
Incremental Sampling Without Replacement for Sequence Models

A. Proof of Theorem 1
Theorem 1. P is trace-injective ⇐⇒ for all trace pre-
fixes t′ = [c1, . . . , ch], the set of possible outputs F (t′) is
partitioned by the next choice ch+1 ∼ C(πh+1), i.e., the set
{F ([c1, . . . , ch, ch+1]) | ch+1 ∈ {0, . . . , len(πh+1) − 1}}
is a partition of F (t′).

Proof. For any trace prefix [c1, . . . , ch], define the collec-
tion

F([c1, . . . , ch]) = {F ([c1, . . . , ch, ch+1])

| ch+1 ∈ {0, . . . , len(πh+1)− 1}}.

First, if P is trace-injective, then for any trace prefix
[c1, . . . , ch], and any c 6= c′, let y1 ∈ F ([c1, . . . , ch, c])
and y2 ∈ F ([c1, . . . , ch, c′]). Then there exist traces

t(1) = [c1, . . . , ch, c
(1)
h+1, . . . , c

(1)
h1

]

and

t(2) = [c1, . . . , ch, c
(2)
h+1, . . . , c

(2)
h2

]

such that

(a) c(1)h+1 = c and c(2)h+1 = c′,

(b) f(t(1)) = y1 and f(t(2)) = y2.

Clearly t(1) 6= t(2), so because f is injective, we
have that y1 6= y2. Also ∪c′F ([c1, . . . , ch, c′]) =
F ([c1, . . . , ch]). This means that F([c1, . . . , ch]) is a parti-
tion of F ([c1, . . . , ch]).

Conversely, assume that F(t′) is a partition of F (t′) for any
trace prefix t′. Let

t(1) = [c
(1)
1 , . . . , c

(1)
h1

]

and

t(2) = [c
(2)
1 , . . . , c

(2)
h2

]

be distinct traces. Let h be the length of their longest
common prefix, so c

(1)
i = c

(2)
i for all 1 ≤ i ≤ h, and

c
(1)
h+1 6= c

(2)
h+1. By definition,

f(t(1)) ∈ F ([c(1)1 , . . . , c
(1)
h , c

(1)
h+1])

and

f(t(2)) ∈ F ([c(2)1 , . . . , c
(2)
h , c

(2)
h+1])

= F ([c
(1)
1 , . . . , c

(1)
h , c

(2)
h+1]).

But these two sets are disjoint, because F([c(1)1 , . . . , c
(1)
h ])

partitions the set F ([c(1)1 , . . . , c
(1)
h ]). Therefore, f(t(1)) 6=

f(t(2)), establishing that f is injective and that P is trace-
injective.

B. Proof of Correctness
Theorem 2. Let P be a discrete randomized program that
terminates, and let P (t) be the probability that P runs with
trace t. Suppose we have already sampled distinct traces
t1, . . . , tj . If, at any UniqueRandomizer trie node n we
move to a child c with probability proportional to mass(c),
then upon reaching a leaf node, the resulting trace is drawn
from P (t | t 6∈ {t1, . . . , tj}).

Proof. Let n0, . . . , nh be any root-to-leaf path, where n0 is
the root and nh is the leaf. Let t be the trace corresponding
to nh. According to Equation (3),

mass(nh) =

{
0 if t ∈ {t1, . . . , tj}
P (t) otherwise.

We complete the proof by showing that the leaf nh is reached
with the desired probability:

P (nh is reached)

=

h∏
i=1

P (ni is the selected child of ni−1)

=

h∏
i=1

mass(ni)∑
c∈children(ni−1)

mass(c)

=

h∏
i=1

mass(ni)

mass(ni−1)
(7)

=
mass(nh)

mass(n0)

=
mass(nh)

1−
∑j
i=1 P (ti)

=

{
0 if t ∈ {t1, . . . , tj}

1

1−
∑j

i=1 P (ti)
P (t) otherwise

= P (t | t 6∈ {t1, . . . , tj}).

Equality (7) holds because a non-leaf node’s mass equals
the sum of its children’s mass values.

C. Detecting Exhausted Nodes
We say that a trie node is exhausted if it has zero unsampled
probability mass, i.e., all of its probability mass is sampled.
Due to floating-point errors, a node’s mass might not be set
to exactly zero after it should be exhausted. We handle this
by carefully propagating the information that a given node
has zero unsampled probability mass.

