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S1. Proof of Theorem 1
Proof. Let q(x,v, t) denote the probability density of (xt,vt). Then it satisfies the fractional Fokker-Planck equation (see
Proposition 1 and Section 7 in (Schertzer et al., 2001)):

∂tq(x,v, t) = γ

d∑
i=1

∂[(c(v, α))iq(x,v, t)]

∂vi
+

d∑
i=1

∂[∂xif(x)q(x,v, t)]

∂vi
− γ

β

d∑
i=1

Dαviq(x,v, t)

−
d∑
i=1

∂[(∂vig(v)q(x,v, t)]

∂xi
.

We can compute that

γ

d∑
i=1

∂[(c(v, α))iφ(x)ψ(v)]

∂vi
+

d∑
i=1

∂[∂xif(x)φ(x)ψ(v)]

∂vi
− γ

β

d∑
i=1

Dαviφ(x)ψ(v)−
d∑
i=1

∂[(∂vig(v)φ(x)ψ(v)]

∂xi

=
γ

β
φ(x)

[
β

d∑
i=1

∂[(c(v, α))iψ(v)]

∂vi
−

d∑
i=1

Dαviψ(v)

]
+

d∑
i=1

∂[∂xif(x)φ(x)ψ(v)]

∂vi
−

d∑
i=1

∂[∂vig(v)φ(x)ψ(v)]

∂xi
.

(S1)

Furthermore, we can compute that

β

d∑
i=1

∂[(c(v, α))iψ(v)]

∂vi
−

d∑
i=1

Dαviψ(v) =

d∑
i=1

∂

∂vi

[Dα−2vi (ψ(v)∂viβg(v))

ψ(v)
ψ(v)

]
−

d∑
i=1

Dαviψ(v)

= −
d∑
i=1

∂

∂vi

[Dα−2vi (∂viψ(v))

ψ(v)
ψ(v)

]
−

d∑
i=1

Dαviψ(v)

= −
d∑
i=1

∂2

∂v2i
Dα−2vi ψ(v)−

d∑
i=1

Dαviψ(v)

=

d∑
i=1

D2
viD

α−2
vi ψ(v)−

d∑
i=1

Dαviψ(v) = 0, (S2)
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where we used the property D2u(x) = − ∂2

∂x2u(x) (Proposition 1 in (Şimşekli, 2017)) and the semi-group property of the
Riesz derivative DaDbu(x) = Da+bu(x).

Finally, we can compute that

d∑
i=1

∂[∂xif(x)φ(x)ψ(v)]

∂vi
−

d∑
i=1

∂[∂vig(v)φ(x)ψ(v)]

∂xi

=

d∑
i=1

∂xif(x)φ(x)∂viψ(v)−
d∑
i=1

∂vig(v)ψ(v)∂xiφ(x)

= −β
d∑
i=1

∂f(x)

∂xi
φ(x)

∂g(v)

∂vi
ψ(v) + β

d∑
i=1

∂g(v)

∂vi
ψ(v)

∂f(x)

∂xi
φ(x) = 0. (S3)

Therefore, it follows from (S1), (S2) and (S3) that we have

γ

d∑
i=1

∂[(c(v, α))iφ(x)ψ(v)]

∂vi
+

d∑
i=1

∂[∂xif(x)φ(x)ψ(v)]

∂vi
− γ

β

d∑
i=1

Dαviφ(x)ψ(v)−
d∑
i=1

∂[(∂vig(v)φ(x)ψ(v)]

∂xi
= 0.

Hence we conclude that π(dx, dv) = e−β(f(x)+g(v))dxdv∫
Rd×Rd e

−β(f(x′)+g(v′))dx′dv′
is an invariant probability measure. The proof is

complete.

S2. Proof of Theorem 2
Proof. We can compute that

(c(v, α))i =
Dα−2vi (vie

− 1
2‖v‖

2

)

e−
1
2‖v‖2

= e
1
2v

2
iDα−2vi

(
vie
− 1

2v
2
i

)
, (S4)

for every 1 ≤ i ≤ d.

