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next iter. 
B A 

next iter. Episode 1: A Episode 58 : B 

L R L R L R L R 
Qn : 0 −0.1 0 −0.1 −1.05 0.15 −0.87 −0.12 
Ln : −20 −18.9 −20 −18.98 −5.56 −0.12 −8.29 −0.08 
Q0 n : 0 −0.1 0 −0.1 −1.05 0.07 −0.87 −0.08 
Un : 20 19.3 20 −19.02 4.08 0.07 4.98 0.05 

Figure 3: An illustration of LBQL iterates for Example 1. 

Q0(s, a) = 0 and ρ = 20. After one episode the bounds are 
still loose, so we have Q1(A, R) = Q0 1(A, R) = −0.1. At 
episode 58 (281 iterations): learning has occurred for the 
lower and upper bounds values for the right action at A and 
B. We see that the bounds are effective already in keeping 
the Q-iterate close to Q∗ . Interestingly, the upper bound is 
enforced at A, while the lower bound is enforced at B. Note 
that these are the results of a real simulation. 

4.2 Analysis of Convergence 

In this section, we analyze the convergence of the idealized 
version of the LBQL algorithm to the optimal action-value 
function Q∗ . We start by summarizing and developing some 
important technical results that will be used in our analysis. 
All proofs are presented in Appendix A. 

The following proposition establishes the boundedness of 
the action-value iterates and asymptotic bounds on the Ln 

and Un iterates of Algorithm 1, which are needed in our 
proof of convergence. The proof of this proposition is pre-
sented in Section A.2 in the Appendix. 

Proposition 3 (Boundedness). For all (s, a) ∈ S ×A, we 
have the following: 

(i) The iterates Qn(s, a) and Q0 (s, a), remains bounded n 
for all (s, a) ∈ S ×A and for all n. 

(ii) For every η > 0, and with probability one, there exists 
some fnite iteration index n0 such that 
Ln(s, a) ≤ Q ∗ (s, a)+η and Q ∗ (s, a)−η ≤ Un(s, a), 

for all iterations n ≥ n0. 

Proposition 3(i) ensures that at each iteration n the action-
value iterates Qn and Q0 are bounded. This allows us to set n 
ϕ = Qn+1 at each iteration of Algorithm 1 and is required 
to establish convergence in general. The proof is based on 
showing an inductive relationship that connects Qn and Q0 n 
to the previous lower and upper bound iterates. Specifcally, 
we show that both action-value iterates are bounded below 
by the preceding upper bound iterates and above by the pre-
ceding lower bound iterates. Proposition 3(ii) ensures that 
there exists a fnite iteration after which the lower and upper 
bound iterates Ln and Un are lower and upper bounds on 
the optimal action-value function Q∗ with an error margin 
of at most an arbitrary amount η > 0. In the proof of Propo-
sition 3(ii), we bound the lower and upper bound iterates by 

a noise process and another sequence that converges to Q∗ . 
We show that the noise process possesses some properties 
that help to eliminate the effect of the noise asymptotically. 
With the effects of the noise terms vanishing, the bounded-
ness of the lower and upper bound iterates by Q∗ is achieved. 
Examining the update equations (12) and (13) for Un+1 and 
Ln+1 in Algorithm 1, we remark that they are not “standard” 
stochastic approximation or stochastic gradient updates be-
cause Q̂U and Q̂L are computed with iteration-dependent 0 0 
penalty functions generated by ϕ = Qn+1. In other words, 
the noiseless function itself is changing over time. The proof 
of Proposition 3(ii) essentially uses the fact that even though 
these updates are being performed with respect to different 
underlying functions, as long as we can apply Proposition 
2 in every case, then after the noise is accounted for, the 
averaged values Un+1 and Ln+1 are eventually bounded 
below and above by Q∗, respectively. The following lemma 
derives some guarantees on the lower and upper bound iter-
ates of Algorithm 1, whose proof appears in Section A.3 of 
the Appendix. 
Lemma 1 (Consistency of Bounds). If L0(s, a) ≤ U0(s, a), 
then Ln(s, a) ≤ Un(s, a) for all iterations n and for all 
(s, a) ∈ S ×A. 
In particular, Lemma 1 shows that the upper and lower 
bound iterates do not interchange roles and become inconsis-
tent. This is an important property; otherwise, the projection 
step of Algorithm 1 loses its meaning and would require 
additional logic to handle inconsistent bounds. The results 
of Lemma 1 follows mainly by the fact that we are using 
the same sample path to solve the upper and lower bound 
inner problems, (9) and (10), respectively. Before stating 
our convergence results, we frst state a typical assumption 
on the stepsizes and the state visits. 
Assumption 1. We assume that: P∞ P∞(i) αn(s, a) = ∞, α2 (s, a) < ∞,n=0 n=0 nP∞ P∞

βn(s, a) = ∞, β2 (s, a) < ∞,n=0 n=0 n 

(ii) Each state s ∈ S is visited infnitely often with prob-
ability one. 

We now state one of our main theoretical results. 
Theorem 1 (Convergence of LBQL). Under Assumption 1, 
the following hold with probability 1: 

(i) Q0 (s, a) in Algorithm 1 converges to the optimaln 
action-value function Q∗(s, a) for all state-action 
pairs (s, a). 

(ii) If the penalty terms are computed exactly, i.e. as 
per (3), then the iterates Ln(s, a), Q0 (s, a), Un(s, a)n 
in Algorithm 1 converge to the optimal action-value 
function Q∗(s, a) for all state-action pairs (s, a). 

