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Appendix

A. Related work
Many defenses have been proposed to make neural networks
robust against adversarial examples. These methods can be
classified into empirical defenses which empirically seem
to be robust against known adversarial attacks, and certified
defenses, which are provably robust against such attacks.

Empirical defenses The best known empirical defense is
adversarial training (Kurakin et al., 2016; Madry et al., 2018;
Zhang et al., 2019b). In this method, a neural network is
trained to minimize the worst-case loss over a region around
the input. Although such defenses seem to work on existing
attacks, there is no guarantee that a more powerful attack
would not break them. In fact, most such defenses proposed
in the literature were later broken by stronger attacks (Atha-
lye & Carlini, 2018; Athalye et al., 2018; Carlini & Wagner,
2017; Uesato et al., 2018). To end this arms race between
defenses and attacks, a number of works have tried to focus
on certified defenses that have formal robustness guarantees.

Certified defenses A classifier is said to be certifiably ro-
bust if one can easily obtain a guarantee that a classifier’s
prediction remains constant within some region around the
input. Such defenses typically rely on certification methods
which are either exact or conservative. Exact methods report
whether or not there exists a adversarial perturbation inside
some lp norm ball. In contrast, conservative methods either
certify that no adversarial perturbation exists or decline to
make a certification; they may decline even when no such
perturbation exists. Exact methods are usually based on
Satisfiability Modulo Theories (Carlini et al., 2017; Ehlers,
2017; Huang et al., 2016; Katz et al., 2017) and Mixed In-
teger linear programming (Bunel et al., 2017; Cheng et al.,
2017; Dutta et al., 2018; Fischetti & Jo, 2018; Lomuscio
& Maganti, 2017). Unfortunately, they are computation-
ally inefficient and difficult to scale up to even moderately
sized neural networks. In contrast, conservative methods
are more scalable and efficient which makes them useful for
building certified defenses (Croce et al., 2018; Dvijotham
et al., 2018a;b; Gehr et al., 2018; Gowal et al., 2018; Mir-
man et al., 2018; Raghunathan et al., 2018a;b; Singh et al.,
2018; Wang et al., 2018a;b; Weng et al., 2018; Wong &
Kolter, 2017; Wong et al., 2018; Zhang et al., 2018b). How-
ever, even these methods have not been shown to scale to

practical networks that are large and expressive enough to
perform well on ImageNet, for example. To scale to such
large networks, randomized smoothing has been proposed
as a probabilistically certified defense.

Randomized smoothing Randomized smoothing was pre-
viously proposed by several works (Cao & Gong, 2017; Liu
et al., 2017) as a empirical defense without any formal guar-
antees. (Lécuyer et al., 2018) first proved robustness guaran-
tees for randomized smoothing classifier using inequalities
from differential privacy. (Li et al., 2018) improved upon the
same using tools from information theory. Recently, (Cohen
et al., 2019) provided a even tighter robustness guarantee
for randomized smoothing. (Salman et al., 2019) proposed
a method of adversarial training for the randomized smooth-
ing classifier giving state of the art results in the l2 norm
metric.

B. The Attack problem
For a given input x(0) with true label y and attack target t,
consider the attack problem. We are given that the eigen-
values of the Hessian ∇2

x(z
(L)
y − z

(L)
t ) are bounded below

i.e:
mI ≼ ∇2

x (z(L)y − z
(L)
t ) ∀x ∈ RD

Here m < 0 (since z
(L)
y − z

(L)
t is not convex in general).

The goal here is to find an adversarial example inside a l2
ball of radius ρ such that (z(L)y − z

(L)
t )(x) is minimized.