Recall the definition of Fourier transform and its inverse:

F{f(x)}(ω) =
1√
2π

∫ ∞
−∞

e−ixωf(x)dx, F−1{f(ω)}(x) =
1√
2π

∫ ∞
−∞

eixωf(ω)dω. (S5)

Notice that the Fourier transform of e−
1
2x

2

is itself, i.e. F{e− 1
2x

2}(ω) = e−
1
2ω

2

, and moreover, F{xnf(x)}(ω) =
in dn

dωn {F{f(x)}(ω)}, and therefore,

F
{
xe−

1
2x

2
}

(ω) = −iωe− 1
2ω

2

. (S6)

Hence,

Dα−2x

(
xe−

1
2x

2
)

= F−1
{
−iω|ω|α−2e− 1

2ω
2
}

(x) =
−i√
2π

∫ ∞
−∞

ω|ω|α−2e− 1
2ω

2+iωxdω. (S7)

Furthermore, we can compute that

−i√
2π

∫ ∞
−∞

ω|ω|α−2e− 1
2ω

2+iωxdω =
−i√
2π

∫ ∞
0

ωα−1e−
1
2ω

2+iωxdω +
−i√
2π

∫ 0

−∞
ω(−ω)α−2e−

1
2ω

2+iωxdω

=
−i√
2π

∫ ∞
0

ωα−1e−
1
2ω

2+iωxdω +
i√
2π

∫ ∞
0

ωα−1e−
1
2ω

2−iωxdω

=

√
2

π

∫ ∞
0

ωα−1 sin(ωx)e−
1
2ω

2

dω.
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By the Taylor expansion of sine function, we get√
2

π

∫ ∞
0

ωα−1 sin(ωx)e−
1
2ω

2

dω =

√
2

π

∫ ∞
0

ωα−1
∞∑
k=0

(−1)k(ωx)2k+1

(2k + 1)!
e−

1
2ω

2

dω

=

√
2

π

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

∫ ∞
0

ω2k+αe−
1
2ω

2

dω

=

√
2

π

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
2

2k+α−1
2 Γ

(
2k + α+ 1

2

)
,

where we used the identity
∫∞
0
xae−

1
2x

2

dx = 2
a−1
2 Γ(a+1

2 ), for any given a > −1. Moreover, for any given x, y > 0, we
have the identity:

∞∑
k=0

(−1)kxk

(2k + 1)!
Γ(k + y) = Γ(y)1F1

(
y;

3

2
;−x

4

)
, (S8)

where 1F1 is the Kummer confluent hypergeometric function. Therefore, we conclude that√
2

π

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
2

2k+α−1
2 Γ

(
2k + α+ 1

2

)
=

√
2

π
2
α−1
2 x

∞∑
k=0

(−1)k(2x2)k

(2k + 1)!
Γ

(
k +

α+ 1

2

)
=

2
α
2 x√
π

Γ

(
α+ 1

2

)
·1 F1

(
α+ 1

2
;

3

2
;−x

2

2

)
.

Hence, we get for every 1 ≤ i ≤ d,

(c(v, α))i =
2
α
2 vie

1
2 v

2
i

√
π

Γ

(
α+ 1

2

)
·1 F1

(
α+ 1

2
;

3

2
;−v

2
i

2

)
. (S9)

By the identity ex ·1 F1(a; b;−x) =1 F1(b− a; b;x), we get

(c(v, α))i =
2
α
2 vi√
π

Γ

(
α+ 1

2

)
·1 F1

(
2− α

2
;

3

2
;
v2i
2

)
. (S10)

In particular, when α = 2, by applying the identity

∞∑
k=0

(−1)kxk

(2k + 1)!
Γ

(
k +

3

2

)
=

√
π

2
e−x/4, (S11)

we get √
2

π

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
2

2k+1
2 Γ

(
2k + 3

2

)
=

√
2

π
2

1
2x

∞∑
k=0

(−1)k(2x2)k

(2k + 1)!
Γ

(
k +

3

2

)
= xe−

x2

2 .

The proof is complete.

