Introduction of experience to validate particularly hard instances among
ImageNet, the most in uential data set in machine learnthe 118 dog breeds in ImageNet. Interestingly, we nd that
ing, has helped to shape the landscape of machine learnirigp-1 accuracy is almost perfectly linearly correlated with
research since its release in 2009 (Deng et al., 2009; Ruglti-label accuracy for the models in our testbed.
sakovsky et al., 2015). Methods live or die by their “per-

formance” on this benchmark, measured by how frequentl . . _— .
T—éuman vs. machine comparison. Building on our multi-

bel annotations, we nd that the highest accuracy achieved
y one of our human labelers is comparable to the best

images are assigned the correct label out of 1,000 possib
classes. This task is inherently an odd one: seldom do w

reduce scene analysis and visual comprehension to a sin i
0, 0,
scalar number. Though models now can nearly perform a odel in 2020. Our ve labelers are 3% to 9% bette_r than
e performance levels from early 2015, when claims of

90% accuracy on the ImageNet (Xie et al., 2019b), we dé

not have much context for what such performance mean _uper—human accuracy on ImageNet rst appeared (H? etal,
what kinds of errors do these models make? Are curren 015). Mor_eover, there are important differences in the
models nearing a fundamental Bayes error or is there stiff'" clrskof trained htlrjlmans anq mcci)cé.elf'. Htgmanbs ?Nake more
room for improvement? Are the models overly sensitive tolnistakes among the ne-grained distinctions between anl-

labeling biases as suggested in recent work (Recht et amal species (especially dog t_)ree(_js) and a_ch|eve higher ac-
2019)? curacy on the 590 classes of inanimate objects. In contrast,

the accuracies of models are more uniform. This shows
"Equal contribution lUniversity of California, Berke- that there is still room for improving existing classi cation
ley *Google Brain. ~Correspondence to: Vaishaal Shankaimodels: the best human achieves more than 99% accuracy
<vaishaal@berkeley.edu>. on the object classes for both ImageNet and ImageNetV2,
Proceedings of th87" International Conference on Machine while the best network achieves only 95% and 89% on the

Learning Vienna, Austria, PMLR 119, 2020. Copyright 2020 by Object classes in ImageNet and ImageNetV2, respectively
the author(s). (see Tables 1 and 2).
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Figure 1.Multi-label accuracies for both CNN models and human participants on the ImageNet validation set versus their accuracies on
the ImageNetV2 test set. The left plot shows accuracies on all 1,000 classes, the right plot show accuracies on the 590 object classes. The
con dence intervals ar85% Clopper-Pearson con dence intervals.

Table 1.Human and model multi-label accuracy on the Inr]age,\letdemonstrates that robustness to small distribution shifts is

validation dataset and ImageNetV2. The gap is measured as mulfli- real problem for neural networks. Neural networks have

label accuracy on ImageNet validation minus multi-label accu-made little to no progress in this dimension over the past

racy on ImageNetV2. The con dence intervals are 95% Clopper-decade and even models trained on 1,000 times more data
Pearson intervals. The AdvProp model (Xie et al., 2019a) is athan the standard ImageNet training set (Mahajan et al.,
Ef centNet-B8 trained with AdvProp and the FixRes model (Ma- 2018; Touvron et al., 2019) do not close this gap.

hajan et al., 2018; Touvron et al., 2019) is a ResNext-32x48
trained on one billion images from Instagram.