That is, we want to solve the following optimization:

p∗attack = min
∥x−x(0)∥≤ρ

[ (z(L)y − z
(L)
t ) (x)]

=min
x

max
η≥0

[ (z(L)y − z
(L)
t ) (x) + η

2
(∥x − x(0)∥

2
− ρ2)]

(1)

This optimization can be hard in general. Using the max-
min inequality (primal ≥ dual), we have:

p∗attack ≥max
η≥0

dattack(η)

dattack(η) =min
x

[ (z(L)y − z
(L)
t ) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)] (2)



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Second-Order Provable Defenses against Adversarial Attacks

We know that for every η ≥ 0, dattack(η) gives a lower
bound to the primal solution p∗attack. But solving dattack(η)
for any η ≥ 0 can be hard unless the objective is convex.
We prove that if the eigenvalues of the Hessian are bounded
below i.e:

mI ≼ ∇2
x (z(L)y − z

(L)
t ) ∀x ∈ RD

In general m < 0, since (z(L)y − z
(L)
t ) is non-convex.

dattack(η) is a convex optimization problem for −m ≤ η.
Equivalently the objective function, i.e the function inside
the minx:

[ (z(L)y − z
(L)
t ) (x) + η

2
(∥x − x(0)∥

2
− ρ2)]

is a convex function in x for −m ≤ η.
The Hessian of the above function is given by:

∇2
x (z(L)y − z

(L)
t ) + ηI

Since we know that eigenvalues of ∇2
x(z

(L)
y − z

(L)
t ) ≽mI,

we know that eigenvalues of the above Hessian are ≥ η +m.
For η ≥ −m, the eigenvalues are positive implying that the
objective function is convex.

Since dattack(η) gives a lower bound to p∗attack for every
η ≥ 0, we get the following result:

p∗attack ≥ d∗attack where d∗attack = max
−m≤η

dattack(η) (3)

Note that if x(attack) is the solution to d∗attack such that:
∥x(attack) − x(0)∥ = ρ, by the definition of d∗attack:

d∗attack = (z(L)y − z
(L)
t ) (x(attack))

But then by the definition of p∗attack, p
∗

attack ≤ d∗attack,
implying that the duality gap is zero, i.e p∗attack = d∗attack.
This procedure leads to the Theorem 2.

C. Implementation Details
C.1. Computing the derivative of largest singular value

Our objective is to compute derivative of the largest singular
value, i.e ∥W(I)∥ with respect to W(I). Let u(I),v(I)

be the singular vectors such that W(I)v(I) = ∥W(I)∥u(I).
Then the derivative is given by:

∇W(I)∥W(I)∥ = u(I) (v(I))
T

v(I), ∥W(I)∥2 can be computed by running power itera-
tion on (W(I))T W(I). u(I) can be computed using the
identity:

u(I) = W(I)v(I)

γ(I)

We use 25 iterations of the power method to compute the
above quantities.

C.2. Update equation for the certificate problem

Our goal is to minimize ∥x − x(0)∥ such that

(z(L)y − z
(L)
t ) (x) = 0. We know that the Hessian

satisfies the following LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t ) ≼MI (4)

K is given by Theorem 4 for neural network of any depth
(L ≥ 2). For 2 layer networks, M and m are given by
Theorem 3. But for deeper networks (L ≥ 3), M = K,
m = −K. In either case, K ≥ max(∣m∣, ∣M ∣). Thus, we
also have:

−KI ≼ ∇2
x (z(L)y − z

(L)
t ) ≼KI (5)

We will solve the dual (d∗cert) of the attack problem (p∗cert).

The primal problem (p∗cert) is given by:

p∗cert = min
z
(L)
y (x)=z

(L)
t (x)

[1
2
∥x − x(0)∥

2
]

p∗cert =min
x

max
η

[1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t ) (x)]

Using inequality (4) and Theorem 1 part (a), we know that
the dual of the above problem is convex when −1/M ≤ η ≤
−1/m.

The corresponding dual problem (d∗cert) is given by:

d∗cert = max
−1/M≤η≤−1/m

dcert(η)

dcert(η) =min
x

[1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t ) (x) ]

For a given η, we have the following optimization:

dcert(η) =min
x

[1
2
∥x − x(0)∥2 + η (z(L)y − z

(L)
t ) (x)]

We will use majorization-minimization to solve this opti-
mization.