When a node n is marked as a leaf, we directly assign
mass(n) := 0. Then, when subtracting mass from one of
n’s ancestors a, we first check if mass(c) = 0 for all chil-
dren c of a. If so, we directly set mass(a) := 0 instead of



Incremental Sampling Without Replacement for Sequence Models

using a subtraction operation. With this approach, a node’s
mass will be exactly 0 after all of its descendent leaves are
sampled. Algorithm 3 includes this process, elaborating on
the pseudocode in Algorithm 2.

D. Locally Modifying the Factorized
Probability Distribution

A slight modification of UniqueRandomizer’s trie allows
for efficient local updates to the factorized probability dis-
tribution. Instead of storing unsampled probability masses
of nodes, the modified trie nodes now store the unsampled
fraction of the node’s total probability mass. Edges in the
trie now store the initial probability of following that edge
from the source node, as given in the probability distribution
provided by P .

Note that the unsampled probability mass of a node n is
equal to the product of the edge probabilities from the root to
n, times the unsampled fraction at n. Therefore, by accumu-
lating the product of edge probabilities while walking down
the trie, we can compute the unsampled probability mass of
nodes, so we can recreate the original UniqueRandomizer
behavior with the modified trie.

This decomposition enables local modifications to the fac-
torized probability distribution. More precisely, suppose
that a trie node n has k children, denoted n1, . . . , nk, and n
initially has outward edge probabilities of p1, . . . , pk. We
wish to change these edge probabilities to p′1, . . . , p

′
k, so

that further samples come from the updated probability dis-
tribution and previously-seen samples are still avoided. We
do this by updating the trie in the following way. First,
we directly replace n’s outward edge probabilities with the
desired p′1, . . . , p

′
k. Then, we compute the new unsampled

fraction at n with a weighted average of n’s children:

unsampledFraction(n) :=

k∑
i=1

edgeProbability(n, ni) · unsampledFraction(ni).

Finally, we perform a similar update for all of n’s ancestors
in upward order (with the root being updated last). After
these updates, all values in the trie reflect the new probability
distribution.

E. Program Synthesis Experiment Details
For the program synthesis task, we train a Transformer
model (Vaswani et al., 2017) to translate lines of pseudocode
to lines of C++ code. We use the Transformer implemen-
tation in the Trax framework6. The Transformer uses 2
attention heads, 3 hidden layers, a filter size of 1024, and

6https://github.com/google/trax.

a hidden dimension size of 512. We train using ADAM
with learning rate 0.05 and batch size 512 for 12,000 steps,
which is approximately when the models achieve their low-
est evaluation loss. We use linear learning rate warmup for
the first 1,000 steps. These hyperparameters were chosen
from the search space in Table 3, selecting the run with the
lowest evaluation loss at the end of training. As in Kulal
et al. (2019), we withhold 10% of the training examples as
the validation set.

Some of the shorter lines of code in the SPoC dataset have
no pseudocode. In some of these instances, we augment the
line with pseudocode ourselves. Specifically, if the line is
exactly “}” or “};” we provide pseudocode “end”, if the
line is exactly “int main() {” we provide pseudocode
“main”, and if the line is exactly “return 0;” we provide
pseudocode “return”.

https://github.com/google/trax


Incremental Sampling Without Replacement for Sequence Models

Table 3: The search space used for tuning the Transformer model.

Hyperparameter Search space Selected value

Learning rate {0.05, 0.075, 0.1, 0.15} 0.05
Hidden layers {1, 2, 3} 3
Hidden dimension size {512, 1024} 512
Attention heads {2, 4} 2
Filter size {512, 1024} 1024

Algorithm 3 UniqueRandomizer, with careful detection of
exhausted nodes

. Called once to initialize the data structure
1: procedure INITIALIZE()
2: root← TRIENODE(parent = ∅,mass = 1)
3: cur← root

. Whether node is completely sampled
4: procedure EXHAUSTED(node)
5: if node is a leaf then
6: return True
7: if node has never been sampled from before then
8: return False
9: return whether all of node’s children have 0mass

. Called when P requests a random choice
10: procedure RANDOMCHOICE(π)
11: if EXHAUSTED(cur) then
12: raise Error(“no more unique traces exist”)
13: if cur’s children are not initialized yet then
14: for 0 ≤ i < len(π) do
15: cur.children[i]← TRIENODE(

parent = cur,mass = π[i] · cur.mass)
16: index← randomly sample i with probability

∝ cur.children[i].mass
17: cur← cur.children[index]
18: return index

. Called after P terminates
19: procedure PROCESSTERMINATION()
20: mark cur as a leaf
21: node← cur
22: while node 6= ∅ do
23: if EXHAUSTED(node) then
24: node.mass← 0
25: else
26: node.mass← max{node.mass−cur.mass,

0}
27: node← node.parent
28: cur← root