ImageNet multi-label accuracy )

dBas;ed on our investigation, we make the following recom-
mendations for future machine evaluations on ImageNet:

Participant Original V2 Gap 1. Measure multi-label accuracy. While top-1 accu-

ResNet50  84.2[81.8,86.4] 75.7[73.2,78.7] 8.4 racy is still a good predictor of multi-label accuracy for
AdvProp  93.6[91.9,95.0] 88.3[86.5, 90.6] 5.3 models, this is not guaranteed for the future. Moreover,
FixRes 95.5[94.0,96.7] 89.6[87.9,91.8] 5.9 multi-label accuracy is a more meaningful metric for the

[ ]
[ ]
[ ] ravy
ImageNet classi cation task.
Human A 91.9[90.0,93.5] 91.1[89.6,93.2] 0.8
Human B 94.7[93.1,96.0] 93.9[92.6,95.6] 0.8
[ |
[ ]
[ ]

Human C  96.2(94.9,97.3] 96.7[95.9,98.1] -0.5 2. Report performance on dogs, other animals, and
HumanD 95.7(94.3,96.9] 94.8[93.7,96.4] 0.9 inanimate objects separately. Label noise and ambigui-

HumanE 97.3[96.0,98.2] 96.5[95.6,97.9] 0.7 ties are a smaller concern on the 590 object classes where
human labelers can achieve 99%+ accuracy.

Robustness to distribution shift. The common practice 3. Evaluate performance to distribution shift. - Our ex-

. . . . . eriments show that the distribution shift from ImageNet to
in machine learning benchmarks is to draw training and tes

S i . ““ImageNetV2 does not pose a challenge to humans but leads
sets from the same distribution. This setup may favor traine

0 substantial accuracy drops for all models. The robustness

models over human labelers, who are less focused on one ; .
S . . . . of humans proves that classi ers with the same accuracy on
speci c distribution. To investigate this hypothesis, we la-

) . o mageNet and ImageNetV2 exist. Finding machine models
beled images from the original ImageNet validation set an T : . L
. ) hat exhibit similar robustness is an important direction for
the ImageNetV2 replication experiment. Recht et al. (2019
- . uture research.

closely followed the original ImageNet creation process to

build a new test set but found that even the best modelBinally, we caution that our human accuracies should not be
achieve 11% lower top-1 accuracy than on the original tesseen as the best possible performance on this task. We con-
set. We show that all models in our testbed still see a 5%ecture that longer training can still lead to higher accuracy
to 8% accuracy drop for our multi-label annotations. Infor humans, and we expect that automated methods will also
contrast, all ve human labelers have the same accuracy onontinue to improve their accuracy on ImageNet. Moreover,
ImageNet and ImageNetV2 up to 1% (see Figure 1). Thisglassi cation problems such as ImageNet attempt to render
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immeasurable ambiguous, cultural, and subjective aspectmageNetV2. We rst explain why multi-label annotations

of their tasks measurable in a way that does not capturare necessary for proper accuracy evaluation on ImageNet

important dimensions of human experience. This makesy outlining the pitfalls of the two most widely used accu-

an overly broad interpretation of such benchmarks probracy metricstop-1 andtop-5

lematic and omits important dimensions of human abilities.

Nevertheless, we still hope that our multi-label annotationsrop-1 accuracy. Top-1 accuracy is the standard accu-

and the associated evaluation methodology will be useful tgacy measure used in the classi cation literature. It mea-

measure further progress of machine learning methods.  syres the proportion of examples for which the predicted
label matches the single target label. However, the assump-

2. Experiment setup tion that each image has a single ground truth label from

We conducted our experiment in four phases: (i) initial multi-2 X€d set of classes is often incorrect. ImageNet images,
label annotation, (i) human labeler training, (iii) human SUch as Figure 3a, often contain multiple objects belong-
labeler evaluation, and (iv) nal annotation review. Figure 2 ing to different classes (e.gesk , laptop , keyboard ,
provides a detailed timeline of the experiment. In total, ve SPace bar , screen , andmouse frequently all appear
human labelers participated in the experiment, denoted A? the same image). Moreover, even for images for which a
through E. All ve participants are anonymized authors of ¢lass is prominent the_\ ImageNet label m|ght_refgr to another
this manuscript. While evaluating more humans would have-!ass present in the image. For example, in Figure 3b the
provided additional information, the scale of the experimentclassgown is central and appears in the foreground, but
made it dif cult to incentivize others to invest the time the ImageNetlabel ipicket fence . As aresult, oneis
and effort required to familiarize themselves with heoo ot guaranteed to achieve higip-1 accuracy by identi-

