
Supplementary Material (Appendix)
Landscape Connectivity and Dropout Stability of SGD Solutions for

Over-parameterized Neural Networks

A. Proof of Theorem 1
A.1. Part (A)

Given θ = (a,w) ∈ RD, let σ?(x,θ) = aσ(x,w). Given ρ ∈P(RD), we define the limit loss as

L̄(ρ) = E

{(
y −

∫
σ?(x,θ)ρ(dθ)

)2
}
, (A.1)

where the expectation is taken over (x, y). For i ∈ [N ] and t ≥ 0, we consider the following nonlinear dynamics:

d

dt
θ̄
t
i = 2ξ(t)

∫
E
{
∇σ?(x, θ̄

t
i) (y − σ?(x,θ′))

}
ρt(dθ

′), (A.2)

where∇ denotes the gradient with respect to θ̄ti and θ̄ti ∼ ρt. We initialize (A.2) with {θ̄0
i }Ni=1

i.i.d.∼ ρ0.

In (Mei et al., 2019), it is considered the two-layer neural network (3.1) with N neurons and bounded activation function σ,
and it is studied the evolution under the SGD algorithm (3.3) of the parameters θk. In particular, it is shown that, under
suitable assumptions, (i) the solution of (A.2) exists and it is unique, (ii) the N i.i.d. ideal particles {θ̄ti}Ni=1 are close to the
parameters θk obtained after k steps of SGD with step size α, with t = kα, and (iii) the loss LN (θk) concentrates to the
limit loss L̄(ρt), where ρt is the law of θ̄ti.

Let us now provide the proof of Theorem 1, part (A).

Proof of Theorem 1, part (A). Without loss of generality, we can assume that θkS contains the first |A| elements of θk,
i.e., θkS = (θk1 ,θ

k
2 , . . . ,θ

k
|A|). In fact, the subset A is independent of the SGD algorithm. Thus, by symmetry, the joint

distribution of {θki }i∈A depends only on |A| (and not on the set A itself). By Definition 3.1, we need to show that, with
probability at least 1− e−z2 ,

sup
k∈[T/α]

|LN (θk)− L|A|(θkS)| ≤ KeKT
3

(√
log |A|+ z√
|A|

+
√
α
(√

D + logN + z
))

. (A.3)

Let θ̄kα = (θ̄
kα
1 , . . . , θ̄

kα
N ) be the solution of the nonlinear dynamics (A.2) at time kα, with θ̄kαi ∼ ρkα. By triangle

inequality, we have that

|LN (θk)− L|A|(θkS)| ≤ |LN (θk)− L̄(ρkα)|+ |L|A|(θkS)− L̄(ρkα)|

≤ |LN (θk)− L̄(ρkα)|+ |L|A|(θkS)− L|A|(θ̄
kα
S )|+ |L|A|(θ̄

kα
S )− L̄(ρkα)|,

(A.4)

where L̄ is defined in (A.1) and θ̄kαS = (θ̄
kα
1 , θ̄

kα
2 , . . . , θ̄

kα
|A|) denotes the vector containing the first |A| elements of θ̄kα.

Let us consider the first term in the RHS of (A.4). Note that, without loss of generality, we can assume that α ≤
1/(C(D + logN + z2)eCT

3

), for some constant C depending only on the constants Ki of the assumptions (A1)-(A4). Let
us explain why this is the case. If α > 1/(C(D+ logN + z2)eCT

3

), then the RHS of (A.3) is lower bounded by a constant
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depending only on Ki. Furthermore, y and σ are bounded, and by Proposition 8 of (Mei et al., 2019), we have that, with
probability at least 1− e−z2 ,

sup
k∈[T/α]

max
i∈[N ]

|aki | ≤ C3(1 + T ). (A.5)

Thus, if α > 1/(C(D + logN + z2)eCT
3

), then the result is trivially true. Consequently, we can apply Theorem 1 of (Mei
et al., 2019) and we have that, with probability at least 1− e−z2 ,

sup
k∈[T/α]

|LN (θk)− L̄(ρkα)| ≤ C1e
C1 T

3

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

, (A.6)

where C1 depends only on Ki. In what follows, the Ci are constants that depend only on Ki.

Let us now consider the second term in the RHS of (A.4). After some manipulations, we have that

|L|A|(θkS)− L|A|(θ̄
kα
S )| ≤ 2 max

i∈A

∣∣aki E{yσ(x,wk
i )
}
− ākαi E

{
yσ(x, w̄kα

i )
}∣∣

+ max
i,j∈A

∣∣aki akjE{σ(x,wk
i )σ(x,wk

j )} − ākαi ākαj E{σ(x, w̄kα
i )σ(x, w̄kα

j )}
∣∣

≤ C2

(
max
i∈A

(
1 + max(|aki |, |ākαi |)

))2

max
i∈A
‖θki − θ̄

kα
i ‖2

≤ C2

(
max
i∈[N ]

(
1 + max(|aki |, |ākαi |)

))2

max
i∈[N ]

‖θki − θ̄
kα
i ‖2,

(A.7)

where θki = (aki ,w
k
i ), θ̄kαi = (ākαi , w̄kα

i ), and in the second inequality we use that y, σ and the gradient of σ are bounded.
By using Lemma 7 of (Mei et al., 2019), we have that

sup
t∈[0,T ]

max
i∈[N ]

|āti| ≤ C3(1 + T ). (A.8)

Furthermore, by using Propositions 6-7-8 of (Mei et al., 2019), we have that, with probability at least 1− e−z2 ,

sup
k∈[T/α]

max
i∈[N ]

‖θki − θ
kα

i ‖2 ≤ C4e
C4T

3

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

. (A.9)

As a result, by combining (A.5), (A.8) and (A.7), we conclude that, with probability at least 1− e−z2 ,

sup
k∈[T/α]

|L|A|(θkS)− L|A|(θ̄
kα
S )| ≤ C5e

C5T
3

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

. (A.10)

Finally, let us consider the third term in the RHS of (A.4). By triangle inequality, we have that

|L|A|(θ̄
kα
S )− L̄(ρkα)| ≤

∣∣∣L|A|(θ̄kαS )− Eρ0
{
L|A|(θ̄

kα
S )
}∣∣∣+

∣∣∣Eρ0 {L|A|(θ̄kαS )
}
− L̄(ρkα)

∣∣∣ , (A.11)

where the notation Eρ0 emphasizes that the expectation is taken with respect to θ̄0
i ∼ ρ0. Recall that L̄ is defined in (A.1)

and that

L|A|(θS) = E(x,y)


y − 1

|A|

|A|∑
i=1

σ?(x,θi)

2
 , (A.12)

where the notation E(x,y) emphasizes that the expectation is taken with respect to (x, y) ∼ P. Furthermore, note that

{θ̄kαi }
|A|
i=1

i.i.d.∼ ρkα. Thus, after some manipulations, we can rewrite the second term in the RHS of (A.11) as∣∣∣L|A|(θ̄kαS )− Eρ0
{
L|A|(θ̄

kα
S )
}∣∣∣

=
1

|A|

∣∣∣∣∫ E(x,y)

{(
σ?(x,θ)

)2}
ρkα(dθ)−

∫
E(x,y) {σ?(x,θ1)σ?(x,θ2)} ρkα(dθ1)ρkα(dθ2)

∣∣∣∣ . (A.13)
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As σ is bounded by assumption (A3) and supk∈[T/α] maxi∈[N ] |ākαi | is bounded by (A.8), we deduce that

sup
k∈[T/α]

∣∣∣L|A|(θ̄kαS )− Eρ0
{
L|A|(θ̄

kα
S )
}∣∣∣ ≤ C6 (1 + T )2

|A|
. (A.14)

Let θ and θ′ be two parameters that differ only in one component, i.e., θ = (θ1, . . . ,θi, . . . ,θ|A|) and θ′ =
(θ1, . . . ,θ

′
i, . . . ,θ|A|), and such that maxi∈|A| |ai| ≤ C(1 + T ) and maxi∈|A| |a′i| ≤ C(1 + T ). Then,

∣∣L|A|(θ)− L|A|(θ′)
∣∣ ≤ C7 (1 + T )2

|A|
. (A.15)

