
Supplementary material to the paper ”Distributional Robust Policy

Evaluation and Learning in Offline Contextual Bandits”

Appendix A Proofs

Appendix A.1 Auxiliary Results

In this section, we give all of the auxiliary results used in the proofs.

Theorem A1 (Hoeffding’s inequality, Theorem 2.8 in [3]). Let X1, . . . , Xn be independent random

variables such that Xi takes its values in [ai, bi] almost surely for all i < n. Let

S =
n∑
i=1

(Xi −EXi).

Then for every t > 0,

P(|S| > t) ≤ exp

(
− 2t2∑m

i=1(bi − ai)2

)
.

Theorem A2 (Functional central limit theorem, Corollary 7.17 in [1]). Let S be a compact sub-

space of Rd and C(S) be the space of continuous bounded random functions on S equipped with the

sup-norm. Let {Xn}∞n=1 be a sequence of centered i.i.d. C(S)−valued random functions such that

EX2
n (s) <∞ for some s ∈ S. Suppose there exists a constant M such that

|X1(s)−X2(t)| ≤M ‖s− t‖ almost surely,

for all s, t ∈ S. Then,

1√
n

n∑
i=1

Xn ⇒ Y,

where Y is a Gaussian process on C(S).

Definition 1 (Directional differentiability, Gâteaux directional differentiability and Hadamard di-

rectional differentiability). Let B1 and B2 be Banach spaces and G : B1 → B2 be a mapping. It is
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said that G is directionally differentiable at a considered point µ ∈ B1 if the limits

G′µ(d) = lim
t↓0

G (µ+ td)−G(µ)

t

exists for all d ∈ B1.

Furthermore, it is said that G is Gâteaux directionally differentiable at µ if the directional deriva-

tive G′µ(d) exists for all d ∈ B1 and G′µ(d) is linear and continuous in d. For ease of notation, we

also denote Dµ(µ0) be the operator G′µ0(·).
Finally, it is said that G is Hadamard directionally differentiable at µ if the directional derivative

G′µ(d) exists for all d ∈ B1 and

G′µ(d) = lim
t↓0
d′→d

G (µ+ td′)−G(µ)

t
.

Theorem A3 (Danskin theorem, Theorem 4.13 in [2]). Let Θ ∈ Rd be a nonempty compact set and

B be a Banach space. Suppose the mapping G : B × Θ → R satisfies that G(µ, θ) and Dµ (µ, θ)

are continuous on Oµ0 × Θ, where Oµ0 ⊂ B is a neighborhood around µ0. Let φ : B → R be

the inf-functional φ(µ) = infθ∈ΘG(µ, θ) and Θ̄(µ) = arg maxθ∈ΘG(µ, θ). Then, the functional φ is

directionally differentiable at µ0 and

G′µ0(d) = inf
θ∈Θ̄(µ0)

Dµ (µ0, θ) d.

Theorem A4 (Delta theorem, Theorem 7.59 in [6]). Let B1 and B2 be Banach spaces, equipped with

their Borel σ-algrebras, YN be a sequence of random elements of B1, G : B1 → B2 be a mapping,

and τN be a sequence of positive numbers tending to infinity as N → ∞. Suppose that the space

B1 is separable, the mapping G is Hadamard directionally differentiable at a point µ ∈ B1, and the

sequence XN = τN (YN − µ) converges in distribution to a random element Y of B1. Then,

τN (G (YN )−G (µ))⇒ G′µ (Y ) in distribution,

and

τN (G (YN )−G (µ)) = G′µ (XN ) + op(1).

Proposition A1 (Proposition 7.57 in [6]). Let B1 and B2 be Banach spaces, G : B1 → B2, and

µ ∈ B1. Then the following hold: (i) If G (·) is Hadamard directionally differentiable at µ, then the

directional derivative G′µ (·) is continuous. (ii) If G(·) is Lipschitz continuous in a neighborhood of

µ and directionally differentiable at µ, then G(·) is Hadamard directionally differentiable at µ.
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Appendix A.2 Proof of Lemma 3.3

Proof of Lemma 3.3. The closed form expression of ∂
∂α φ̂n(π, α) and ∂2

∂α2 φ̂n(π, α) follows from ele-

mentary algebra. By the Cauchy Schwartz’s inequality, we have

( n∑
i=1

Yi(Ai)Wi(π, α)
)2
≤ nŴn(π, α)

n∑
i=1

Y 2
i (Ai)Wi(π, α)

Therefore, it follows that ∂2

∂α2 φ̂n(π, α) ≤ 0. Note that the Cauchy Schwartz’s inequality is actually

an equality if and only if

Y 2
i (Ai)Wi(π, α) = cWi(π, α) if Wi(π, α) 6= 0

for some constant c independent of i. Since the above condition is violated if {Yi(Ai)1{π(Xi) =

Ai}}Ni=1 has at least two different non-zero values, we have in this case φ̂n(π, α) is strictly-concave

in α.