ImageNet classes and to label thousands of images. fying the main objects in images. In other wortisp-1
. ) accuracy can be overly stringent by penalizing predictions
In detail, the four phases of the experiment were: that appear in the image but do not correspond to the target

1. Initial multi-label annotation. Labelers A, B, and C  label.

providedmulti-labelannotations for a subset of si26;,000

from the ImageNet validation set a@6;,683images from Top-5 accuracy. To partially remedy issues with
all three ImageNetV2 test sets collected by Recht et atop-1 , the organizers of the ImageNet challenge (Rus-
(2019). At this point, labelers A, B, and C already hadsakovsky et al., 2015) measuregp-5 accuracy, which
extensive experience with the ImageNet dataset. We furthezonsiders a classi cation correct #ny of the ve pre-
discuss the annotation process in Section 3. dictions matches the target label. However, allowing
ve guesses orall images on ne-grained classi cation

. : . : .. tasks such as ImageNet can make certain class distinc-
ing 30,000unannotated images in the ImageNet vaI|dat|ontions trivial. For example, there are ve turtles in the

set, labelers A, B, C, D, and E underwent extensive traininq .
’ v T . _ . dmageNet class hierarchyn(d turtle ,box turtle
to understand the intricacies of ne-grained class distinc; 9 i

. : ) .. “loggerhead turtle , leatherback turtle , and
tions in the ImageNet class hierarchy. The exact tralnlnglerrapin ), which can be dif cult to distinguish, but given
process is detailed in Section 4. ’ '

an image of a turtle, a classi er can guess all ve turtle
3. Human labeler evaluation.For the human labeler eval- classes to ensure that it predicts the correct label.

uation, we generated a class-balanced random sample con-

taining 1,000images from th€0,000annotated images of Multi-label accuracy. For multi-label accuracy, every im-
the ImageNet validation set arid000 images from Ima-  age has a set of target labels and a prediction is marked
geNetV2. We combined the two sets and randomly shuf edcorrect if it corresponds tanyof the target labels for that
the resulting2,000images. Then, the ve participants la- image. Due to the limitations dbp-1 andtop-5 ac-
beled these images over the cours@®tiays. curacy, as well as ambiguity in the target class for many

4. Final annotation review. Lastly, all labelers reviewed Mmages, multi-label annotations are necessary for rigorous

the additional annotations generated in the human labeléccuracy evaluation on ImageNet.

evaluation phase. We discuss the main results from our _ .
evaluation in Section 5. 3.1. Types of multi-label annotations

Next, we discuss three categories of multi-label annotations
that arose in our study, exempli ed in Figure 3.

2. Human labeler training. Using a subset of the remain-

3. Multi-label annotations
In this section, we describe the details of the multi-labelMultiple objects or organisms. For images that contain

annotation process for the ImageNet validation dataset an@ultiple objects or organisms corresponding to classes in
the ImageNet hierarchy, we added an additional target label
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Figure 2.Timeline for the four phases of our experiment.ldijial multi-label annotation:First, starting in November 2018, human

labelers A, B, and C annotated a set of images from ImageNetV2 and the ImageNet validation set with multi-label annotkitiznan 2)

labeler training: Then, after a long break, on October 14, 2019, all ve participants began trainin@@®@image subset of the original

ImageNet validation set. (Humans weret trained on ImageNetV2.) 3juman labeler evaluationNext, starting on December 18, 2019,

humans labeled 2,000 images from a random, class-balanced sample including 1,000 images from the ImageNet validation dataset and
1,000 images from ImageNetV2. The evaluation dataset did not include any of the images used in traiiivad.adnotation review:

Finally, all ve labelers reviewed the annotations collected for the 2,000 image evaluation dataset.

for each entity in the scene. For example, Figure 3a showsesearch are covered in 4. The three participants then catego-
an image with target labelesk that also contains multiple rizedeveryunique prediction made by th# models on the
different objects corresponding to ImageNet classes. WhedA(;683images (a total 0182597 unique predictions) into
there are multiple correct objects or organisms, the targetorrect  orincorrect , thereby allowing each image
class does not always correspond to the most central @o have multiplecorrect labels.

largest entity in the scene. For example, in Figure 3b, th
target claspicket fence appears in the background
of the image, but classggoom, bow tie , suit , gown,
andhoopskirt  all appear in the foreground.