As maxi∈[N ] |āti| is bounded by (A.8), by applying McDiarmid’s inequality, we obtain that

P
(∣∣∣L|A|(θ̄tS)− Eρ0

{
L|A|(θ̄

t
S)
}∣∣∣ > δ

)
≤ exp

(
− |A|δ2

C8(1 + T )4

)
. (A.16)

Furthermore, we have that∣∣∣L|A|(θ̄tS)− L|A|(θ̄
s
S)
∣∣∣ ≤ C9

(
max
i∈[N ]

(
1 + max(|āti|, |āsi |)

))2

max
i∈[N ]

‖θ̄ti − θ̄
s
i‖2

≤ C10(1 + T )4|t− s|,
(A.17)

where in the first inequality we use passages similar to those of (A.7), and in the second inequality we use (A.8) and Lemma
9 of (Mei et al., 2019). Consequently,∣∣∣|L|A|(θ̄tS)− Eρ0{L|A|(θ̄

t
S)}| − |L|A|(θ̄

s
S)− Eρ0{L|A|(θ̄

s
S)}|

∣∣∣ ≤ C11(1 + T )4|t− s|. (A.18)

By taking a union bound over s ∈ [T/ν] and bounding the difference between time in the interval grid, we deduce that

P

(
sup
t∈[0,T ]

∣∣∣L|A|(θ̄tS)− Eρ0
{
L|A|(θ̄

t
S)
}∣∣∣ ≥ δ + C11(1 + T )4ν

)
≤ T

ν
exp

(
− |A|δ2

C8(1 + T )4

)
. (A.19)

Pick ν = 1/
√
|A| and δ = C8(1 + T )2(

√
log(|A|T ) + z)/

√
|A|. Thus, with probability at least 1− e−z2 , we have that

sup
k∈[T/α]

∣∣∣L|A|(θ̄TS )− Eρ0
{
L|A|(θ̄

T
S )
}∣∣∣ ≤ C12 (1 + T )3

√
log |A|+ z√
|A|

. (A.20)

By combining (A.14) and (A.20), we conclude that, with probability at least 1− e−z2 ,

sup
k∈[T/α]

|L|A|(θ̄
T
S )− L̄(ρT )| ≤ C13 (1 + T )3

√
log |A|+ z√
|A|

. (A.21)

Finally, by combining (A.4), (A.6), (A.10) and (A.21), the result readily follows.

A.2. Part (B)

The proof of part (B) is obtained by combining part (A) with the following lemma.

Lemma A.1 (Dropout stability implies connectivity – two-layer). Consider a two-layer neural network with N neurons,
as in (3.1). Given A = [N/2], let θ and θ′ be ε-dropout stable as in Definition 3.1. Then, θ and θ′ are ε-connected as in
Definition 3.2. Furthermore, the path connecting θ with θ′ consists of 7 line segments.

Proof of Lemma A.1. Let θ = ((a1,w1), (a2,w2), . . . , (aN ,wN )) and θ′ = ((a′1,w
′
1), (a′2,w

′
2), . . . , (a′N ,w

′
N )). For

the moment, assume that N is even. Consider the piecewise linear path in parameter space that connects θ to θ′ via the
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following intermediate points:

θ1 = ((2a1,w1), (2a2,w2), . . . , (2aN/2,wN/2), (0,wN/2+1), (0,wN/2+2), . . . , (0,wN )),

θ2 = ((2a1,w1), (2a2,w2), . . . , (2aN/2,wN/2), (0,w′1), (0,w′2), . . . , (0,w′N/2)),

θ3 = ((0,w1), (0,w2), . . . , (0,wN/2), (2a′1,w
′
1), (2a′2,w

′
2), . . . , (2a′N/2,w

′
N/2)),

θ4 = ((0,w′1), (0,w′2), . . . , (0,w′N/2), (2a′1,w
′
1), (2a′2,w

′
2), . . . , (2a′N/2,w

′
N/2)),

θ5 = ((2a′1,w
′
1), (2a′2,w

′
2), . . . , (2a′N/2,w

′
N/2), (0,w′1), (0,w′2), . . . , (0,w′N/2)),

θ6 = ((2a′1,w
′
1), (2a′2,w

′
2), . . . , (2a′N/2,w

′
N/2), (0,w′N/2+1), (0,w′N/2+2), . . . , (0,w′N )).

(A.22)

We will now show that the loss along this path is upper bounded by max(LN (θ), LN (θ′)) + ε.

Consider the path that connects θ to θ1. As θ is ε-dropout stable, we have that LN (θ1) ≤ LN (θ) + ε. As the loss is convex
in the weights of the last layer, the loss along this path is upper bounded by LN (θ) + ε. Similarly, the loss along the path
that connects θ6 to θ′ is upper bounded by LN (θ′) + ε.

Consider the path that connects θ1 to θ2. Here, we changew’s only when the corresponding a’s are 0. Thus, the loss does
not change along the path. Similarly, the loss does not change along the path that connects θ3 to θ4 and θ5 to θ6.

Consider the path that connects θ2 to θ3. Note that LN (θ3) = LN (θ5). As the loss is convex in the weights of the last
layer, the loss along this path is upper bounded by max(LN (θ), LN (θ′)) + ε.

Finally, consider the path that connects θ4 to θ5. Here, we are interpolating between two equal subnetworks. Thus, the loss
along this path does not change. This concludes the proof for even N .

If N is odd, a similar argument can be carried out. The differences are that (i) the dN/2e-th parameter of θ1, θ2 and θ3 is
(0,wN/2) and the dN/2e-th parameter of θ4, θ5 and θ6 is (0,w′N/2), and (ii) the constant 2 in front of the ai is replaced by
N/bN/2c.

B. Extension to Unbounded Activation – Statement and Proof
We modify the assumptions (A2), (A3) and (A4) of Section 3.2 as follows:

(A2’) The feature vectorsx and the response variables y are bounded byK2, and the gradient∇wσ(x,w) isK2 sub-gaussian
when x ∼ P.

(A3’) The activation function σ is differentiable, with gradient bounded by K3 and K3-Lipschitz.

(A4’) The initialization ρ0 is supported on ‖θ0
i ‖2 ≤ K4.

We are now ready to present our results for unbounded activations in the two-layer setting.

Theorem 1 (Two-layer, unbounded activation). Assume that conditions (A1), (A2’), (A3’) and (A4’) hold, and fix T ≥ 1.
Let θk be obtained by running k steps of the SGD algorithm (3.3) with data {(xj , yj)}kj=0

i.i.d.∼ P and initialization ρ0.
Assume further that the loss at each step of SGD is uniformly bounded, i.e., maxj∈{0,...,k} |yj − ŷN (xj ,θ

j)| ≤ K5. Then,
the results of Theorem 1 hold, with

εD = K(T )

(√
log |A|+ z√
|A|

+
√
α
(√

D + logN + z
))

,

εC = K(max(T, T ′))

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

.

(B.1)

where the constant K(T ) depends on T and on the constants Ki of the assumptions.

To prove the result, we crucially rely on the following bound on the norm of the parameters evolved via SGD.

Lemma B.1 (Bound on norm of SGD parameters). Under the assumptions of Theorem 1, we have that

sup
s∈[T/α]

max
i∈[N ]

‖θsi‖2 ≤ KeK T , (B.2)
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where the constant K depends only on the constants Ki of the assumptions.

Proof of Lemma B.1. The SGD update at step j + 1 gives:

aj+1
i = aji + 2α ξ(jα) · (yj − fN (xj ,θ

j)) · σ(xj ,w
j
i ),

wj+1
i = wj

i + 2α ξ(jα) · (yj − fN (xj ,θ
j)) · aji∇wi

σ(xj ,w
j
i ).