At a point x(k), we aim to solve for the point x(k+1) that
decreases the objective function. Using the Taylor’s theorem
at point x(k), we have:

(z(L)y − z
(L)
t ) (x)

= (z(L)y − z
(L)
t ) (x(k)) + (g(k))

T (x − x(k))

+ 1

2
(x − x(k))

T
H(ξ) (x − x(k))

where g(k) is the gradient of (z(L)y −z(L)t ) at x(k) and H(ξ)

is the Hessian at a point ξ on the line connecting x and x(k).
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Multiplying both sides by η, we get the following equation:

η (z(L)y − z
(L)
t ) (x)

= η (z(L)y − z
(L)
t ) (x(k)) + η (g(k))

T (x − x(k))

+ η
2
(x − x(k))

T
H(ξ) (x − x(k)) (6)

Using inequality (5), we know that −KI ≼ H(ξ) ≼
KI ∀ξ ∈ RD,

η

2
(x − x(k))

T
H(ξ) (x − x(k)) ≤ ∣ηK ∣

2
∥x − x(k)∥

2
(7)

Using equation (6) and inequality (7):

η (z(L)y − z
(L)
t ) (x)

≤ [η (z(L)y − z
(L)
t ) (x(k)) + η (g(k))

T
(x − x(k))

+ ∣ηK ∣
2

∥x − x(k)∥
2
]

Adding 1/2∥x − x(0)∥2 to both sides, we get the following
inequality:

1

2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t ) (x)

≤ [1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t ) (x(k))

+ η (g(k))
T
(x − x(k)) + ∣ηK ∣

2
∥x − x(k)∥

2
]

LHS is the objective function of dcert(η) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

∇x[
1

2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t ) (x(k))

+ η (g(k))
T
(x − x(k)) + ∣ηK ∣

2
∥x − x(k)∥

2
] = 0

x − x(0) + ηg(k) + ∣ηK ∣ (x − x(k)) = 0

(1 + ∣ηK ∣)x − x(0) + ηg(k) − ∣ηK ∣x(k) = 0

x = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0))

This gives the following iterative equation:

x(k+1) = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0)) (8)

C.3. Update equation for the attack problem

Our goal is to minimize z
(L)
y − z

(L)
t within an l2 ball of

radius of ρ. We know that the Hessian satisfies the following
LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t ) ≼MI (9)

K is given by Theorem 4 for neural network of any depth
(L ≥ 2). For 2 layer networks, M and m are given by
Theorem 3. But for deeper networks (L ≥ 3), M = K,
m = −K. In either case, K ≥ max(∣m∣, ∣M ∣). Thus, we
also have:

−KI ≼ ∇2
x (z(L)y − z

(L)
t ) ≼KI (10)

We solve the dual (d∗attack) of the attack problem (p∗attack)
for the given radius ρ.

The primal problem (p∗attack) is given by:

p∗attack = min
∥x−x(0)∥≤ρ

z(L)y − z
(L)
t

p∗attack =min
x

max
η≥0

[z(L)y − z
(L)
t + η

2
(∥x − x(0)∥

2
− ρ2)]

Using inequality (9) and Theorem 2 part (a), we know that
the dual of the above problem is convex when −m ≤ η.

The corresponding dual problem (d∗cert) is given by:

d∗attack = max
η≥−m

dattack(η)

where dattack(η) is given as follows:

dattack(η) =min
x

[ (z(L)y − z
(L)
t ) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

For a given η, we have the following optimization:

dattack(η) =min
x

[ (z(L)y − z
(L)
t ) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

We will use majorization-minimization to solve this opti-
mization.

At a point x(k), we have to solve for the point x(k+1) that
decreases the objective function. Using the Taylor’s theorem
at point x(k), we have:

(z(L)y − z
(L)
t ) (x)

= (z(L)y − z
(L)
t ) (x(k)) + (g(k))

T (x − x(k))

+ 1

2
(x − x(k))

T
H(ξ) (x − x(k)) (11)
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where g(k) is the gradient of (z(L)y −z(L)t ) at x(k) and H(ξ)

is the Hessian at a point ξ on the line connecting x and x(k).