(?n total, we found that 18.2% of the ImageNet validation
images have more than one correct label. Among images
with multiple correct labels, the mean number of correct
labels per image is 2.3.

Synonym or subset relationshipslf two classes are syn-

onyms of each other, or a class is a subset of another class,

we considered both classes to be correct target labels. For

example, the ImageNet classsker is de ned as any The multi-label accuracy metric. Multi-label accuracy

animal with visible tusks. Sincearthog , African
elephant andindian elephant all have prominent
tusks, these classes are all technically subsetss@er
Figure 3c shows aAfrican elephant that addition-
ally hastusker as a correct label.

is computed by counting a prediction as correct if and only
if it was marked correct by the expert reviewers during
the annotation stage. We note that we performed a second
annotation stage after the human labelers completed the
experiment, as explained in Section 4.3.

Unclear images.In certain cases, we could not ascertainIn Figure 4, we plot each modeltlsp-5 andtop-1 accu-
whether a label was correct due to ambiguities in the imagéacy versus its multi-label accuradgverymodel prediction
or in the class hierarchy. Figure 3d shows a scene whicwas reviewed individually for correctness. Highep-1

could arguably be eitherlakeshore  or aseashore .
3.2. Collecting multi-label annotations

Next, we detail the process we used to collect multi-la
annotations. We rst collected thep-1 predictions of72

andtop-5 accuracy correspond to higher multi-label accu-
racy with relatively few changes in model rankings across
the different metrics. However, for all modetep-1 ac-
pefuracy underestimates multi-label accuracy (models see a
median improvement of 8.9% when comparing multi-label

pre-trained ImageNet models published from 2012 to 20160 top-1 ) while top-5  overestimates multi-label accu-
Then, over a period of three months, participants A, B andacy (models see a median drop of 7.4% when comparing

C reviewed all predictions made by the modelsA6r683
images from ImageNet and ImageNetV2. Participants
researched class distinctions extensively — the details of

multi-label accuracy tdop-5 ). While multi-label accu-
rstfacy is highly correlated witkop-1 andtop-5 accuracy,
thiwe assert that neithéop-1 nortop-5 measure a semanti-
cally meaningful notion of accuracy.
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(a)desk (b) picket fence (c)African elephant (d) lakeshore

Figure 3. Examples from the ImageNet validation of scenarios where multi-label annotations are nedéaktgne objects or organisms:

In Figure 3a, the ImageNet labeldesk butscreen , monitor , coffee mug and many more objects in the scene could count as
correct labels. Figure 3b shows a scene where the targetdadket fence s counterintuitive because it appears in the background
of the image while classegoom, bowtie , suit , gown, and possibijhoopskirt  are more prominently displayed in the foreground.
b) Synonym or subset relationshipehis image has ImageNet lab&frican elephant , but can be labeletlisker as well, because
everyAfrican elephant with tusks is ausker . c)Unclear imagesThis image is labelethkeshore , but could also be labeled
seashore as there is not enough information in the scene to distinguish the water body between a lake or sea.
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Figure 4. The relationship betweenp-1 ,top-5 , and multi-label accuracy on ImageNet test for7@imodels in our test bed. The
left gure plots multi-label vs.top-1 accuracy accuracy. Multi-label accuracy makes the task easietdpdn accuracy, with a
median improvement of 8.9% betwetp-1 and multi-label scores. The right gure plots multi-label ¥sp-5 accuracy accuracy.
Multi-label accuracy is more stringent thtop-5 accuracy, with a median drop of 7.4% betwéep-5 and multi-label scores.