(B.3)

We bound the absolute value of the increment |aj+1
i − aji | as

|aj+1
i − aji | ≤ 2αξ(jα) · |yj − fN (xj ,θ

j)| · |σ(xj ,w
j
i )|

(a)
≤ αC1|σ(xj ,w

j
i )|

(b)
≤ αC2(‖wj

i‖2 + 1),

(B.4)

where the constant Ci depends only on Ki, in (a) we use that ξ is bounded by K1 and |yj − fN (xj ,θ
j)| ≤ K5, in (b) we

use that ‖σ‖Lip ≤ K2 and ‖xj‖2 ≤ K2. Similarly, we bound the absolute value of the increments ‖wj+1
i −wj

i‖2 as

‖wj+1
i −wj

i‖2 ≤ αC3|aji |. (B.5)

By combining (B.4) and (B.5), we get

‖θj+1
i − θji‖2 ≤ ‖w

j+1
i −wj

i‖2 + |aj+1
i − aji | ≤ αC4(‖θji‖2 + 1). (B.6)

By triangle inequality, we also obtain that

‖θsi‖2 ≤
s−1∑
j=0

‖θj+1
i − θji‖2 + ‖θ0

i ‖2. (B.7)

As ‖θ0
i ‖2 is bounded, by combining (B.6) and (B.7), we have that

‖θsi‖2 ≤ C5 + C5 sα+ C5α

s−1∑
j=0

‖θji‖2. (B.8)

By using a discrete version of Gronwall’s inequality, the result follows.

Finally, let us present the proof of Theorem 1.

Proof of Theorem 1. Since the activation function σ satisfies assumption (A3’), we can construct σ̃ : Rd × RD−1 → R that
satisfies the following two properties:

(i) σ̃(x,w) coincides with σ(x,w) for ‖x‖2 ≤ K2 and ‖w‖2 ≤ KeK T , where K2 is the constant of assumption (A2’)
and KeK T is the bound of Lemma B.1;

(ii) σ̃(x,w) is bounded, differentiable, with bounded and Lipschitz continuous gradient.

Recall that θk is obtained by running k steps of the SGD algorithm (3.3) with initial condition θ0, data {xj , yj}kj=0 and

activation function σ. Let θ̃
k

be obtained by running k steps of SGD with initial condition θ0, data {xj , yj}kj=0 and
activation function σ̃. By combining Lemma B.1, assumption (A2’) and property (i) of σ̃, we immediately deduce that

θk = θ̃
k
. (B.9)

Furthermore, we have that

E

{(
y − 1

N

N∑
i=1

aiσ(x,wi))
)2
}

= E

{(
y − 1

N

N∑
i=1

aiσ̃(x,wi))
)2
}
, (B.10)
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namely the loss of θk computed with respect to the activation function σ is the same as the loss of θk computed with respect
to the activation function σ̃.

Note that ‖σ̃‖∞ ≤ C1(T ) for some C1(T ) that depends on T and on the constants Ki of the assumptions. Thus, σ̃ satisfies
assumptions (A2) and (A3), with K3 depending on time T of the evolution. Consequently, by Theorem 1, with probability
at least 1− e−z2 , for all k ∈ [T/α], θ̃

k
is εD-dropout stable, with

εD = K(T )

(√
logN

N
+

√
log |A|+ z√
|A|

+
√
α
(√

D + logN + z
))

. (B.11)

By using (B.9) and (B.10), we conclude that, with probability at least 1− e−z2 , for all k ∈ [T/α], θk is εD-dropout stable.
Similarly, with probability at least 1 − e−z2 , for all k′ ∈ [T ′/α], (θ′)k

′
is εD-dropout stable. Thus, by Lemma A.1, the

proof is complete.

C. Proof of Theorem 2
C.1. Part (A)

Let D =
∑L
i=0Di and let ρ be a probability measure over RD ∼= RD0 ×RD1 × · · · ×RDL . For i ∈ {0, . . . , L}, we denote

by ρ(i) the marginal of ρ over the i-th factor RDi of the Cartesian product. For i ∈ {0, . . . , L− 1}, we denote by ρ(i,i+1)

the marginal of ρ over the i-th and the i + 1-th factors. Furthermore, we denote by ρ(i|i+1)(· | θ(i+1)) the conditional
distribution of the i-th factor given that the i+ 1-th factor is equal to θ(i+1).

Given a feature vector x ∈ Rd0 and a probability measure ρ over RD, we define

z̄(2) (x, ρ) =

∫
σ(1)

(
σ(0)

(
x,θ(0)

)
,θ(1)

)
dρ(0,1)(θ(0),θ(1)),

z̄(`) (x, ρ) =

∫
σ(`−1)

(
z̄(`−1) (x, ρ) ,θ(`−1)

)
dρ(`−1)(θ(`−1)), ` ∈ {3, . . . , L− 1},

z̄(L)
(
x, ρ,θ(L)

)
=

∫
σ(L−1)

(
z̄(L−1) (x, ρ) ,θ(L−1)

)
dρ(L−1|L)(θ(L−1) | θ(L)),

ȳ (x, ρ) = σ(L+1)

(∫
σ(L)

(
z̄(L)

(
x, ρ,θ(L)

)
,θ(L)

)
dρ(L)(θ(L))

)
,

(C.1)

where σ(`) : Rd` × RD` → Rd`+1 , with ` ∈ {0, . . . , L}, and σ(L+1) : RdL+1 → RdL+1 . We remark that z̄(L) is defined in
terms of the conditional distribution ρ(L−1|L). We also define the limit loss as

L̄(ρ) = E
{
‖y − ȳ (x, ρ)‖22

}
, (C.2)

where the expectation is taken over (x,y). Given a probability measure ρ0 over RD and activation functions σ(`) (` ∈
{0, . . . , L+ 1}), we denote by ρ?[0,T ] the probability measure over C([0, T ],RD) which solves the McKean-Vlasov DNN
problem with initial condition ρ0, according to Definition 4.4 of (Araújo et al., 2019). We also denote by ρ?t the marginal of
ρ?[0,T ] at time t ∈ [0, T ].

In (Araújo et al., 2019), it is considered a model of neural network with L+ 1 ≥ 4 layers, where each hidden layer contains
N neurons. This model can be obtained from (4.1) by setting to one the parameters {a`i`,i`+1

}`∈[L−1],i`,i`+1∈[N ] and

{a(L)
iL
}iL∈[N ], and by applying the bounded activation function σ(L+1) to the output ŷN . Then, it is studied the evolution

under the SGD algorithm (4.3) of the parameters θ(k) of this multilayer neural network. In particular, it is shown that, under
suitable assumptions, (i) the solution of the McKean-Vlasov DNN problem exists and it is unique, (ii) the parameters θ(k)
obtained after k steps of SGD with step size α are close to particles θ̄(t) at time t = kα, whose trajectories are distributed
according to ρ?t , and (iii) the loss LN (θ(k)) concentrates to the limit loss L̄(ρ?t ).

In order to prove Theorem 2, we will use the following bound on the norm of the parameters {a(`)
i`,i`+1

}`∈[L−1],i`,i`+1∈[N ]

evolved via SGD.



Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks

Lemma C.1 (Bound on norm of a(`)
i`,i`+1

). Under the assumptions of Theorem 2, we have that

max
`∈[L−1]

sup
s∈[T/α]

max
i`,i`+1∈[N ]

‖a(`)
i`,i`+1

(s)‖2 ≤ K(T, L), (C.3)

where the constant K depends only on T , L and on the constants Ki of the assumptions.

Proof. For ` ∈ [L− 1], the SGD update at step j + 1 gives:

a
(`)
i`,i`+1

(j + 1) = a
(`)
i`,i`+1

(j) + 2αξ(jα)N2
(
yj − ŷN (xj ,θ(j))

)T
D
a

(`)
i`,i`+1

ŷN (x,θ(j)) , (C.4)

where D
θ
(`)
i`,i`+1

ŷN ∈ RdL+1 × RD`+d`+1 denotes the Jacobian of ŷN with respect to θ(`)
i`,i`+1

.

Recall that by assumptions (B2)-(B3) the response variables yj and the activation σ(L) are bounded. Moreover, as the final

layer of the network is not trained, i.e., a(L)
iL

(k + 1) = a
(L)
iL

(k) for any k, and a(L)
iL

(0) is initialized with a distribution

supported on ‖a(L)
iL

(0)‖2 ≤ K4, we get that a(L)
iL

is bounded along the whole SGD trajectory. Thus, we are able to conclude
that

∥∥yj − ŷN (xj ,θ(j))
∥∥

2
≤ K5, for some constant K5.