Using inequality (10), we know that −KI ≼ H(ξ) ≼
KI ∀ξ ∈ RD,

1

2
(x − x(k))

T
H(ξ) (x − x(k)) ≤ K

2
∥x − x(k)∥

2
(12)

Using equation (11) and inequality (12):

(z(L)y − z
(L)
t ) (x)

≤ [ (z(L)y − z
(L)
t ) (x(k))

+ (g(k))
T (x − x(k)) + K

2
∥x − x(k)∥

2
]

Adding η/2(∥x − x(0)∥2 − ρ2) to both sides, we get the
following inequality:

(z(L)y − z
(L)
t ) (x) + η

2
(∥x − x(0)∥

2
− ρ2)

≤ [ (z(L)y − z
(L)
t ) (x(k)) + (g(k))

T (x − x(k))

+ K
2

∥x − x(k)∥
2
+ η
2
(∥x − x(0)∥

2
− ρ2)]

LHS is the objective function of dattack(η) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

∇x[ (z(L)y − z
(L)
t ) (x(k)) + (g(k))

T (x − x(k))

+ K
2

∥x − x(k)∥
2
+ η
2
(∥x − x(0)∥

2
− ρ2)] = 0

Rearranging the above equation, we get:

g(k) +K (x − x(k)) + η (x − x(0)) = 0

(K + η)x + g(k) −Kx(k) − ηx(0) = 0

x = −(K + η)−1 (g(k) −Kx(k) − ηx(0))

This gives the following iterative equation:

x(k+1) = −(K + η)−1 (g(k) −Kx(k) − ηx(0)) (13)

C.4. Algorithm to compute the certificate

We start with the following initial values of
x, η, ηmin, ηmax:

ηmin = −1/M, ηmax = −1/m

η = 1

2
(ηmin + ηmax), x = x(0)

To solve the dual for a given value of η, we run 20 iterations
of the following update (derived in Appendix C.2):

x(k+1) = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0))

To maximize the dual dcert(η) over η in the range
[−1/M, −1/m], we use a bisection method: If the solution
x for a given value of η, (z(L)y −z(L)t )(x) > 0, set ηmin = η,
else set ηmax = η. Set the new η = (ηmin + ηmax)/2 and
repeat. The maximum number of updates to η are set to 30.
This method satisfied linear convergence. The routine to
compute the certificate example is given in Algorithm 1.

Algorithm 1 Certificate optimization

Require: input x(0), label y, target t
m,M,K ← compute bounds(z(L)y − z

(L)
t )

ηmin ← −1/M
ηmax ← −1/m
η ← 1/2(ηmin + ηmax)
x← x(0)

for i in [1, . . . ,30] do
for j in [1, . . . ,20] do
g ← compute gradient(z(L)y − z

(L)
t ,x)

if ∥ηg + (x − x(0))∥ < 10−5 then
break

end if
x← −(1 + ∣ηK ∣)−1 (ηg − ∣ηK ∣x − x(0))

end for
if (z(L)y − z

(L)
t )(x) > 0 then

ηmin ← η
else
ηmax ← η

end if
η ← (ηmin + ηmax)/2

end for
return x

C.5. Algorithm to compute the attack

We start with the following initial values of
x, η, ηmin, ηmax:

ηmin = −m, ηmax = 20(1 −m)

η = 1

2
(ηmin + ηmax), x = x(0)

To solve the dual for a given value of η, we run 20 iterations
of the following update (derived in Appendix C.3):

x(k+1) = −(K + η)−1 (g(k) −Kx(k) − ηx(0))

To maximize the dual dcert(η) over η in the range
[−m, 20(1 −m)], we use a bisection method: If the so-
lution x for a given value of η, ∥x−x(0)∥ ≤ ρ, set ηmax = η,
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else set ηmin = η. Set new η = (ηmin + ηmax)/2 and repeat.
The maximum number of updates to η are set to 30. This
method satisfied linear convergence. The routine to compute
the attack example is given in Algorithm 2.