4. Human accuracy measurement process training was carried out using a t88;000ImageNet valida-
We now describe the human evaluation portion of our extion images that would not be used for the nal evaluation.
periment. Annotators A, B, & C participated in the initial The primary goal of training was to familiarize humans with
annotation review and thus saw 40;683evaluation images  the ImageNet class hierarchy.

and '?‘b,‘?'s from ImageNet and ImageNgtVZ. ,TO remedy thq’he initial human accuracy study by Russakovsky et al.
possibility that annotators A, B & C unintentionally mem- 5415y getails three main failure modes of humans: ne-
OT'Zed the evaluation Iabelsz two precautions were take rained distinctions, class unawareness, and insuf cient
First, annotators A, B_’ & C did not look at the data for SIX training images. We address all three failure modes with
months. Second, we introduced annotators D & E, nelthe6ur training regimen:

of whom had seen the test images prior to evaluation.
Fine-grained distinctions. There are many dif cult class

4.1. Human labeler training distinctions in ImageNet, but humans tend to struggle with
After a six month period of inactivity, in October 2019, all ne-grained distinctions within _the_410 animal _clas_ses and
ve participants began a training regimen for the labeling118 dog classes. Even the scienti c community disagrees
task. Previously, participants A, B, C undertook a similaraPout the exact taxonomy of speci ¢ species. For instance,
training for the initial multi-label annotation review. Al Whiletiger beetles are often classi ed as a subfamily
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of ground beetle |, this classi cation isn't universally participants labeled 2,000 images in order to produce the
accepted among entomologists (bug, 2019; Wikipedia cormnain results of this work. The only resources the labelers
tributors, 2019). Similar issues arise in other animal familieshad access to during evaluation were 100 randomly sampled
such as the mustelines, monkeys, and wolves. images from the ImageNet training set for each class, and
To help humans perform well on ne-grained class distinc-the labeling gwde. The partmpants sp_ent a median of 26
. . e . seconds per image, with a median labeling time of 36 hours
tions, we created training tasks containing only images fron}or the entire labeling task

certain animal families. The training tasks gave labelers 9 ‘
immediate feedback on whether they had made the correétfter the labeling task was completed, an additional multi-
prediction or not. These targeted training tasks were createldbel annotation session was necessary. Since each image
after labelers identi ed classes for which they wanted addionly contained reviewed labels for classes predicteshbyg-
tional training. Labelers trained on class-speci c tasks forels to ensure a fair multi-label accuracy, the human pre-
dogs, insects, monkeys, terriers, electric rays and sting raydictions for the 2,000 images had to be manually reviewed.
and marmots and beavers. After training, labelers reviewedo minimize bias, participants were not allowed to view
each other's annotations as a group and discussed the clas®ir predicted labels after the task, and random model pre-
distinctions. Labelers also wrote a labeling guide containedictions were seeded into the annotation review such that
ing useful information for distinguishing similar classes,every image had both model and human predictions to be
discussed in more detail in Section 4.2. reviewed. Compared to labels from the initial annotation
review from November 2018, after the nal annotation re-

Information from the American Kennel Club (akc) was _: )
frequently used to understand and disambiguate dif cult W labels were unchanged for 1320 images, added for 531

dog breeds. We also reached out to a member of the loca] 29€s: and modi ed for 239 images. The mod'| cations

o . o : were due to a much greater knowledge of ne-grained class
chapter of the club for aid with dog identi cation. Since .~ .~ " - -