We bound the absolute value of the increment ‖a(`)
i`,i`+1

(j + 1)− a(`)
i`,i`+1

(j)‖2 as

‖a(`)
i`,i`+1

(j + 1)− a(`)
i`,i`+1

(j)‖2 ≤ 2α ξ(jα)N2
∥∥yj − ŷN (xj ,θ(j))

∥∥
2
·
∥∥∥∥D

a
(`)
i`,i`+1

ŷN (x,θ(j))

∥∥∥∥
op

≤ αN2 C1

∥∥∥∥D
a

(`)
i`,i`+1

ŷN (x,θ(j))

∥∥∥∥
op

,

(C.5)

where we use that ξ is bounded by K1 and
∥∥yj − ŷN (xj ,θ(j))

∥∥
2
≤ K5. Consequently,

max
i`,i`+1∈[N ]

‖a(`)
i`,i`+1

(j + 1)− a(`)
i`,i`+1

(j)‖2 ≤ αN2 C1 max
i`,i`+1∈[N ]

∥∥∥∥D
a

(`)
i`,i`+1

ŷN (x,θ(j))

∥∥∥∥
op

. (C.6)

Let us now focus on the operator norm of the Jacobian. First, we write∥∥∥∥D
a

(`)
i`,i`+1

ŷN (x,θ(j))

∥∥∥∥
op

=

∥∥∥∥D
z
(`+1)
i`+1

ŷN (x,θ(j)) ·D
a

(`)
i`,i`+1

z
(`+1)
i`+1

(x,θ(j))

∥∥∥∥
op

≤
∥∥∥∥D

z
(`+1)
i`+1

ŷN (x,θ(j))

∥∥∥∥
op

·
∥∥∥∥D

a
(`)
i`,i`+1

z
(`+1)
i`+1

(x,θ(j))

∥∥∥∥
op

,

(C.7)

where the inequality uses the fact that the operator norm is sub-multiplicative. Note that

D
a

(`)
i`,i`+1

z
(`+1)
i`+1

(x,θ(j)) = diag

(
1

N
σ(`)

(
z

(`)
i`

(x,θ) ,w
(`)
i`,i`+1

(j)
))

, (C.8)

where we denote by diag(v) the diagonal matrix containing v on the diagonal. As σ(`) is bounded by assumption (B3), we
have that ∥∥∥∥D

a
(`)
i`,i`+1

z
(`+1)
i`+1

(x,θ(j))

∥∥∥∥
op

≤ C2

N
. (C.9)

Furthermore, the Jacobian D
z
(`+1)
i`+1

ŷN (x,θ(j)) is given by

D
z
(L)
iL

ŷN (x,θ(j)) =
1

N
M

(L)
iL

(x,θ(j)), iL ∈ [N ],

D
z
(`)
i`

ŷN (x,θ(j)) =
1

NL−`+1

∑
pL
`+1∈[N ]L−`

M
(`)

i`,pL
`+1

(x,θ(j)), ` ∈ [L− 1], i` ∈ [N ],
(C.10)
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where pL`+1 denotes the multi-index (p`+1, . . . , pL), [N ]L−` denotes the (L − `)-fold Cartesian product of [N ] and the

matricesM (`)

pL
`

(x,θ(j)) are defined recursively as

M (L)
pL (x,θ(j)) = D

z
(L)
pL

(
a(L)
pL (j)� σ(L)

(
z(L)
pL (x,θ(j)),w(L)

pL (j)
))

= diag(a(L)
pL (j)) ·D

z
(L)
pL

σ(L)
(
z(L)
pL (x,θ(j)),w(L)

pL (j)
)
,

M
(`)

pL
`

(x,θ(j)) = M
(`+1)

pL
`+1

(x,θ(j)) ·D
z
(`)
p`

(
a(`)
p`,p`+1

(j)� σ(`)
(
z(`)
p`

(x,θ(j)),w(`)
p`,p`+1

(j)
))

= M
(`+1)

pL
`+1

(x,θ(j)) · diag(a(`)
p`,p`+1

(j)) ·D
z
(`)
p`

σ(`)
(
z(`)
p`

(x,θ(j)),w(`)
p`,p`+1

(j)
)
.

(C.11)

Note that a(L)
pL (j) = a

(L)
pL (0) and recall that ‖a(L)

pL (0)‖2 is bounded by assumption (B4). Furthermore, σ(`) has bounded
Fréchet derivative by assumption (B3). Thus, we deduce that∥∥∥M (L)

pL (x,θ(j))
∥∥∥

op
≤ C3, (C.12)

and ∥∥∥M (`)

pL
`

(x,θ(j))
∥∥∥

op
≤ C4(L)

L−1∏
m=`

‖a(m)
pm,pm+1

(j)‖2

≤ C4(L)

L−1∏
m=`

max
im,im+1∈[N ]

‖a(m)
im,im+1

(j)‖2.

(C.13)

Consequently, we have that∥∥∥∥D
z
(L)
iL

ŷN (x,θ(j))

∥∥∥∥
op

≤ C3

N
,

∥∥∥∥D
z
(`)
i`

ŷN (x,θ(j))

∥∥∥∥
op

≤ C4(L)

N

L−1∏
m=`

max
im,im+1∈[N ]

‖a(m)
im,im+1

(j)‖2.
(C.14)

By combining (C.7), (C.9) and (C.14), we obtain that∥∥∥∥D
a

(L−1)
iL−1,iL

ŷN (x,θ(j))

∥∥∥∥
op

≤ C5

N2
,

∥∥∥∥D
a

(`)
i`,i`+1

ŷN (x,θ(j))

∥∥∥∥
op

≤ C6(L)

N2

L−1∏
m=`+1

max
im,im+1∈[N ]

‖a(m)
im,im+1

(j)‖2, ` ∈ [L− 2].

(C.15)

By using also (C.6), we have that

max
iL−1,iL∈[N ]

‖a(L−1)
iL−1,iL

(j + 1)− a(L−1)
iL−1,iL

(j)‖2 ≤ αC7,

max
i`,i`+1∈[N ]

‖a(`)
i`,i`+1

(j + 1)− a(`)
i`,i`+1

(j)‖2 ≤ αC8(L)

L−1∏
m=`+1

max
im,im+1∈[N ]

‖a(m)
im,im+1

(j)‖2, ` ∈ [L− 2].
(C.16)

By triangle inequality, we also obtain that, for ` ∈ [L− 1] and i`, i`+1 ∈ [N ],

‖a(`)
i`,i`+1

(s)‖2 ≤
s−1∑
j=0

‖a(`)
i`,i`+1

(j + 1)− a(`)
i`,i`+1

(j)‖2 + ‖a(`)
i`,i`+1

(0)‖2. (C.17)

As ‖a(`)
i`,i`+1

(0)‖2 and ‖a(L)
iL

(0)‖2 are bounded, by combining (C.16) and (C.17), we have that

max
s∈[k]

max
iL−1,iL∈[N ]

‖a(L−1)
iL−1,iL

(s)‖2 ≤ C + C7 T,

max
s∈[k]

max
i`,i`+1∈[N ]

‖a(`)
i`,i`+1

(s)‖2 ≤ C + C8(L)T

L−1∏
m=`+1

max
s∈[k]

max
im,im+1∈[N ]

‖a(m)
im,im+1

(s)‖2, ` ∈ [L− 2].
(C.18)
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where we have used that T = kα. By doing a step of induction on ` ∈ {L− 2, L− 3, . . . , 1}, the proof is complete.

We are now ready to provide the proof of Theorem 2, part (A).

Proof of Theorem 2, part (A). For ` ∈ [L], we construct σ̃(`) : Rd` × RD`+d`+1 → Rd`+1 that satisfies the following two
properties:

(i) σ̃(`)(z, (w,a)) coincides with a� σ(`)(z,w) for all (z,w) ∈ Rd` ×RD` and for ‖a‖2 ≤ K(T, L), where K(T, L) is
the bound of Lemma C.1;

(ii) σ̃(`) is bounded, with Fréchet derivatives bounded and Lipschitz.

Similarly, we construct σ̃(L+1) : RdL+1 → RdL+1 that satisfies the following two properties:

(i) σ̃(L+1)(z) = z for ‖z‖2 ≤ K3K4, whereK3 is the bound on σ(L) andK4 is the bound on ‖a(L)
iL

(0)‖2 (see assumptions
(B3)-(B4));

(ii) σ̃(L+1) is bounded, with Fréchet derivatives bounded and Lipschitz.

