A. Appendix

We present two variants of DDPG with the proposed smoothness-inducing regularizer. The first algorithm, DDPG-SR-A, directly learns a smooth policy with a regularizer that measures the non-smoothness in the actor network (policy). The second variant, DDPG-SR-C, learns a smooth Q-function with a regularizer that measure the non-smoothness in the critic network (Q-function). We present the details of DDPG-SR-A and DDPG-SR-C in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2 DDPG with smoothness-inducing regularization on the actor network (DDPG-SR-A).

Input: step size for target networks $\alpha \in (0, 1)$, coefficient of regularizer λ_s , perturbation strength ϵ , number of iterations to solve inner optimization problem D, number of training steps T, number of training episodes M, step size for inner maximization η_{δ} , step size for updating actor/critic network η . **Initialize**: randomly initialize the critic network $Q_{\phi}(s, a)$ and the actor network $\mu_{\theta}(s)$, initialize target networks $Q_{\phi'}(s, a)$ and $\mu_{\theta'}(s)$ with $\phi' = \phi$ and $\theta' = \theta$, initialize replay buffer \mathcal{R} . for episode = $1 \dots$, M do Initialize a random process ϵ for action exploration. Observe initial state s_1 . for $t = 1 \dots T$ do Select action $a_t = \mu_{\theta}(s_t) + \epsilon_t$ where ϵ_t is the exploration noise. Take action a_t , receive reward r_t and observe the new state s_{t+1} . Store transition (s_t, a_t, r_t, s_{t+1}) into the replay buffer \mathcal{R} . Sample mini-batch B of transitions $\{(s_t^i, a_t^i, r_t^i, s_{t+1}^i)\}_{i \in B}$ from the replay buffer \mathcal{R} . Set $y_t^i = r_t^i + \gamma Q_{\phi'}(s_{t+1}^i, \mu_{\theta'}(s_{t+1}^i))$ for $i \in B$. Update the critic network: $\phi \leftarrow \operatorname{argmin}_{\widetilde{\phi}} \sum_{i \in B} (y_t^i - Q_{\widetilde{\phi}}(s_t^i, a_t^i))^2$. for $s_{\star}^{i} \in B$ do Randomly initialize δ_i . for $\ell = 1 \dots D$ do $\delta_i \leftarrow \delta_i + \eta_\delta \nabla_\delta \left\| \mu_\theta(s_t^i) - \mu_\theta(s_t^i + \delta_i) \right\|_2^2.$ $\delta_i \leftarrow \Pi_{\mathbb{B}_d(0,\epsilon)}(\delta_i).$ end for Set $\hat{s}_t^i = s_t^i + \delta_i$. end for Update the actor network: $\theta \leftarrow \theta + \frac{\eta}{|B|} \sum_{i \in B} \left(\nabla_a Q_\phi(s, a) \big|_{s=s_t^i, a=u_\theta(s_t^i)} \nabla_\theta \mu_\theta(s) \big|_{s=s_t^i} - \lambda_s \nabla_\theta \left\| \mu_\theta(s_t^i) - \mu_\theta(\widehat{s}_t^i) \right\|_2^2 \right).$

Update the target networks:

$$\theta' \leftarrow \alpha \theta + (1 - \alpha) \theta',$$

$$\phi' \leftarrow \alpha \phi + (1 - \alpha) \phi'.$$

end for end for

Algorithm 3 DDPG with smoothness-inducing regularization on the critic network (DDPG-SR-C).

Input: step size for target networks $\alpha \in (0, 1)$, coefficient of regularizer λ_s , perturbation strength ϵ , number of iterations to solve inner optimization problem D, number of training steps T, number of training episodes M, step size for inner maximization η_{δ} , step size for updating actor/critic network η . **Initialize**: randomly initialize the critic network $Q_{\phi}(s, a)$ and the actor network $\mu_{\theta}(s)$, initialize target networks $Q_{\phi'}(s, a)$ and $\mu_{\theta'}(s)$ with $\phi' = \phi$ and $\theta' = \theta$, initialize replay buffer \mathcal{R} . for episode = $1 \dots, M$ do Initialize a random process ϵ for action exploration. Observe initial state s_1 . for $t = 1 \dots T$ do Select action $a_t = \mu_{\theta}(s_t) + \epsilon_t$ where ϵ_t is the exploration noise. Take action a_t , receive reward r_t and observe the new state s_{t+1} . Store transition (s_t, a_t, r_t, s_{t+1}) into replay buffer \mathcal{R} . Sample mini-batch B of transitions $\{(s_t^i, a_t^i, r_t^i, s_{t+1}^i)\}_{i \in B}$ from the replay buffer \mathcal{R} . Set $y_t^i = r_t^i + \gamma Q_{\phi'}(s_{t+1}^i, \mu_{\theta'}(s_{t+1}^i))$ for $i \in B$. for $s_t^i \in B$ do Randomly initialize δ_i . for $\ell = 1 \dots D$ do $\delta_i \leftarrow \delta_i + \eta_\delta \nabla_\delta (Q_\phi(s_t^i, a_t^i) - Q_\phi(s_t^i + \delta, a_t^i))^2.$ $\delta_i \leftarrow \Pi_{\mathbb{B}_d(0,\epsilon)}(\delta_i).$ end for Set $\hat{s}_t^i = s_t^i + \delta_i$. end for Update the critic network:

$$\phi \leftarrow \underset{\widetilde{\phi}}{\operatorname{argmin}} \sum_{i \in B} (y_t^i - Q_{\widetilde{\phi}}(s_t^i, a_t^i))^2 + \lambda_{\mathrm{s}} \sum_{i \in B} (Q_{\phi}(s_t^i, a_t^i) - Q_{\phi}(\widehat{s}_t^i, a_t^i))^2$$

Update the actor network:

$$\theta \leftarrow \theta + \frac{\eta}{|B|} \sum_{i \in B} \nabla_a Q_\phi(s, a) \big|_{s=s_t^i, a=u_\theta(s_t^i)} \nabla_\theta \mu_\theta(s) \big|_{s=s_t^i}$$

Update the target networks:

$$\theta' \leftarrow \alpha \theta + (1 - \alpha) \theta',$$

$$\phi' \leftarrow \alpha \phi + (1 - \alpha) \phi'.$$

end for end for