S3. Proof of Theorem 3
Proof. Let ψα(x) = e−gα(x) be the probability density function of the symmetric α-stable distribution SαS( 1

α1/α ) such
that

F{ψα(x)}(ω) =
1√
2π

∫ ∞
−∞

e−iωxψα(x)dx =
1√
2π
e−

1
α |ω|

α

. (S12)



Fractional Underdamped Langevin Dynamics

Therefore, we get

Dα−2x (ψα(x)∂xgα(x)) = −Dα−2x (∂xψα(x))

= −F−1
{
|ω|α−2F {∂xψα(x)} (ω)

}
(x)

= −F−1
{
|ω|α−2(iω)F {ψα(x)} (ω)

}
(x)

=
−i√
2π
F−1

{
|ω|α−2ωe− 1

α |ω|
α
}

(x)

=
i√
2π
F−1

{
∂ωe
− 1
α |ω|

α
}

(x)

=
i√
2π

(−ix)F−1
{
e−

1
α |ω|

α
}

(x)

= xψα(x).

Hence, we conclude that
Dα−2x (ψα(x)∂xgα(x))

ψα(x)
= x, (S13)

and it follows that
(c(v, α))i = vi, 1 ≤ i ≤ d. (S14)

The proof is complete.

S4. Proof of Proposition 1
Proof. It is straightforward to verify that the result holds for the cases α = 1 and α = 2. Assume α ∈ (0, 1) or α ∈ (1, 2).
Let X be the unit symmetric α-stable random variable defined by its characteristic function

φX(t) := E(eitX) = e−|t|
α

.

By taking inverse Fourier transformation, its density ψα(x) = e−gα(x) can be expressed as

ψα(x) :=
1

2π

∫ ∞
−∞

φX(t)e−itxdt.

Writing e−itx = cos(tx)− i sin(tx), we compute

ψα(x) =
1

2π

∫ ∞
−∞

e−|t|
α

[cos(tx)− i sin(tx)] dt =
1

π

∫ ∞
0

e−t
α

cos(tx)dt , (S15)

where we used the fact that φX(t) and cos(tx) are even functions of t, whereas sin(tx) is an odd function of t. If we define,

gα(x) = − log(ψα(x)),

then

g′α(x) =
ψ′α(x)

ψα(x)
, (S16)

where the superscript ′ denotes derivative with respect to x. Similarly,

g′′α(x) =
ψ′′α(x)

ψα(x)
−
(
ψ′α(x)

ψα(x)

)2

. (S17)

If g′′α(x) is uniformly bounded over x ∈ R, it can be seen that the map v 7→ g′α(v) will be Lipschitz. Therefore, it suffices to
show that x 7→ g′′α(x) is a bounded function on the real line. Note that the function ψα(x) is infinitely many differentiable,
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and the integral (S15) is absolutely convergent. Therefore, we can differentiate both sides of (S15) with respect to x to
obtain

ψ′α(x) :=
1

π

∫ ∞
0

−te−t
α

sin(tx)dt ,

ψ′′α(x) :=
1

π

∫ ∞
0

−t2e−t
α

cos(tx)dt .

In particular, since | cos(tx)| ≤ 1 and | sin(tx)| ≤ 1 this implies that

ψ′α(x) ≤M1(α) :=
1

π

∫ ∞
0

te−t
α

dt <∞ ,

ψ′′α(x) ≤M2(α) :=
1

π

∫ ∞
0

t2e−t
α

dt <∞ .

It is also well-known that a symmetric α stable random variable has a decay in its density satisfying ψα(x) ∼ 1
|x|1+α when

|x| is large. In fact, Wintner (1941) derived a large-x expansion for ψα(x) when 0 < α < 1 and x > 0. This expansion is
equivalent to

ψα(x) =
1

π

∞∑
n=1

(−1)n+1

n!

Γ(1 + αn)

xαn+1
sin
(παn

2

)
=

1

π

(
Γ(1 + α)

xα+1
sin(πα/2)− Γ(1 + 2α)

2x2α+1
sin(πα) +

Γ(1 + 3α)

6x3α+1
sin(π3α/2) + · · ·

)
,

(see eqn. (11) from (Montroll & Bendler, 1984)) where it can be seen from the Stirling’s approximation of the gamma
function and the ratio test that the series converges absolutely. A similar absolutely convergent series sum (with exactly the
same leading term) is also available in the literature for α ∈ (1, 2) which says that