Define

(z
(1)
i1

)′ (x,θ) = σ(0)
(
x,θ

(0)
i1

)
, i1 ∈ [N ],

(z
(`+1)
i`+1

)′ (x,θ) =
1

N

N∑
i`=1

σ̃(`)
(

(z
(`)
i`

)′ (x,θ) ,θ
(`)
i`,i`+1

)
, ` ∈ [L− 1], i`+1 ∈ [N ],

ŷ′N (x,θ) = σ̃(L+1)

(
1

N

N∑
iL=1

σ̃(L)
(

(z
(L)
iL

)′ (x,θ) ,θ
(L)
iL

))
,

(C.19)

and
L′N (θ) = E

{∥∥y − ŷ′N (x,θ)
∥∥2

2

}
. (C.20)

Let θ′(k) be obtained by running k steps of the SGD algorithm (4.3) with ŷN (x,θ) replaced by ŷ′N (x,θ). Recall that
a

(`)
i`,i`+1

(s) is bounded by Lemma C.1, a(L)
iL

(s) is bounded by assumption (B4) and σ(`) is bounded by assumption (B3).
Thus, we have that θ′(k) = θ(k) and L′N (θ′(k)) = LN (θ(k)). To simplify notation, in the rest of the proof we will drop
the symbol ′ from θ and LN . By definition of dropout stability, the proof is completed by showing that, with probability at
least 1− e−z2 ,

|LN (θ(k))− L|A|(θS(k))| ≤ K(T, L)

(√
d+ z√
N

+
√
α
(√
d+ z

))
. (C.21)

By construction, the activation functions {σ̃(`)}`∈[L+1] are bounded, with Fréchet derivatives that are bounded and Lipschitz.
Thus, the technical assumptions of (Araújo et al., 2019) are fulfilled. Let ρ?[0,T ] denote the unique solution to the McKean-
Vlasov DNN problem with initial condition ρ0 and activation functions σ(0) and σ̃(`), with ` ∈ {0, . . . , L+ 1}. Furthermore,
let θ̄(t), with t ∈ [0, T ], be the associated ideal particles. Furthermore, let θ̄S(t) be obtained from θ̄(t) in the same way in
which θS(k) is obtained from θ(k). By triangle inequality, we have that

|LN (θ(k))− L|A|(θS(k))| ≤ |LN (θ(k))− L̄(ρ?T )|+ |L|A|(θS(k))− L̄(ρ?T )|
≤ |LN (θ(k))− LN (θ̄(T ))|+ |L|A|(θS(k))− L|A|(θ̄S(T ))|

|LN (θ̄(T ))− L̄(ρ?T )|+ |L|A|(θ̄S(T ))− L̄(ρ?T )|,
(C.22)

where ρ?T denotes the marginal of ρ?[0,T ] at time T and L̄ is defined in (C.2).
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Given a vector of parameters θ containing N` neurons in layer ` (` ∈ [L]), we define the norm

‖θ‖∞ = max

(
sup

i1∈[N1]

∥∥∥θ(0)
i1

∥∥∥
2
, sup
`∈[L−1],i`∈[N`],i`+1∈[N`+1]

∥∥∥θ(`)
i`,i`+1

∥∥∥
2
, sup
iL∈[NL]

∥∥∥θ(L)
iL

∥∥∥
2

)
. (C.23)

As a preliminary result, we provide a bound on ‖θ(k)− θ̄(T )‖∞.

Consider the continuous time gradient descent process θ̃(t), defined as

θ̃
(0)

i1 (t) = θ̃
(0)

i1 (0),

θ̃
(`)

i`,i`+1
(t) = θ̃

(`)

i`,i`+1
(0) + 2

∫ t

0

αξ(s)N2E
{(
y − ŷN

(
x, θ̃(s)

))T
D
θ̃
(`)
i`,i`+1

ŷN

(
x, θ̃(s)

)}
ds,

θ̃
(L)

iL (t) = θ̃
(L)

iL (0),

(C.24)

with the initialization θ̃
(0)

i1 (0) = θ
(0)
i1

(0), θ̃
(`)

i`,i`+1
(0) = θ

(`)
i`,i`+1

(0) and θ̃
(L)

iL (0) = θ
(L)
iL

(0). By triangle inequality, we have
that

‖θ(k)− θ̄(T )‖∞ ≤ ‖θ(k)− θ̃(T )‖∞ + ‖θ̃(T )− θ̄(T )‖∞. (C.25)

In order to bound the first term in the RHS of (C.25), we follow a strategy similar to that of Proposition 10.1 in (Araújo
et al., 2019). From formula (10.8) of (Araújo et al., 2019), we have that∥∥∥θ(`)

i`,i`+1
(m)− θ̃

(`)

i`,i`+1
(mα)

∥∥∥
2
≤ α

∥∥∥Mrt
(`)
i`,i`+1

(m)
∥∥∥

2
+

m∑
r=1

∫ rα

(r−1)α

E

{∥∥∥αξ((r − 1)α) (y − ŷN (x,θ(r − 1)))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ(r − 1))

− αξ(s)
(
y − ŷN

(
x, θ̃(s)

))T
D
θ̃
(`)
i`,i`+1

ŷN

(
x, θ̃(s)

)∥∥∥
2

}
ds,

(C.26)

where

Mrt
(`)
i`,i`+1

(m) =

m∑
r=1

αξ((r − 1)α)

((
yr−1 − ŷN (xr−1,θ(r − 1))

)T
D
θ
(`)
i`,i`+1

ŷN (xr−1,θ(r − 1))

− E
{

(y − ŷN (x,θ(r − 1)))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ(r − 1))
}) (C.27)

is a martingale with respect to the filtration {Fm, m ∈ N} with Fm = σ
(
θ(0), (x0,y0), . . . , (xm−1,ym−1)

)
. By taking

the sup on both sides, we have that

sup
`∈[L−1],i`,i`+1∈[N ]

∥∥∥θ(`)
i`,i`+1

(m)− θ̃
(`)

i`,i`+1
(T )
∥∥∥

2
≤

(I)︷ ︸︸ ︷
α sup
`∈[L−1],i`,i`+1∈[N ]

∥∥∥Mrt
(`)
i`,i`+1

(m)
∥∥∥

2
+

(II)︷ ︸︸ ︷
m∑
r=1

∫ rα

(r−1)α

E

{
sup

`∈[L−1],i`,i`+1∈[N ]

∥∥∥αξ((r − 1)α) (y − ŷN (x,θ(r − 1)))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ(r − 1))

− αξ(s)
(
y − ŷN

(
x, θ̃(s)

))T
D
θ̃
(`)
i`,i`+1

ŷN

(
x, θ̃(s)

)∥∥∥
2

}
ds.

(C.28)

Given two parameters θ1 and θ2, by following the argument of Lemma B.17 of (Araújo et al., 2019), we have that∥∥∥∥(y − ŷN (x,θ1))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ1)− (y − ŷN (x,θ2))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ2)

∥∥∥∥
2

≤ C1‖θ1 − θ2‖∞.
(C.29)
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In what follows, the Ci are constants that depend on L, T , and on the constants Ki of the assumptions.