Algorithm 2 Attack optimization

Require: input x(0), label y, target t , radius ρ
m,M,K ← compute bounds(z(L)y − z

(L)
t )

ηmin ← −m
ηmax ← 20(1 −m)
η ← 1/2(ηmin + ηmax)
x← x(0)

for i in [1, . . . ,30] do
for j in [1, . . . ,20] do
g ← compute gradient(z(L)y − z

(L)
t ,x)

if ∥g + η(x − x(0))∥ < 10−5 then
break

end if
x← −(K + η)−1 (g −Kx − ηx(0))

end for
if ∥x − x(0)∥ < ρ then
ηmax ← η

else
ηmin ← η

end if
η ← (ηmin + ηmax)/2

end for
return x

C.6. Computing certificate using local curvature
bounds

To compute the robustness certificate in a local region
around the input, we first compute the certificate using the
global bounds on the curvature. Using the same certificate
as the initial l2 radius of the safe region, we can refine our
certificate. Due to the reduction in curvature, this will surely
increase the value of the certificate. We then use the new
robustness certificate as the new l2 radius of the safe region
and repeat. We iterate over this process 5 times to compute
the local version of our robustness certificate.

To ensure that the optimization trajectory does not escape
the safe region, whenever the gradient descent step lies
outside the ”safe” region, we reduce the step size by a factor
of two until it lies inside the region.

D. Summary Table comparing out
certification method against existing
methods

Table 1 provides a summary table comparing our certifica-
tion method against the existing methods.

E. Proofs
E.1. Proof of Theorem 1

(a)

dcert(η) =min
x

[1
2
∥x − x(0)∥

2

+ η (z(L)y (x) − z
(L)
t (x)) ]

∇2
x[

1

2
∥x − x(0)∥

2
+ η (z(L)y (x) − z

(L)
t (x)) ]

= I + η∇2
x (z(L)y − z

(L)
t )

We are given that the Hessian ∇2
x(z

(L)
y −z(L)t ) satisfies

the following LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t ) ≼MI ∀x ∈ Rn

The eigenvalues of I + η∇2
x(z

(L)
y − z

(L)
t ) are bounded

between:

(1 + ηM, 1 + ηm), if η < 0

(1 + ηm, 1 + ηM), if η > 0

We are given that η satisfies the following inequalities
where m < 0,M > 0 since (z(L)y − z

(L)
t ) is neither

convex, nor concave as a function of x:

−1
M

≤ η ≤ −1
m
, m < 0,M > 0

We have the following inequalities:

1 + ηM ≥ 0, 1 + ηm ≥ 0

Thus, I + η∇2
x(z

(L)
y − z

(L)
t ) is a PSD matrix for all

x ∈ RD when −1/M ≤ η ≤ −1/m .
Thus 1/2∥x − x(0)∥2 + η(z(L)y − z

(L)
t )(x) is a convex

function in x and dcert(η) is a convex optimization
problem.

(b) For every value of η, dcert(η) is a lower bound for
p∗cert. Thus d∗cert = max−1/M≤ η ≤−1/m dcert(η) is a
lower bound for p∗cert, i.e:

d∗cert ≤ p∗cert (14)

Let η(cert),x(cert) be the solution of the above dual
optimization (d∗cert) such that

z(L)y (x(cert)) = z
(L)
t (x(cert)) (15)
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Table 1. Comparison of methods for providing provable robustness certification. Note that (Cohen et al., 2019) is a probabilistic certificate.
Method Non-trivial

bound
Multi-
layer

Activation
functions Norm

(Szegedy et al., 2014) 7 3 All l2

(Katz et al., 2017) 3 3 ReLU l∞

(Hein & Andriushchenko, 2017) 3 7 Differentiable l2

(Raghunathan et al., 2018a) 3 7 ReLU l∞

(Wong & Kolter, 2017) 3 3 ReLU l∞

(Weng et al., 2018) 3 3 ReLU l1, l2, l∞

(Zhang et al., 2018b) 3 3 All l1, l2, l∞

(Cohen et al., 2019) 3 3 All l2

Ours 3 3 Differentiable l2

d∗cert is given by the following:

d∗cert = [1
2
∥x(cert) − x(0)∥

2

+ η(cert) (z(L)y (x(cert)) − z
(L)
t (x(cert)))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

]