Appendix A.3 Proof of Theorem 3.4

We first give the upper and lower bound for α∗ and in Lemmas A1 and A3.

Lemma A1 (Upper bound of α∗). Suppose that Assumption 1 is imposed, we have the optimal dual

solution α∗ ≤ α = M/δ.

Proof. Proof First note that infP∈UP0(δ)
EP [Y (π(X))] ≥ mini∈[n](Yi) ≥ 0 and

−α log EP0 [exp (−Y (π(X)) /α]− αδ ≤M − αδ.

M − αδ ≥ 0 gives the upper bound α∗ ≤ α = M/δ.

To prove the lower bound of α∗, we need the following technical lemma.

Lemma A2. For c > 0 and c exp(b) < 1/e, the smallest root of equation x log(x) + bx+ c = 0 is

x∗ = − c

W−1(−c exp(b))
,

where W−1(z) is the root of the equation for w in w exp(w) = z with z < −1. Furthermore, we have

x∗ ∈

 c (− log c− b− 1)

2
(

(log (c) + b+ 1)2 + 1
) , c

 .

Proof. Let f(x) = x log(x) + bx+ c and x = −c/w for w < 0. Then,

f(x) = 0

3



⇔ (−c/w) log(−c/w) + b (−c/w) + c = 0

⇔ w = log(−c/w) + b

⇔ w exp(w) = −c exp(b).

Since x = −c/w is one-to-one mapping, we have roots of f(x) = 0 have one-to-one correspondence

with roots of w exp(w) = −c exp(b). Note that when −c exp(b) ∈ (−1/e, 0), w exp(w) = −c exp(b)

has 2 roots, one is in (−1, 0) and the other one is in (−1,+∞). Therefore, the small root of f(x) = 0

is of the form

x∗ = − c

W−1(−c exp(b))
.

[4] shows that

−1−
√

2u− u < W−1(− exp(−u− 1)) < −1, for u > 0.

Notice that u+ 1−
√

2u ≥ 1
2u, we have

cu

2 (u2 + 1)
< −c/W−1(− exp(−u− 1)) < c.

Let u = − log c− b− 1, we have that

x∗ ∈

 c (− log c− b− 1)

2
(

(log (c) + b+ 1)2 + 1
) , c

 .

Lemma A3 (Lower bound of α∗). Suppose that Assumption 1 is imposed, we have

α∗ ≥ α =
b̄−1 exp(−δ − 1)

(
log
(
b̄
)
− log(b)

)
2
((

log(b)− log
(
b̄
))2

+ 1
) . (A.1)

Proof. Denote the density of Y (π(X)) by fπ. It is easy to see that b ≥ fπ(y) ≥ b for any π ∈ Π and

any y ∈ [0,M ]. First notice that

α∗ = arg max
α≥0
{−α log EP0 [exp (−Y (π(X))/α)]− αδ} = arg min

α≥0
{α log EP0 [exp (−Y (π(X))/α)] + αδ} .

Then, we have

α log EP0 [exp (−Y (π(X)/α)] + αδ = α log

[∫ M

0
exp (−y/α) fπ(y)dy

]
+ αδ

≤ α log
[
b̄ (α− exp (−M/α)α)

]
+ αδ

≤ α log (α) + α
(
δ + log(b̄)

)
.
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Therefore, we have

min
α≥0

α {log EP0 [exp (−Y (π(X)/α)] + αδ} ≤ min
α≥0

{
a log (α) + α

(
δ + log(b̄)

)}
= −b̄−1 exp(−δ − 1).

On the other hand, We have

α log EP0 [exp (−Y (π(X))/α)] + αδ

= α log

[∫ M

0
exp (−y/α) (fπ(y)− b+ b) dy

]
+ αδ

≥ α log [exp(−M/α) (1− bM) + b (α− exp (−M/α)α)] + αδ

= α log [exp(−M/α) (1− bM − bα) + αb] + αδ

Since 2bM ≤ 1, we have when α ≤ 1
2b , 1− bM − bα ≥ 0 and thus

α log EP0 [exp (−Y (π(X)/α)] + αδ ≥ α log (α) + α (δ + log(b)) .

Consider the function f(α) = α log (α)+α (δ + log(b)) . f(α) is decreasing when α ∈ [0, (b)−1 exp(−δ−
1)). Notice that

b̄−1 exp(−δ − 1) exp (δ + log(b)) ≤ 1/e.