Consequently, we can bound the second term in the RHS of (C.28) as

(II) ≤ C2

m∑
r=1

∫ rε

(r−1)ε

(
|(r − 1)ε− s|+ ‖θ(r − 1)− θ̃(s)‖∞

)
ds, (C.30)

where we have used that the quantity

(y − ŷN (x,θ))
T

D
θ
(`)
i`,i`+1

ŷN (x,θ) (C.31)

is bounded for all θ. By using also that the process t→ θ̃(t) is Lipschitz in time, we obtain the bound

(II) ≤ C3 αT + C3 α

m−1∑
r=0

∥∥∥θ(r)− θ̃(r)
∥∥∥
∞
. (C.32)

By combining (C.32) with (C.28) and by applying a discrete Gronwall inequality, we have that∥∥∥θ(k)− θ̃(T )
∥∥∥
∞
≤ α eC3 T

(
sup
m∈[k]

‖Mrt(m)‖∞ + C3 T

)
, (C.33)

where we have defined
‖Mrt(m)‖∞ = sup

`∈[L−1],i`,i`+1∈[N ]

∥∥∥Mrt
(`)
i`,i`+1

(m)
∥∥∥

2
. (C.34)

Note that eζ‖Mrt(m)‖∞ is a submartingale. By using a Cramér-Chernoff argument, we have that

P

(
sup
m∈[k]

‖MrtN (m)‖∞ > u

)
≤ inf
ζ∈R+

e−ζ·uE
{
eζ‖Mrt(τ)‖∞

}
≤ inf
ζ∈R+

e−ζ·uE
{
eζ‖Mrt(k)‖∞

}
, (C.35)

where τ = inf{m ≤ k, ‖MrtN (m)‖∞ > u} ∧ k is a stopping time, and in the second inequality we have applied the
optional stopping theorem to the submartingale eζ‖Mrt(m)‖∞ . Furthermore, for any ζ > 0, we have that

E
{
eζ‖Mrt(k)‖∞

}
≤

L∑
`=1

N∑
i`,i`+1=1

E
{
e
ζ
∥∥∥Mrt

(`)
i`,i`+1

(k)
∥∥∥
2

}
. (C.36)

Note that the martingale Mrt
(`)
i`,i`+1

(k) has bounded increments. Thus, by using a modification of Hoeffding’s Lemma and
an ε-net argument (cf. Lemma A.3 of (Araújo et al., 2019)), we obtain that

E
{
e
ζ
∥∥∥Mrt

(`)
i`i`+1

(k)
∥∥∥
2

}
≤ 5d · eC4kζ

2

, (C.37)

with d = max
i∈[L−1]

di. By combining (C.35), (C.36) and (C.37), we deduce that

P

(
sup
m∈[k]

‖MrtN (m)‖∞ > u

)
≤ LN25d inf

ζ∈R+
e−ζ u+C4kζ

2

. (C.38)

By optimizing over ζ, we have that, with probability at least 1− e−z2 ,

sup
m∈[k]

‖MrtN (m)‖∞ ≤ C5

√
1

α

(√
d+ logN + z

)
. (C.39)

Finally, by combining (C.39) with (C.33), we conclude that, with probability at least 1− e−z2 ,∥∥∥θ(k)− θ̃(T )
∥∥∥
∞
≤ C6

√
α(
√
d+ logN + z). (C.40)
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Let us bound the second term in the RHS of (C.25). By following the strategy of Lemma 12.2 in (Araújo et al., 2019), we
have that, with probability at least 1− e−u2

,∥∥∥θ̃(`)

i`,i`+1
(t)− θ(`)

i`,i`+1
(t)
∥∥∥

2
≤ C7

∫ t

0

∥∥∥θ̃(s)− θ(s)
∥∥∥
∞

ds+ C7
u+
√
d√

N
. (C.41)

By doing a union bound over i`, i`+1 ∈ [N ] and ` ∈ [L− 1], we deduce that, with probability at least 1− e−z2 ,∥∥∥θ̃(t)− θ(t)
∥∥∥
∞
≤ C7

∫ t

0

∥∥∥θ̃(s)− θ(s)
∥∥∥
∞

ds+ C8
z +
√
d+ logN√
N

. (C.42)

By Gronwall lemma, we conclude that, with probability at least 1− e−z2 ,∥∥∥θ̃(T )− θ(T )
∥∥∥
∞
≤ C8e

C7T
z +
√
d+ logN√
N

. (C.43)

By combining (C.40) and (C.43), we have that, with probability at least 1− e−z2 ,

‖θ(k)− θ̄(T )‖∞ ≤ C9

(
z +
√
d+ logN√
N

+
√
α(
√
d+ logN + z)

)
. (C.44)

At this point, we are ready to bound the various terms in the RHS of (C.22). In order to bound the first term, note that LN is
Lipschitz with ‖ · ‖∞. Thus, we obtain that, with probability at least 1− e−z2 ,

|LN (θ(k))− LN (θ̄(T ))| ≤ C10

(
z +
√
d+ logN√
N

+
√
α(
√
d+ logN + z)

)
. (C.45)

In order to bound the second term in the RHS of (C.22), note that

‖θS(k)− θ̄S(T )‖∞ ≤ ‖θ(k)− θ̄(T )‖∞. (C.46)

As L|A| is Lipschitz with ‖ · ‖∞, by combining (C.44) and (C.46), we obtain the bound

|L|A|(θS(k))− L|A|(θ̄S(T ))| ≤ C11

(
z +
√
d+ logN√
N

+
√
α(
√
d+ logN + z)

)
, (C.47)

with probability at least 1− e−z2 .

Finally, let us consider the remaining two terms in the RHS of (C.22). Fix x ∈ Rd0 . Then, by Lemma 11.4 of (Araújo et al.,
2019), we have that, for ζ > 0,

logE
{
eζ‖ŷN(x,θ̄(T ))−ȳ(x,ρ?T )‖2

}
≤ C12

(
d+

ζ2

N

)
. (C.48)

By using similar arguments, we also have that, for ζ > 0,

logE
{
eζ‖ŷ|A|(x,θ̄S(T ))−ȳ(x,ρ?T )‖2

}
≤ C13

(
d+

ζ2

Amin

)
. (C.49)

Thus, by applying Markov inequality and optimizing over ζ, we deduce that

‖ŷN
(
x, θ̄(T )

)
− ȳ(x, ρ?T )‖2 ≤ C14

√
d+ z√
N

,

‖ŷ|A|
(
x, θ̄S(T )

)
− ȳ(x, ρ?T )‖2 ≤ C14

√
d+ z√
Amin

,

(C.50)
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with probability at least 1− e−z2 . By using that y, ŷN
(
x, θ̄(T )

)
, ŷ|A|

(
x, θ̄S(T )

)
and ȳ(x, ρ?T ) are bounded, we conclude

that

|LN (θ̄(T ))− L̄(ρ?T )| ≤ C15

√
d+ z√
N

,

|L|A|(θ̄S(T ))− L̄(ρ?T )| ≤ C15

√
d+ z√
Amin

,

(C.51)

with probability at least 1− e−z2 . By combining (C.45), (C.47) and (C.51), the proof is complete.

C.2. Part (B)

The proof of part (B) is obtained by combining part (A) with the following result, which extends Lemma A.1 to the multilayer
case.

Lemma C.2 (Dropout stability implies connectivity – multilayer). Consider a neural network with L + 1 ≥ 4 layers,
where each hidden layer contains N neurons, as in (4.1). For any k ∈ [L], assume that θ and θ̄ are ε-dropout stable given
Ai = [N/2] for i ∈ {k, . . . , L}. Then, θ and θ̄ are ε-connected.

Given a vector of parameters θ, it is helpful to write it as

θ(L) =

{[
a

(L)
iL

]
iL∈[N ]

,
[
w

(L)
iL

]
iL∈[N ]

}
,

θ(`) =

{[
a

(`)
i`+1,i`

]
i`+1,i`∈[N ]

,
[
w

(`)
i`+1,i`

]
i`+1,i`∈[N ]

}
, ` ∈ [L− 1],

θ(0) =
[
θ

(0)
i0

]
i0∈[N ]

.

(C.52)

In words, we stack the parameters θ(`) of layer ` into a matrix, and the (i, j)-th element of this matrix contains the parameter
θ

(`)
j,i = (a

(`)
j,i ,w

(`)
j,i ) connecting the j-th neuron of layer ` with the i-th neuron of layer `+ 1. Furthermore, let us partition

the parameters θ as

θ(L) =
{[

a
(L)
t a

(L)
b

]
,
[
w

(L)
t w

(L)
b

]}
,

θ(`) =

{[
a

(`)
t,t a

(`)
t,b

a
(`)
b,t a

(`)
b,b

]
,

[
w

(`)
t,t w

(`)
t,b

w
(`)
b,t w

(`)
b,b

]}
, ` ∈ [L− 1],

θ(0) =

[
θ

(0)
t

θ
(0)
b

]
.