. . . . distinctions by the participants after the training phase.
some dogs may be mixed-breeds, it may be impossible
to disambiguate between similar dog breeds from pictures ]
alone. Fortunately, the ImageNet dog labels are of higtp. Main Results
quality as they are derived from the Flickr image description)n this section we discuss two key facets of our experimental
which are often authored by the owner of the dog. ndings: a comparison of human and machine accuracies
Class unawarenessFor the 590 object categories in Ima- 2" ImageNet, and a comparison of human and machine
) 9 robustness to the distribution shift between the ImageNet

geNetrecall |s_the primary dif CUItY for untre_uned humans, validation set and the ImageNet-V2 test set. We also con-
To address this, we built a labeling user interface that al-

lowed annotators to either search for a speci tsider these comparisons on three restricted sets of images.
peci c ImageNe

class or explore a graphical representation of the ImageN@&the main results of our work are illustrated in Figure 1. We

classes based on the WordNet (Miller, 1995) hierarchy. can see that all the human labelers fall close to the dotted

line, indicating they their accuracies on the two datasets

Insuf cient training images. The two annotators in (Rus- are within1%. Moreover, we can see that the accuracies of

sakov_sky et al., 2015) trained on 500 anq 100 mages r‘:t)ﬁree of the human labelers are better than the performance
spectively, and then had access to 13 training images per,

class while labeling. In our experiment, human labelers ha(?f the best model on both the original ImageNet validation

access to 100 training imades per class while labelin set and on the ImageNet-V2 test set. Importantly, we note
9 gesp 9 that labelers D and E, who did not participate in the initial

. . annotation period, performed better than the best model.
4.2. Labeling guide

During training, the participants constructedadeling  Figure 1 shows that the ImageNet validation set con dence
guidethat distilled class speci ¢ analysis learned during intervals of the best 4 humans labelers and of the best model
training into key discriminative traits that could be refer-overlap. However, McNemar's paired test rejects the null
enced by the labelers during the nal labeling evaluationhypothesis that thEixResNeXt model (the best model)

The labeling guide contained detailed entries for 431 classeand Human E (the best human labeler) have the same ac-
curacy on the ImageNet validation set distribution with a

4.3. Final evaluation and annotation review. p-value 0f0:037. In Figure 1 we observe that the con dence

On December 18th 2019;000images were sampled from intervals of Humans C, D, and E on the ImageNetV2 test set
ImageNet Validation andl"OOOimages were sampled from do not overlap with the con dence interval of the best model.

ImageNetV2 and shuf ed together. The datasets were sanfICNemar's test between Human B and fFigRes4NeXt
pled in a class balanced manner. model on ImageNetV2 yields a p-valuedf 10 *.

Between December 19th 2019 and January 16th 2020 all Bif cultimages: One of the bene ts of our experiments is
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Table 2.Human and model multi-label accuracy on three subsets of the ImageNet and ImageNetV2 test sets. These results suggest that
human labelers have an easier time identifying objects than dogs and organisms. Moreover, human labelers are highly accurate on images
on which they spent little time to assign a label.

ImageNet multi-label accuracy @6)

All Images Without Dogs  Objects Only Fast Images
Participant | Original V2 | Original V2 | Original V2 | Original V2

resnet50 84.2 75.7 849 76.8 82.5 72.8 86.8 79.6
AdvProp 93.6 883 94.1 893 923 86.7 94.9 91.3
FixResNeXt 955 89.6 96.0 90.1 95.0 891 96.2 92.3
Human A 91.9 91.1 942 934 97.0 96.7 97.6 97.5
Human B 94.7 93.9 96.9 96.0 98.3 97.8 98.5 985
Human C 96.2 96.7 98.4  98.6 99.1 99.8 99.1 99.7
Human D 95.7 94.8 97.3 96.6 98.8 984 99.3 983
Human E 97.2 96.5 98.7 97.3 98.8 97.0 995 98.6