Due to the interdependent feedback between Q, U , and L, it 
is not immediately obvious that the proposed scheme does 
not diverge. The primary challenge in the analysis for this 
theorem is to handle this unique aspect of the algorithm. 
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4.3 LBQL with Experience Replay 

We now introduce a more practical version of LBQL that 
uses experience replay in lieu of a black-box simulator. 
Here, we use a noise buffer B to record the unique noise 
values w that are observed at every iteration. We further 
assume that the noise space W is fnite, a reasonable as-
sumption for a fnite MDP. The buffer B is used in two 
ways: (1) to generate the sample path w and (2) to esti-
mate the expectation in the penalty function. Here, we 
track and update the distribution of the noise w after every 
iteration and directly compute the expectation under this 
distribution instead of sampling a batch of size K, as we 
did previously. To illustrate how this can be done, suppose 
W = {wa, wb, wc, wd} and that at iteration n we observe 
wn+1 = wa. Let pa denote the probability of observing 
wa, and Nn(wa) the number of times wa is observed in 
the frst n iterations, then the empirical estimate of pa is 
given by p̂n(wa) = Nn(wa)/n.2 We denote by Ê 

n[ . ] the 
expectation computed using the empirical distribution p̂n. 
To differentiate the penalty and the action-values (solutions 
to the inner problems) that are computed from the buffer 
from those defned in the idealized version of the algorithm, 
we defne: 

ζ̃π(st, at,w | ϕ) := ϕ(st+1, π(st+1))t � � (15) 
− Ê 

n[ϕ h(st, at, w), π(h(st, at, w)) ], 

and given a sample path w = (w1, w2, . . . , wτ ) the inner 
problems analogous to (9) and (10) are given by 

Q̃U (st, at) = r(st, at) − ζ̃πϕ (st, at, wt+1 | ϕ)t t 

˜ (16)
+ max Qt

U 
+1(st+1, a) 

a 
πϕQ̃L(st, at) = r(st, at) − ζ̃ (st, at, wt+1 | ϕ) 

(17)t t 

+ Q̃ 
t
L 
+1(st+1, πϕ(st+1)) 

for t = 0, 1, . . . , τ − 1, where st+1 = h(st, at, wt+1) and 
Q̃U ≡ Q̃L ≡ 0. The pseudo-code of LBQL with experience τ τ 
replay is shown in Algorithm 2 in Appendix B. 

4.4 Convergence of LBQL with Experience Replay 

In this section, we prove that the version of LBQL with 
experience replay also converges to the optimal action-value 
function. We start by stating a lemma that confrms Proposi-
tion 3 and Lemma 1 still hold when the penalty terms are 
computed using (15). 

Lemma 2. If at any iteration n, the penalty terms are com-
puted using the estimated distribution p̂n, i.e., as per (15), 
then Proposition 3 and Lemma 1 still hold. 

2Note that LBQL could, in principle, be adapted to the case of 
of continuous noise (i.e., where w is continuous random variable) 
using methods like kernel density estimation (KDE). 

Theorem 2 (Convergence of LBQL with experience replay). 
Under Assumption 1, the following hold with probability 1: 

(i) Q0 (s, a) in Algorithm 2 converges to the optimaln 
action-value function Q∗(s, a) for all state-action 
pairs (s, a). 

(ii) The iterates Ln(s, a), Q0 (s, a), Un(s, a) in Algo-n 
rithm 2 converge to the optimal action-value function 
Q∗(s, a) for all state-action pairs (s, a). 

The proof is similar to that of Theorem 1, but using the 
observations collected in the buffer naturally results in an 
additional bias term in our analysis. The proof of Lemma 2 
shows that as we learn the distribution of the noise, this bias 
term goes to zero and our original analysis in the unbiased 
case continues to hold. 

Notice that the results in part (ii) of the theorem are, in 
a sense, stronger than that of Theorem 1(ii). While both 
achieve asymptotic convergence of the lower and upper 
bounds to the optimal action-value function, Theorem 2(ii) 
does not require computing the penalty with the true dis-
tribution, i.e., using (3). This is because in the experience 
replay version, the distribution of the noise random variables 
is also learned. 

5 Numerical Experiments 

In our numerical experiments we make slight modifcations 
to Algorithm 2, which help to reduce its computational re-
quirements. A detailed description of all changes is included 
in Appendix C. We also open-source a Python package3 

for LBQL that reproduces all experiments and fgures pre-
sented in this paper. We compare LBQL with experience 
replay with several algorithms: Q-learning (QL), double 
Q-learning (Double-QL), speedy Q-learning (SQL), and 
bias-corrected Q-learning (BCQL) (van Hasselt, 2010; Azar 
et al., 2011; Lee & Powell, 2019). The environments that we 
consider are summarized below. Detailed description of the 
environments, the parameters used for the fve algorithms, 
and sensitivity analysis are deferred to Appendix D. 

Windy Gridworld (WG). This is a well-known variant of 
the standard gridworld problem discussed in Sutton & Barto 
(2018). There is an upward wind with a random intensity. 
The agent moves extra steps in the wind direction whenever 
it reaches an affected square. The reward is −1 until the 
goal state is reached, and the reward is 0 thereafter. 

Stormy Gridworld (SG). We then consider a new do-
main that adds the additional complexity of rain and multi-
directional wind to windy gridworld. The location of the 
rain is random and when it occurs, puddles that provide 
negative rewards are created. The reward is similar to that 
of WG, except that puddle states provide a reward of −10. 

3https://github.com/ibrahim-elshar/LBQL ICML2020. 

https://3https://github.com/ibrahim-elshar/LBQL