(C.53)

In words, θ(`)
t,t = (a

(`)
t,t ,w

(`)
t,t ) contains the parameters connecting the top half neurons of layer ` with the top half neurons of

layer ` + 1; θ(`)
t,b = (a

(`)
t,b,w

(`)
t,b) contains the parameters connecting the bottom half neurons of layer ` with the top half

neurons of layer ` + 1; θ(`)
b,t = (a

(`)
b,t,w

(`)
b,t) contains the parameters connecting the top half neurons of layer ` with the

bottom half neurons of layer `+ 1; and θ(`)
b,b = (a

(`)
b,b,w

(`)
b,b) contains the parameters connecting the bottom half neurons of

layer ` with the bottom half neurons of layer `+ 1. The partition for the first and the last layer is similarly defined.

At this point, we are ready to present the proof of Lemma C.2.

Proof of Lemma C.2. For the moment, assume that N is even. Let θS,k be obtained from θ by keeping only the top half
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neurons at layer ` ∈ {k, . . . , L}. With an abuse of notation, we can partition the parameters θS,k as

θ
(L)
S,k =

{[
2a

(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ
(`)
S,k =

{[
2a

(`)
t,t 0

0 0

]
,

[
w

(`)
t,t 0

0 0

]}
, ` ∈ {k, . . . , L− 1},

θ
(`)
S,k =

{[
a

(`)
t,t a

(`)
t,b

a
(`)
b,t a

(`)
b,b

]
,

[
w

(`)
t,t w

(`)
t,b

w
(`)
b,t w

(`)
b,b

]}
, ` ∈ [k − 1],

θ
(0)
S,k =

[
θ

(0)
t

θ
(0)
b

]
,

(C.54)

and the corresponding loss is given by LN (θS,k). We now prove by induction that θ is connected to θS,k via a piecewise
linear path in parameter space, such that the loss along the path is upper bounded by LN (θ) + ε.

Base step: from θ to θS,L. As θ is ε-dropout stable, we have that LN (θS,L) ≤ LN (θ) + ε. Note that if a(L)
t = 0, then

the value of w(L)
t does not affect the loss. Hence, we can interpolate from {[ 2a

(L)
t | 0 ], [ w

(L)
t | 0 ]} to {[ 2a

(L)
t |

0 ], [ w
(L)
t | w(L)

b ]} with no change in loss. Furthermore, the loss is convex in a(L). Thus, we can interpolate from
{[ a(L)

t | a(L)
b ], [ w

(L)
t | w(L)

b ]} to {[ 2a
(L)
t | 0 ], [ w

(L)
t | w(L)

b ]} while keeping the loss upper bounded by LN (θ) + ε.

Induction step: from θS,k to θS,k−1. We construct the path by passing through the following intermediate points in parameter
space:

θ
(L)
1 =

{[
2a

(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ
(i)
1 =

{[
2a

(i)
t,t 0

0 0

]
,

[
w

(i)
t,t 0

0 0

]}
, i ∈ {k, . . . , L− 1},

θ
(k−1)
1 =

{[
a

(k−1)
t,t a

(k−1)
t,b

a
(k−1)
b,t a

(k−1)
b,b

]
,

[
w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
b,t w

(k−1)
b,b

]}
.

θ
(L)
2 =

{[
2a

(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ
(i)
2 =

{[
2a

(i)
t,t 0

0 2a
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w
(i)
t,t

]}
, i ∈ {k, . . . , L− 1},

θ
(k−1)
2 =

{[
a

(k−1)
t,t a

(k−1)
t,b

2a
(k−1)
t,t 0

]
,

[
w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
t,t 0

]}
.

θ
(L)
3 =

{[
0 2a

(L)
t

]
,
[
0 w

(L)
t

]}
,

θ
(i)
3 =

{[
2a

(i)
t,t 0

0 2a
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w
(i)
t,t

]}
, i ∈ {k, . . . , L− 1},

θ
(k−1)
3 =

{[
a

(k−1)
t,t a

(k−1)
t,b

2a
(k−1)
t,t 0

]
,

[
w

(k−1)
t,t w

(k−1)
t,b

w
(k−1)
t,t 0

]}
.
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θ
(L)
4 =

{[
0 2a

(L)
t

]
,
[
0 w

(L)
t

]}
,

θ
(i)
4 =

{[
2a

(i)
t,t 0

0 2a
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w
(i)
t,t

]}
, i ∈ {k, . . . , L− 1},

θ
(k−1)
4 =

{[
2a

(k−1)
t,t 0

2a
(k−1)
t,t 0

]
,

[
w

(k−1)
t,t 0

w
(k−1)
t,t 0

]}
.

θ
(L)
5 =

{[
2a

(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ
(i)
5 =

{[
2a

(i)
t,t 0

0 2a
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w
(i)
t,t

]}
, i ∈ {k, . . . , L− 1},

θ
(k−1)
5 =

{[
2a

(k−1)
t,t 0

2a
(k−1)
t,t 0

]
,

[
w

(k−1)
t,t 0

w
(k−1)
t,t 0

]}
.

θ
(L)
6 =

{[
2a

(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ
(i)
6 =

{[
2a

(i)
t,t 0

0 0

]
,

[
w

(i)
t,t 0

0 0

]}
, i ∈ {k − 1, . . . , L− 1}.

As we do not change the parameters in layer ` ∈ [k − 2], we have omitted them in the definitions above.

From θ1 to θ2. The loss is not affected by the values in the bottom right quadrant of θ(k−1)
1 , since the bottom neurons of layer

k are not active (a(k)
t,b = a

(k)
b,b = 0). Consequently, we can interpolate from a(k−1)

b,b to 0 and fromw(k−1)
b,b to 0 with no change

in loss. Similarly, the loss is not affected by the values in the bottom right quadrant of θ(i)
1 for i ∈ {k, . . . L− 1}, since the

bottom neurons of layer i+ 1 are not active (a(i+1)
t,b = a

(i+1)
b,b = 0 and a(L)

b = 0). Consequently, for i ∈ {k, . . . L− 1}, we

can successively interpolate from 0 to 2a
(i)
t,t and from 0 to 2w

(i)
t,t with no change in loss.

From θ5 to θ6. We use the same reasoning as for θ1 → θ2 and go in reverse layer order (i.e., from layer L − 1 to layer
k − 1). The loss is not affected by the values in the bottom right quadrant of θ(i)

5 , since the bottom neurons of layer i+ 1

are not active. Consequently, we can interpolate from 2a
(i)
t,t to 0 and from w

(i)
t,t to 0 with no change in loss. Similarly, the

loss is not affected by the values in the bottom left quadrant of θ(k−1)
5 , since the bottom neurons of layer k are not active.

Consequently, we can interpolate from 2a
(k−1)
t,t to 0 and from w

(k−1)
t,t to 0 with no change in loss.

From θ4 to θ5. Note that the parameters of θ4 and θ5 are the same except for layer L. Furthermore, the structure of these
parameters implies that the output of layer L − 1 is obtained by stacking the output of two identical sub-networks. In
formulas, let z(L−1) be the output of layer L− 1. Then, z(L−1) = [ z̄ | z̄ ] for some z̄. Consequently, we can interpolate
between θ4 and θ5 with no change in loss.

From θ3 to θ4. By using the same reasoning as for θ5 → θ6, we interpolate from 2a
(i)
t,t to 0 and fromw

(i)
t,t to 0 in the top

left corner of θ(i)
3 with no change in loss, for i = L− 1, . . . , k. Then, we interpolate from θ

(k−1)
3 to θ(k−1)

4 with no change
in loss, since the top neurons of layer k are not active. Finally, we restore sequentially 2a

(i)
t,t andw(i)

t,t in the top left corner
of the corresponding parameter matrices with no change in loss, by using the same reasoning as for θ1 → θ2.

From θ2 to θ3. From the previous arguments, we have that LN (θ2) = LN (θ1) and LN (θ3) = LN (θ6). Furthermore, θ is
ε-dropout stable, which implies that |LN (θ1)− LN (θ6)| ≤ ε. Consequently, we have that |LN (θ2)− LN (θ3)| ≤ ε. Note
that if a(L)

t = 0, then the value ofw(L)
t does not affect the loss. Hence, we can interpolate from {[ 2a

(L)
t | 0 ], [ w

(L)
t | 0 ]}

to {[ 2a
(L)
t | 0 ], [ w

(L)
t | w(L)

t ]} with no change in loss. Similarly, we can interpolate from {[ 0 | 2a(L)
t ], [ 0 | w(L)

t ]}
to {[ 0 | 2a

(L)
t ], [ w

(L)
t | w(L)

t ]} with no change in loss. Furthermore, the loss is convex in a(L). Thus, we can
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interpolate from {[ 2a
(L)
t | 0 ], [ w

(L)
t | w(L)

t ]} to {[ 0 | 2a(L)
t ], [ w

(L)
t | w(L)

t ]} while keeping the loss upper bounded
by LN (θ) + ε.