the potential insight into the failure modes of image classiAccuracies without dogs: To understand the extent to
cation models. To have a point of comparison let us startwhich models are better than the human labelers at clas-
with the human labelers. There wek@images which were sifying dogs and animals, we compute their accuracies on
misclassi ed byall human labelers. These images consistedwo restricted sets of images. First, we computed accura-
of one image of a monkey and nine images of dogs. Ories by excluding th&18dog classes. In this case, Table 2
the other hand, there wel¥ images misclassi ed bl shows an increase in the accuracy of the best model ((Tou-
72 models considered by us. Interestindl9,out of these vron et al., 2019)) by:6% on ImageNet images and by
images correspond to object classes 8mbrrespond to  1:1%on ImageNetV2 images. However, the mean increase
organism classes. We note that there are only two images the human labelers’ accuraciesli®% on ImageNet and
that were misclassi ed by all models and human labelers]:8% on ImageNetV2. Before we interpret this result, we
both of them containing dogs. Four of tA&images which  must establish whether the changes in accuracies shown
were dif cult for the models are displayed in Figure 5. It in Table 2 are meaningful. There é8882non-dog classes
is interesting that the failure cases of the models consist ah ImageNet. We use the bootstrap to estimate changes in
many images of objects while the failure cases of humaraccuracies when the data is restricte®82 classes. We
labelers are exclusively images of animals. compute accuracies ov&000trials as follows: we sample
without replacemeri82classes and compute the accuracies
of the human labelers on the images whose main labels are
in the sampled classes. All trials yield smaller changes in
accuracy than those shown in Table 2. This simulation indi-
cates that the increase in human performance on non-dog
images is signi cant.

Therefore, the relative gap between human labelers and
models increases on both ImageNet and ImageNetV2 when
we remove the images containing dogs. This suggests that
the dog images are more dif cult for the human labelers
participating in our experiment than for the models.

Accuracies on objects:To further understand the strengths
and weaknesses of the models and human labelers, we com-
pute their accuracies on the subset of data which have ob-
jects as their main labels, as opposed to organisms. There
are5900bject classes. In Table 2 we can see the stark con-
trast in performance between human labelers and models on
images of objects. The mean increase of the human labelers'
accuracies i8:3% on ImageNet an@:4% on ImageNetV2,
whereas the accuracy of the best model decreas@dbBy

Figure 5.Four images which were misclassi ed by @&Pmodels,
two from ImageNet (top left and bottom right) and two from
ImageNetv2. The target correct labels for these imagesigre
yawl , nail , andspotlight
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on both ImageNet and ImageNetV2. A bootstrap simulatiorviously, Stock & Cissé (2017) studied the multi-label nature
similar to the one described for the “Without Dogs” com-of ImageNet and found thabp-1 accuracy can under-
parison reveals that human accuracy increase is signi canestimate multi-label by as much 48:2%. The results of
This result suggests that images of objects are substantialthis work largely agree with our study. We hope the public
easier for the human labelers than the models. release of our multi-label annotations will allow an accurate

Accuracies on fast imagesWhereas CNN models spend evaluation of all future models.

the same amount of time classifying different images, the ) ) ) )

human labelers spent anywhere from a couple of second1@9eNet inconsistencies and label error. During our

to 40 minutes labeling one image. What does the amoung@nnotation review, we recorded all incorrectly cla}55| edim-
of time spent by humans labeling an image say about th£19eS we found in ImageNet and ImageNetV2. With the help
image? We compute accuracies of all models and humaff €xperts from the Cornell Lab of Ornithology,Van Horn
labelers on the subset of images for which the median tim&! &l- (2015) estimate that at least 4% of birds are misclassi-
spent by the human labelers to label it was at néostec- ed in ImageNet. W|th|n the blrd_ clqsses, (Van Horn et aI.,.
onds. Out of a total 02000images used in the evaluation, 2015) also opserve inconsistencies in ImageN_et‘s taxonomic
there are756such images from ImageNet{%of images) structure which lead to weak class boundaries. We found

and714such images from ImageNetVZ23% of images). that these Faxonomic_issues are present in the majority of
We observe a dramatic increase in the accuracies of the hifle ne-grained organism classes.