By applying Lemma A2, we have the smallest root of f(α) = −b̄−1 exp(−δ − 1), α0 is in

α0 ∈

 b̄−1 exp(−δ − 1)
(
log
(
b̄
)
− log(b)

)
2
((

log(b)− log
(
b̄
))2

+ 1
) , b̄−1 exp(−δ − 1)

 .

Notice that
b̄−1 exp(−δ − 1)

(
log
(
b̄
)
− log(b)

)
2
((

log(b̄)− log (b)
)2

+ 1
) <

1

2b
,

and thus

α log EP0 [exp (−Y (π(X))/α)] + αδ > min
α≥0

α {log EP0 [exp (−Y (π(X)/α)] + αδ}

for α ∈

0,
b̄−1 exp(−δ − 1)

(
log
(
b̄
)
− log(b)

)
2
((

log(b̄)− log (b)
)2

+ 1
)

 ,

which concludes (A.1).

Now we are ready to show the proof of Theorem 3.4.
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Proof of Theorem 3.4. Notice that

√
n
(
Ŵn(π, α)−E[Wi(π, α)]

)
⇒ Z (α) ,

where

Z (α) ∼ N (0,Var [Wi(π, α)]) .

Since Wi(π, α) is Lipschitz continuous if α ∈ [α/2, 2α]. We have Wi(π, α) is a P -Donsker class (see,

for example, Corollary 7.17 in [1] and Chapter 19 in [7]). Therefore,

√
n
(
Ŵn(π, ·)−E[Wi(π, ·)]

)
⇒ Z (·) ,

in a Banach space C([α/2, 2α]) of continuous functions ψ : [α/2, 2α]→R equipped with the the

sup-norm ‖ψ‖ = supα∈[α/2,2α] ψ(α). Z is a random element in C([α/2, 2α]).

Define the functionals

G(ψ, α) = α log (ψ(α)) + αδ, and V (ψ) = inf
α∈[α/2,2α]

G(ψ, α),

for ψ > 0. By the Danskin theorem (Theorem 4.13 in [2]), V (·) is directionally differentiable at any

µ ∈ C([α/2, 2α]) with µ > 0 and

V ′µ (ν) = inf
α∈X̄(µ)

α (1/µ(α)) ν(α), ∀ν ∈ C([α/2, 2α])),

where X̄ (µ) = arg minα∈[α/2,2α]) α log (µ(α)) + αδ and V ′µ (ν) is the directional derivative of V (·) at

µ in the direction of ν. On the other hand, V (ψ) is Lipschitz continuous if ψ (·) is bounded away

from zero. Notice that

E[Wi(π, α)] = E[exp (−Y (π(x))/α)] ≥ exp (−2M/α) . (A.2)

Therefore, V (·) is Hadamard directionally differentiable at µ = E[Wi(π, ·)] (see, for example, Propo-

sition 7.57 in [6]). By the Delta theorem (Theorem 7.59 in [6]), we have

√
n
(
V (Ŵn(π, ·))− V (E[Wi(π, ·)])

)
⇒ V ′E[Wi(π,·)] (Z) .

Furthermore, we know that log (E (exp (−βY ))) is strictly convex w.r.t β given Var (Y ) > 0 and

xf(1/x) is strictly convex if f(x) is strictly convex. Therefore, α log (E[Wi(π, α)]) + αδ is strictly

convex for α > 0 and thus

V ′E[Wi(π,·)] (Z) = α∗ (1/E[Wi(π, α
∗)])Z (α∗)

d
= N

(
0, (α∗)2

(
E [Wi(π, α

∗)]−2 Var [Wi(π, α
∗)]
))

.

6



By Lemma 3.1, we have that

Q̂DRO(π) = − inf
α≥0

(
α log

(
Ŵn(π, α)

)
+ αδ

)
,

and

QDRO(π) = − inf
α≥0

(α log (E[Wi(π, α)]) + αδ) = −V (E[Wi(π, α)]).

We remain to show P(Q̂DRO(π) 6= −V (Ŵn(π, α))) → 0, as n → ∞. Since Donsker classes are

Glivenko–Cantelli classes, we have the uniform convergence

sup
α∈[α/2,2α])

∣∣∣Ŵn(π, α)−E[Wi(π, α)]
∣∣∣→ 0 a.s..

Therefore, we further have

sup
α∈[α/2,2α])

∣∣∣(α log
(
Ŵn(π, α)

)
+ αδ

)
− (α log (E[Wi(π, α)]) + αδ)

∣∣∣→ 0 a.s.

given E[Wi(π, α)] is bounded away from zero in (A.2). Let

ε = min {α/2 log (E[Wi(π, α/2)]) + αδ/2, 2α log (E[Wi(π, 2α)]) + 2αδ}−(α∗ log (E[Wi(π, α
∗)]) + α∗δ) > 0.