As a result, we are able to connect θ with θS,1 via a piecewise linear path, where the loss is upper bounded by LN (θ) + ε.
Similarly, let θ̄S,k be obtained from θ̄ by keeping only the top half neurons at layer ` ∈ {k, . . . , L}. Then, we can connect θ̄
with θ̄S,1 via a piecewise linear path, where the loss is upper bounded by LN (θ̄) + ε.

In order to complete the proof, it remains to connect θS,1 with θ̄S,1 via a piecewise linear path, where the loss is upper
bounded by max(LN (θ), LN (θ̄)) + ε. We construct the path by passing through the following intermediate points in
parameter space:

θ̃
(L)

1 =
{[

2a
(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ̃
(i)

1 =

{[
2a

(i)
t,t 0

0 0

]
,

[
w

(i)
t,t 0

0 0

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

1 =

[
θ

(0)
t

θ
(0)
b

]
.

θ̃
(L)

2 =
{[

2a
(L)
t 0

]
,
[
w

(L)
t 0

]}
,

θ̃
(i)

2 =

{[
2a

(i)
t,t 0

0 2ā
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w̄
(i)
t,t

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

2 =

[
θ

(0)
t

θ̄
(0)
t

]
.

θ̃
(L)

3 =
{[

0 2ā
(L)
t

]
,
[
0 w̄

(L)
t

]}
,

θ̃
(i)

3 =

{[
2a

(i)
t,t 0

0 2ā
(i)
t,t

]
,

[
w

(i)
t,t 0

0 w̄
(i)
t,t

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

3 =

[
θ

(0)
t

θ̄
(0)
t

]
.

θ̃
(L)

4 =
{[

0 2ā
(L)
t

]
,
[
0 w̄

(L)
t

]}
,

θ̃
(i)

4 =

{[
2ā

(i)
t,t 0

0 2ā
(i)
t,t

]
,

[
w̄

(i)
t,t 0

0 w̄
(i)
t,t

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

4 =

[
θ̄

(0)
t

θ̄
(0)
t

]
.

θ̃
(L)

5 =
{[

2ā
(L)
t 0

]
,
[
w̄

(L)
t 0

]}
,

θ̃
(i)

5 =

{[
2ā

(i)
t,t 0

0 2ā
(i)
t,t

]
,

[
w̄

(i)
t,t 0

0 w̄
(i)
t,t

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

5 =

[
θ̄

(0)
t

θ̄
(0)
t

]
.
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θ̃
(L)

6 =
{[

2ā
(L)
t 0

]
,
[
w̄

(L)
t 0

]}
,

θ̃
(i)

6 =

{[
2ā

(i)
t,t 0

0 0

]
,

[
w̄

(i)
t,t 0

0 0

]}
, i ∈ {1, . . . , L− 1},

θ̃
(0)

6 =

[
θ̄

(0)
t

θ̄
(0)
b

]
.

The arguments to connect θ̃j with θ̃j+1 are analogous to those previously used to connect θj with θj+1. We briefly outline
them below for completeness.

From θ̃1 to θ̃2. First, we interpolate from θ
(0)
b to θ̄(0)

t with no loss change. Then, for i = 1, . . . , L − 1, we successively
interpolate from 0 to w̄(i)

t,t and from 0 to 2ā
(i)
t,t with no loss change.

From θ̃5 to θ̃6. For i = L− 1, . . . , 1, we successively interpolate from 2ā
(i)
t,t to 0 and from w̄

(i)
t,t to 0 with no loss change.

Finally, we interpolate from θ̄
(0)
t to θ̄(0)

b with no loss change.

From θ̃4 to θ̃5. The output of layer L− 1 is obtained by stacking the output of two identical sub-networks. Thus, we can
interpolate between θ̃4 and θ̃5 with no change in loss.

From θ̃3 to θ̃4. For i = L− 1, . . . , 1, we interpolate from 2a
(i)
t,t to 0 and from w

(i)
t,t to 0 with no change in loss. Then, we

interpolate from θ
(0)
t to θ̄(0)

t with no change in loss. Finally, for i = 1, . . . , L− 1, we restore sequentially 2ā
(i)
t,t and w̄(i)

t,t in
the top left corner of the corresponding parameter matrices with no change in loss.

From θ̃2 to θ̃3. From the previous arguments, we have that LN (θ̃2) = LN (θ̃1) ≤ LN (θ) + ε and LN (θ̃3) = LN (θ̃6) ≤
LN (θ̄) + ε. First, we interpolate from {[ 2a

(L)
t | 0 ], [ w

(L)
t | 0 ]} to {[ 2a

(L)
t | 0 ], [ w

(L)
t | w̄(L)

t ]} with no change in
loss. Similarly, we interpolate from {[ 0 | 2ā(L)

t ], [ 0 | w̄(L)
t ]} to {[ 0 | 2ā(L)

t ], [ w
(L)
t | w̄(L)

t ]} with no change in loss.
Furthermore, as the loss is convex in a(L), we interpolate from {[ 2a

(L)
t | 0 ], [ w

(L)
t | w̄(L)

t ]} to {[ 0 | 2ā(L)
t ], [ w

(L)
t |

w̄
(L)
t ]} while keeping the loss upper bounded by max(LN (θ), LN (θ̄)) + ε.

D. Additional Numerical Results
In Figures 1, 2 and 3, we consider the problem of classifying isotropic Gaussians. This is an artificial dataset considered in
(Mei et al., 2018b). The label y is chosen uniformly at random between −1 and 1, i.e., y ∼ Unif({−1, 1}). Given y, the
feature vector x is a d-dimensional isotropic Gaussian with covariance matrix (1 + y∆)2Id, i.e., x ∼ N (0, (1 + y∆)2Id).
We set d = 32 and ∆ = 0.5, and we run the one-pass (or online) SGD algorithm (3.3) on the two-layer neural network (3.1)
with sigmoid activation function (σ(x) = 1/(1 + e−x)). We estimate the population risk and the classification error on 104

independent samples. Figure 1 compares the performance of the trained network (blue dashed curve) and of the dropout
network (orange curve) obtained by removing half of the neurons. We plot the population risk and the classification error for
N = 800 and N = 6400. As expected, the performance of the dropout network improves with N , and it is very close to that
of the trained network already for N = 800. In fact, for N = 800 the classification error of the dropout network is < 0.4%.
Figure 2 plots the change in loss between the full and the dropout network, as a function of the number of neurons of the full
network N . The change in loss decreases steadily with N for all the values of T taken into account. Finally, Figure 3 shows
that the optimization landscape is approximately connected when N = 3200.

In Figures 4, 5 and 6, we consider MNIST classification with a three-layer neural network and CIFAR-10 classification with
a four-layer neural network. The results are qualitatively similar to those of Figures 1, 2 and 3 in Section 5.
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Figure 1. Comparison of population risk and classification error be-
tween the trained network (blue dashed curve) and the dropout net-
work (orange curve) for the classification of isotropic Gaussians.
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Figure 2. Change in loss between the full network and the dropout
network for the classification of isotropic Gaussians, as a function of
the number of neurons N of the full network.
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Figure 3. Classification error along a piecewise linear path that connects two SGD solutions θ1 and θ2 for the classification of isotropic
Gaussians with N = 3200. The two SGD solutions are initialized with different distributions, and we show their histograms to highlight
that θ1 cannot be obtained by permuting θ2.
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Figure 4. Comparison of population risk and classification error between the trained network (blue dashed curve) and the dropout network
(orange curve).
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(a) MNIST, three-layer
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(b) CIFAR-10, four-layer

Figure 5. Change in loss after removing half of the neurons from each layer, as a function of the number of neurons N of the full network.
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Figure 6. Classification error along a piecewise linear path that connects two SGD solutions θ1 and θ2 for MNIST classification with a
three-layer neural network with N = 3200.


