Supplementary File for "A Markov Decision Process Model for Socio-Economic Systems Impacted by Climate Change"

Anonymous Authors ${ }^{1}$

Proof of Theorem 1

Nondecreasing and Concave:
We will first show that if $V\left(s_{n}, \ell_{n}\right)$ is nondecreasing and concave in ℓ_{n}, then so is

$$
F_{m}\left(s_{n}, \ell_{n}\right)=\mathrm{E}\left[m \alpha-\beta y_{n}+z_{n}+a_{g} V\left(s_{n-1}+m, \ell_{n-1}+r_{n}\right)\right]
$$

for $m=0,1, \ldots, q$. Assume

- $\frac{\partial}{\partial \ell_{n}} V\left(s_{n}, \ell_{n}\right) \geq 0$ (nondecreasing),
- $\frac{\partial^{2}}{\partial \ell_{n}^{2}} V\left(s_{n}, \ell_{n}\right)<0$ (concavity).

Using the nondecreasing monotonicity of $V\left(s_{n}, \ell_{n}\right)$ we can write

$$
\frac{\partial}{\partial \ell_{n}} F_{m}\left(s_{n}, \ell_{n}\right)=\frac{\eta a \ell_{n-1}^{a-1}}{(1-k) s_{n-1}^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell_{n}} V\left(s_{n}, \ell_{n}\right)\right] \geq 0
$$

where the derivative can be brought inside the integral due to the monotone convergence theorem. Since $0<a<1$, for the second derivative we have

$$
\frac{\partial^{2}}{\partial \ell_{n}^{2}} F_{m}\left(s_{n}, \ell_{n}\right)=\frac{\eta a(a-1) \ell_{n-1}^{a-2}}{(1-k) s_{n-1}^{b}}+a_{g} \mathrm{E}\left[\frac{\partial^{2}}{\partial \ell_{n}^{2}} V\left(s_{n}, \ell_{n}\right)\right]<0
$$

Hence, it is sufficient to show that $V\left(s_{n}, \ell_{n}\right)$ is nondecreasing and concave.
Finding the value function iteratively (i.e., value iteration) is a common approach which is known to converge (Sutton \& Barto, 2018): $\lim _{i \rightarrow \infty} V_{i}(s, \ell)=V(s, \ell)$. For brevity, we drop the time index from now on. We will next prove that $V(s, \ell)$ is nondecreasing and concave iteratively. Initializing all the state values as zero, i.e., $V^{0}(s, \ell)=0, \forall s, \ell$, after the first iteration we get

$$
\begin{aligned}
V_{1}(s, \ell) & =\min _{x}\left\{\mathrm{E}\left[\alpha x-\beta y(x, z)+z(s, \ell)+a_{g} V^{0}(s+x, \ell+r)\right]\right\} \\
& =\mathrm{E}[z(s, \ell)]=\theta+\frac{\sigma}{1-k}=\theta+\frac{\eta \ell^{a}}{(1-k) s^{b}}
\end{aligned}
$$

where we used the fact that $\mathrm{E}[y]=0$ when $x=0$ for all states. Differentiating with respect to ℓ, we get

$$
\begin{align*}
\frac{\partial}{\partial \ell} V_{1}(s, \ell) & =\eta a \frac{\ell^{a-1}}{(1-k) s^{b}} \geq 0, \forall s \tag{S1}\\
\frac{\partial^{2}}{\partial \ell^{2}} V_{1}(s, \ell) & =\eta a(a-1) \frac{\ell^{a-2}}{(1-k) s^{b}}<0, \forall s
\end{align*}
$$

[^0]since $\eta>0, a \in(0,1), b>0, k<0$. Thus, $V_{1}(s, \ell)$ is nondecreasing and concave in ℓ for all s. Next, value function after the second iteration becomes
\[

$$
\begin{aligned}
V_{2}(s, \ell) & =\min _{x}\left\{\mathrm{E}\left[\alpha x-\beta y(x, z)+z(s, \ell)+a_{g} V_{1}(s+x, \ell+r)\right]\right\} \\
& =\min _{x}\left\{\mathrm{E}[\alpha x-\beta y(x, z)]+\theta+\frac{\eta \ell^{a}}{(1-k) s^{b}}+a_{g} \theta+a_{g} \mathrm{E}\left[\frac{\eta(\ell+r)^{a}}{(1-k)(s+x)^{b}}\right]\right\} .
\end{aligned}
$$
\]