ψα(x) =
1

π

Γ(1 + α)

xα+1
sin
(πα

2

)
+O

(
1

x2α

)
(see eqn. (3.58) from (Montroll & West, 1979)). By differentiating the series sum for ψα(x) with respect to x, we can
express ψ′α(x) and ψ′′α(x) as a series sum. After a straightforward computation, we obtain

ψ′′α(x)

ψα(x)
= O

(
1

x2

)
,

(
ψ′α(x)

ψα(x)

)2

= O

(
1

x2

)
,

which implies from (S17) that g′′α(x)→ 0 as x→∞. This shows that g′′α(x) is bounded on the interval [0,∞). On the other
hand, ψα(x) is an even function and therefore g′′α(x) is an even function satisfying g′′α(x) = g′′α(−x). We conclude that
g′′α(x) is bounded on the real line. This completes the proof.

S5. Proof of Corollary 1
Proof. By Proposition 1, we know that∇Gα is Lipschitz and by our hypthesis∇f is also Lipschitz and has linear growth.
Then the process (19) admits a unique invariant measure (cf. (Schertzer et al., 2001) Section 9), which is given by Theorem 1.
The rest of the proof follows from (Panloup, 2008) (Theorem 2).

S6. Alternative forms of the drift function c with the Gaussian kinetic energy
For some special values of α, we can get alternative formulas for (c(v, α))i, 1 ≤ i ≤ d.

(1) α = 3
2 . Using the identity 1F1(a; 2a + 1; z) = 22a−1Γ(a + 1

2 )e
z
2 z

1
2−a(Ia− 1

2
( z2 ) − Ia+ 1

2
( z2 )), where Ia(x) is the

modified Bessel function of the first kind, we get

(c(v, α))i =
2

1
4 vi√
π

Γ

(
5

4

)
Γ

(
3

4

)
e
v2i
4

(
v2i
2

) 1
4
(
I− 1

4

(
v2i
4

)
− I 3

4

(
v2i
4

))
, (S18)
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Figure S1. Conformal Hamiltonian fields with the Gaussian kinetic energy for f(x) = x4/4. Top α = 2, bottom α = 1.7.

for every 1 ≤ i ≤ d.

(2) α = 1
2 . Using the identity 1F1(a; 2a; z) = 22a−1Γ(a+ 1

2 )z
1
2−ae

z
2 Ia− 1

2
( z2 ), we get

(c(v, α))i =
2

3
4 vi√
π

Γ

(
3

4

)
Γ

(
5

4

)(
v2i
2

)− 1
4

e
v2i
4 I 1

4

(
v2i
4

)
, (S19)

for every 1 ≤ i ≤ d.

S7. Visual Illustrations
In order to have a better grasp on the dynamics (16) in an optimization context, we also investigate its deterministic part
(i.e., (16) without the Lαt term) as a conformal Hamiltonian system (Maddison et al., 2018), where we decompose the
overall dynamics into two: the dissipative part d(xt,vt) = (0,−γc(vt−, α))dt and the Hamiltonian part d(xt,vt) =
(vt,−∇f(xt))dt, whose combination gives the conformal Hamiltonian. The two parts have different semantics: the
Hamiltonian part tries to keep the overall energy of the system (∇f(x) + ‖v‖2/2) constant, while the dissipative part tries
to reduce this energy, and this competition determines the behavior of the overall system. In Figure S1, we visualize the
conformal Hamiltonians for f(x) = x4/4 for two different values of α. This choice of f is known to be problematic for the
classical overdamped dynamics (Maddison et al., 2018; Brosse et al., 2019), which can be clearly observed from Figure S1
(top right) as the conformal Hamiltonian field tends to diverge. On the other hand, for α = 1.7, we observe that the strong
dissipation, which was introduced due to tolerate heavy-tailed perturbations, can also compensate for fast-growing f .

On the other hand, we visualize the conformal Hamiltonian field generated by this dynamics in Figure S2 for f(x) =
g1(x) = − log 1

π
1

x2+1 . The figure shows that conformal Hamiltonian generated by the dynamics with α = 2 has a very
slow concentration behavior towards the minimum at the origin, whereas this behavior is alleviated when α = 1.7 where the
field concentrates faster.

S8. Additional Experimental Results
In this section, we provide the additional experimental results that were mentioned in the main document for width 32, 64,
and 512.
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Figure S3. Neural network results on MNIST.