Then, given the event{
sup

α∈[α/2,2α])

∣∣∣(α log
(
Ŵn(π, α)

)
+ αδ

)
− (α log (E[Wi(π, α)]) + αδ)

∣∣∣ < ε/2

}
,

we have

α∗ log
(
Ŵn(π, α)

)
+ α∗δ < min

{
α/2 log

(
Ŵn(π, α/2)

)
+ αδ/2, 2α log

(
Ŵn(π, 2α)

)
+ 2αδ

}
,

which means Q̂DRO(π) = −V (Ŵn(π, α)) by the convexity of α log
(
Ŵn(π, α)

)
+ αδ.

Finally, we complete the proof by Slutsky’s lemma:

√
n
(
Q̂DRO(π)−QDRO(π)

)
=
√
n
(
Q̂DRO(π) + V (Ŵn(π, α))

)
+
√
n
(
V (E[Wi(π, α)])− V (Ŵn(π, α))

)
⇒ 0 +N

(
0, (α∗)2

(
E [Wi(π, α

∗)]−2 Var [Wi(π, α
∗)]
))

= N
(

0, (α∗)2
(
E [Wi(π, α

∗)]−2 Var [Wi(π, α
∗)]
))

.

Appendix A.4 Proof of lemma 3.5

We use a similar technique as presented in [5, Lemma 5].
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Consider the function f(β) = log EP0 [exp(−βY (π(X))] . The following equalities hold

f(0) = 0, f ′(0) = −EP0 [Y (π(X))] and, f ′′(0) = Var (Y (π(X))) .

Therefore, by second-order Taylor expansion around 0 and β = 1/α, we have

φ (π, α) = E [Y (π(X))]− Var (Y (π(X)))

2α
− αδ + o(1/α).

Then, the optimal solution is

α∗ =

√
Var (Y (π(X)))

2δ
+ o(1/δ).

Appendix A.5 Proof of Proposition 4.1

We first show the upper bound of empirical optimal dual variable for both direct and stable formu-

lations.

Lemma A4. Let the empirical optimal dual variables α̂n and α̂stable
n be defined as α̂n = arg maxα≥0

{
φ̂n(π, α)

}
and α̂stable

n = arg maxα≥0

{
φ̂stable
n (π, α)

}
, respectively. Suppose that Assumption 1 is imposed, we

have

α̂n ≤
M

log (Sπn) + δ
and α̂stable

n ≤ M

δ
,

if log (Sπn) + δ > 0.

Proof. Notice that we have

lim
α→0
−α log Ŵn(π, α)− αδ ≥ min

i∈{1,2,...,n}
(Yi) ≥ 0, and lim

α→0
−α log Ŵ stable

n (π, α)− αδ ≥ 0.

In fact, in view of the following inequalities

−α log Ŵn(π, α)− αδ ≤M − α log (Sπn)− αδ, and − α log Ŵ stable
n (π, α)− αδ ≤M − αδ,

we have the desired results.

Proof of Proposition 4.1. Notice that

Q̂stable
DRO (π) = sup

α≥0

{
−α log Ŵn (π, α)− αδ + α log (Sπn)

}
.

By Lemma A4, if Sπn > exp(−δ/2), we have

α̂n ≤
2M

δ
and α̂stable

n ≤ M

δ
.
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and further ∣∣∣Q̂stable
DRO (π)− Q̂DRO(π)

∣∣∣ ≤ 2M

δ
log (Sπn) .

Notice that |log (x)| ≤ 2 |x− 1| when x ≥ 1
4 . Hence, we have when Sπn ≥ 1

4 .∣∣∣Q̂stable
DRO (π)− Q̂DRO(π)

∣∣∣ ≤ 4M

δ
|Sπn − 1| . (A.3)

Recall that Sπn =
∑n

i=1
1{π(Xi)=Ai}
π0(Ai|Xi) with E

[
1{π(Xi)=Ai}
π0(Ai|Xi)

]
= 1 and 1{π(Xi)=Ai}

π0(Ai|Xi) ∈ [0, 1/η] . By Hoeffd-

ing’s inequality (see, for example, Theorem 2.8 in [3]), we have

P (|Sπn − 1| > t) ≤ 2 exp
(
−2η2t2n

)
.

for t > 0. Let t = log(2/ε)/
(√

2nη
)

and t < 1−max {1/4, exp(−δ/2)} , which is equivalent to

n > (log(2/ε)/ (1−max {1/4, exp(−δ/2)}) /η)2 /2.

Finally, when n > 1
2

(
log(2/ε)

(1−max{1/4,exp(−δ/2)})η

)2
, with probability 1− ε, we obtain

∣∣∣Q̂stable
DRO (π)− Q̂DRO(π)

∣∣∣ ≤ 2
√

2M

δη

log(2/ε)√
n

.
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