Denoting the optimum action with \bar{x} we will show that $V_{2}(s, \ell)$ is nondecreasing and concave for any \bar{x}. Moreover, the pointwise minimum of nondecreasing and concave functions is also nondecreasing and concave. The residents' probability of support $\mathrm{E}[y(x, z)]$ depends on past values of x and z, but not ℓ directly, so taking the derivative with respect to ℓ we get

$$
\begin{aligned}
\frac{\partial}{\partial \ell} V_{2}(s, \ell) & =\frac{\partial}{\partial \ell}\left\{\frac{\eta \ell^{a}}{(1-k) s^{b}}+a_{g} \frac{\eta \mathrm{E}\left[(\ell+r)^{a}\right]}{(1-k)(s+\bar{x})^{b}}\right\} \\
& =\eta a \frac{\ell^{a-1}}{(1-k) s^{b}}+a_{g} \eta a \frac{\mathrm{E}\left[(\ell+r)^{a-1}\right]}{(1-k)(s+\bar{x})^{b}} \geq 0, \quad \forall s \\
\frac{\partial^{2}}{\partial \ell^{2}} V_{2}(s, \ell) & =\eta a(a-1) \frac{\ell^{a-2}}{(1-k) s^{b}}+a_{g} \eta a(a-1) \frac{\mathrm{E}\left[(\ell+r)^{a-2}\right]}{(1-k)(s+\bar{x})^{b}}<0, \quad \forall s .
\end{aligned}
$$

Hence, $V_{2}(s, \ell)$ is nondecreasing and concave. Now, for any i, given that $V_{i-1}(s, \ell)$ is nondecreasing and concave, we can write

$$
\begin{align*}
\frac{\partial}{\partial \ell} V_{i}(s, \ell) & =\eta a \frac{\ell^{a-1}}{(1-k) s^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell} V_{i-1}(s+\bar{x}, \ell)\right] \geq 0, \forall s \tag{S2}\\
\frac{\partial^{2}}{\partial \ell^{2}} V_{i}(s, \ell) & =\eta a(a-1) \frac{\ell^{a-2}}{(1-k) s^{b}}+a_{g} \mathrm{E}\left[\frac{\partial^{2}}{\partial \ell^{2}} V_{i-1}(s+\bar{x}, \ell)\right]<0, \quad \forall s
\end{align*}
$$

Consequently, by mathematical induction, $V(s, \ell)$ is nondecreasing and concave.

Comparison of Derivatives:

Similarly, if we show that

$$
\frac{\partial}{\partial \ell} V(s+m, \ell)<\frac{\partial}{\partial \ell} V(s+m-1, \ell)
$$

we can conclude that $\frac{\partial}{\partial \ell} F_{m}(s, \ell)<\frac{\partial}{\partial \ell} F_{m-1}(s, \ell)$ since

$$
\begin{aligned}
\frac{\partial}{\partial \ell_{n}} F_{m}\left(s_{n}, \ell_{n}\right) & =\frac{\eta a \ell_{n-1}^{a-1}}{(1-k) s_{n-1}^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell_{n}} V\left(s_{n-1}+m, \ell_{n}\right)\right] \\
\frac{\partial}{\partial \ell_{n}} F_{m-1}\left(s_{n}, \ell_{n}\right) & =\frac{\eta a \ell_{n-1}^{a-1}}{(1-k) s_{n-1}^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell_{n}} V\left(s_{n-1}+m-1, \ell_{n}\right)\right] .
\end{aligned}
$$

Starting again with $V_{0}(s, \ell)=0, \forall s, \ell$, from (S1) we can write the following inequality for the first iteration

$$
\frac{\partial}{\partial \ell} V_{1}(s+m, \ell)=\eta a \frac{\ell^{a-1}}{(1-k)(s+m)^{b}}<\frac{\partial}{\partial \ell} V_{1}(s+m-1, \ell)=\eta a \frac{\ell^{a-1}}{(1-k)(s+m-1)^{b}}
$$

For any i, given that $\frac{\partial}{\partial \ell} V_{i-1}(s+m, \ell)<\frac{\partial}{\partial \ell} V_{i-1}(s+m-1, \ell)$, from (S2) we have

$$
\begin{aligned}
& \frac{\partial}{\partial \ell} V_{i}(s+m, \ell)=\eta a \frac{\ell^{a-1}}{(1-k)(s+m)^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell} V_{i-1}(s+m+\bar{x}, \ell)\right]< \\
& \frac{\partial}{\partial \ell} V_{i}(s+m-1, \ell)=\eta a \frac{\ell^{a-1}}{(1-k)(s+m-1)^{b}}+a_{g} \mathrm{E}\left[\frac{\partial}{\partial \ell} V_{i-1}(s+m-1+\bar{x}, \ell)\right]
\end{aligned}
$$

As a result, by mathematical induction we can conclude that $\frac{\partial}{\partial \ell} V(s+m, \ell)<\frac{\partial}{\partial \ell} V(s+m-1, \ell)$.

References

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.

[^0]: ${ }^{1}$ Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author anon.email@domain.com.

 Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