man labelers, suggesting that human labelers know when an

image is dif cult for them and spend more time labeling it. Distribution shift. ~ There is a growing body of work
The accuracies of the models also increase on “Fast Imagestudying methods for addressing the challenge of distri-
This result is intuitive, suggesting that images that humang®ution shift. For instance, the goal of distributionally robust
label quickly are more likely to be correctly classi ed by optimization (DRO) is to nd models that minimize the

models. We present results for these images in Table 2. Worst case expected error over a set of probability distri-
butions (Abadeh et al., 2015; Ben-Tal et al., 2013; Delage

& Ye, 2010; Duchi et al., 2019; Esfahani & Kuhn, 2018;
6. Related Work Sagawa et al., 2019; Sinha et al., 2017). A similar yet dif-
Human accuracy on ImageNet. In the context of the  ¢orent jine of work has focused on nding models that have
ImageNet challenge, Russakovsky et al. (2015) studied thgy, error rates on adversarial examples (worst case small
accuracy of two trained humans @500and258ImageNet o rhations to data points in the test set) (Biggio & Roli,
images, respectively. The widely publicized human basellne2018; Biggio et al., 2013; Goodfellow et al., 2014: Madry
on ImageNetis the top-5 accuracy of the labeler who labeledy 51 ' 2017). The work surrounding both DRO and adver-
1,500 images. As mentioned in the introduction, our studyyia| examples has developed valuable ideas, but neither

goes beyond their comparison in three ways: multi-labe|jhg of york has been shown to resolve the drop in accuracy
accuracy, more labelers, and a focus on robustness to smgJl\veen ImageNet and ImageNetV2.

distribution shift. While some of our ndings differ, other
results from (Russakovsky et al., 2015) are consistent with .
ours. For instance, both experiments found that the timd - Conclusion & Future Work

spent per image was approximately one minute, with a longichieving truly reliable machine learning will require a
tail due to dif cult images. deeper understanding of the input changes a model should

be robust to. Such understanding can likely guide research
Human performance in computer vision broadly. ~©n more robust methods and is essential for developing

There have been several recent studies of humans in vafitéaningful tests of reliable performance. For tasks where
ous areas of computer vision. For instance, Elsayed et dluman-like generalization is the ultimate goal, comparing
(2018) construct adversarial examples that fool both model§'0del performance to human generalization can provide
andtime-limitedhumans. Geirhos et al. (2017) conductedv@!uable information about the desired robustness properties.
psychophysical trials to investigate human robustness to sy@Ur work is a step in this direction. Our results highlight that
thetic distribution sh ts, and Geirhos et al. (2018) studied robustness to small, naturally occuring distribution shifts is
characteristics used by humans to make obiject recognitioft Performance dimension not addressed by current bench-
decisions. In a similar vein, Zhu et al. (2016) contrast the efMarks, but easily handled by humans. Besides the obvious

fect of foreground and background objects on performancéﬁreCtion of improving model robustness to such distribution
by humans and trained models. shifts, there are further avenues for future work:

Robustness of non-expert labelersA natural question is
Multi-label annotations. In this work, we contribute whether labelers with less training exhibit similar robust-
multi-label annotations for ImageNet and ImageNetV2. Preness to the distribution shift from ImageNet to ImageNetV2.
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Since untrained labelers will likely be in a lower accuracyChollet, F. Xception: Deep learning with depthwise sep-
regime, this would further illustrate that human robustnessis arable convolutions. Irf€onference on Computer Vi-
a more stable property than direct accuracy measurements. sion and Pattern Recognition (CVPR017. https:

Other generalization dimensions. What further dimen- [larxiv.org/abs/1610.02357

sions of human generalization are current models clearlgZlinchant, S., Csurka, G., Perronnin, F., and Renders, J.-
lacking? Other forms of natural distribution shift such as M. XRCE's participation to ImagEvalhttp://cite
robustness to temporal changes could be one candidate (Guseerx.ist.psu.edu/viewdoc/download?d

et al., 2019; Shankar et al., 2019). 0i=10.1.1.102.6670&rep=repl&type=pdf ,
2007.
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