Since we are given that z(L)y (x(cert)) = z
(L)
t (x(cert)),

we get the following equation for d∗cert:

d∗cert =
1

2
∥x(cert) − x(0)∥

2
(16)

Since p∗cert is given by the following equation:

p∗cert = min
z
(L)
y (x)=z

(L)
t (x)

[1
2
∥x − x(0)∥

2
] (17)

Using equations (15) and (17), p∗cert is the minimum
value of 1/2∥x − x(0)∥2 ∀x ∶ z(L)y (x) = z

(L)
t (x):

p∗cert ≤
1

2
∥x(cert) − x(0)∥

2
(18)

From equation (16), we know that d∗cert =
1/2∥x(cert) − x(0)∥2. Thus, we get:

p∗cert ≤ d∗cert (19)

Using equation (14) we have d∗cert ≤ p∗cert and using
(19), p∗cert ≤ d∗cert

p∗cert = d∗cert

E.2. Proof of Theorem 2

(a)

dattack(η) =min
x

[ (z(L)y − z
(L)
t ) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

∇2
x[ (z(L)y − z

(L)
t ) (x) + η

2
∥x − x(0)∥

2
]

= ∇2
x (z(L)y − z

(L)
t ) + ηI

Since the Hessian ∇2
x(z

(L)
y − z

(L)
t ) is bounded below:

mI ≼ ∇2
x (z(L)y − z

(L)
t ) ∀x ∈ Rn

The eigenvalues of ∇2
x(z

(L)
y − z

(L)
t ) + ηI are bounded

below:

(m + η)I ≼ ∇2
x (z(L)y − z

(L)
t ) + ηI

Since η ≥ −m.
η +m ≥ 0

Thus ∇2
x(z

(L)
y − z

(L)
t ) + ηI is a PSD matrix for all

x ∈ RD when η ≥ −m.
Thus (z(L)y − z

(L)
t )(x) + η/2(∥x − x(0)∥2 − ρ2) is a

convex function in x and dattack(η) is a convex opti-
mization problem.

(b) For every value of η, dattack(η) is a lower bound
for p∗attack. Thus d∗attack = max−m≤η dattack(η) is
a lower bound for p∗attack:

d∗attack ≤ p∗attack (20)

Let η(attack),x(attack) be the solution of the above
dual optimization (d∗attack) such that

∥x(attack) − x(0)∥ = ρ (21)

d∗attack is given by the following:

d∗attack = [ (z(L)y − z
(L)
t ) (x(attack)) (22)

+ η
(attack)

2
(∥x(attack) − x(0)∥

2
− ρ2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

]
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Since we are given that ∥x(attack) − x(0)∥ = ρ, we get
the following equation for d∗attack:

d∗attack = (z(L)y − z
(L)
t ) (x(attack)) (23)

Since p∗attack is given by the following equation:

p∗attack = min
∥x−x(0)∥≤ρ

[ (z(L)y − z
(L)
t ) (x)] (24)

Using equations (21) and (24), p∗attack is the minimum
value of (z(L)y − z

(L)
t )(x) ∀ ∥x − x(0)∥ ≤ ρ:

p∗attack ≤ (z(L)y − z
(L)
t ) (x(attack)) (25)

From equation (23), we know that d∗attack = (z(L)y −
z
(L)
t )(x(attack)). Thus, we get:

p∗attack ≤ d∗attack (26)

Using equation (20) we have d∗attack ≤ p∗attack and
using (26), p∗attack ≤ d∗attack

p∗attack = d∗attack

E.3. Proof of Lemma 1

We have to prove that for an L layer neural network, the
hessian of the ith hidden unit in the Lth layer with respect
to the input x, i.e ∇2

xz
(L)
i is given by the following formula:

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

(27)

where B(I), I ∈ [L] is a matrix of size NI ×D defined as
follows:

B(I) = [∇xz
(I)
1 ,∇xz

(I)
2 , . . . ,∇xz

(I)
NI

]
T

(28)

and F(L,I), I ∈ [L− 1] is a matrix of size NL ×NI defined
as follows:

F(L,I) = [∇a(I)z
(L)
1 ,∇a(I)z

(L)
2 , . . . ,∇a(I)z

(L)
NL

]
T

(29)

∇2
xz
(L)
i can be written in terms of the activations of the

previous layer using the following formula:

∇2
xz
(L)
i =

NI−1

∑
j=1

W
(L)
i,j (∇2

xa
(L−1)
j ) (30)

Using the chain rule of the Hessian and a(I) = σ(z(I)), we
can write ∇2

xa
(L−1)
j in terms of ∇xz

(L−1)
j and ∇2

xz
(L−1)
j as

the following:

∇2
xa
(L−1)
j = σ

′′

(z(L−1)j ) (∇xz
(L−1)
j ) (∇xz

(L−1)
j )

T

+ σ
′

(z(L−1)j ) (∇2
xz
(L−1)
j ) (31)

Replacing ∇2
xa
(L−1)
j using equation (31) into equation (30),

we get:

∇2
x (z(L)i ) =

NL−1

∑
j=1

W
(L)
i,j [σ

′′

(z(L−1)j ) (∇xz
(L−1)
j ) (∇xz

(L−1)
j )

T

+ σ
′

(z(L−1)j ) (∇2
xz
(L−1)
j ) ]

∇2
x (z(L)i ) = (32)

NL−1

∑
j=1

W
(L)
i,j σ

′′

(z(L−1)j ) (∇xz
(L−1)
j ) (∇xz

(L−1)
j )

T

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j ) (∇2
xz
(L−1)
j ) (33)

For each I ∈ [2, L], i ∈ NI , we define the matrix A
(I)
i as

the following:

∇2
x (z(I)i )

=
NI−1

∑
j=1

W
(I)
i,j σ

′′

(z(I−1)j ) (∇xz
(I−1)
j ) (∇xz

(I−1)
j )

T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A
(I)
i

+
NI−1

∑
j=1

W
(I)
i,j σ

′

(z(I−1)j ) (∇2
xz
(I−1)
j ) (34)

A
(I)
i =

NI−1

∑
j=1

W
(I)
i,j σ

′′

(z(I−1)j ) (∇xz
(I−1)
j ) (∇xz

(I−1)
j )

T

(35)

Substituting A
(L)
i using equation (35) into equation (33),

we get:

∇2
x (z(L)i ) =A

(L)
i +

NI−1

∑
j=1

W
(I)
i,j σ

′

(z(I−1)j ) (∇2
xz
(I−1)
j )

(36)

We first simplify the expression for A
(L)
i . Note

that A
(L)
i is a sum of symmetric rank one ma-

trices (∇xz
(L−1)
j ) (∇xz

(L−1)
j )

T
with the coefficient
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W
(L)
i,j σ

′′ (z(L−1)j ) for each j. We create a diagonal ma-

trix for the coefficients and another matrix B(L−1) such that
each jth row of B(L−1) is the vector ∇xz

(L−1)
j . This leads

to the following equation:

A
(L)
i =

NL−1

∑
j=1

W
(L)
i,j σ

′′

(z(L−1)j ) (∇xz
(L−1)
j ) (∇xz

(L−1)
j )

T

= (B(L−1))
T
diag (W(L)

i ⊙ σ
′′

(z(L−1)))B(L−1)

(37)

B(I) where I ∈ [L] is a matrix of size NI ×D defined as
follows:

B(I) = [∇xz
(I)
1 ,∇xz

(I)
2 , . . . ,∇xz

(I)
NI

]
T

, I ∈ [L]

Thus B(I) is the jacobian of z(I) with respect to the input
x.
Using the chain rule of the gradient, we have the following
properties of B(I):

B(1) =W(1) (38)

B(I) =W(I)diag (σ
′

(z(I−1)))B(I−1) (39)

Similarly, F(I,J) where I ∈ [L], J ∈ [I − 1] is a matrix of
size NI ×NJ defined as follows:

F(I,J) = [∇a(J)z
(I)
1 ,∇a(J)z

(I)
2 , . . . ,∇a(J)z

(I)
NI

]
T

Thus F(I,J) is the jacobian of z(I) with respect to the acti-
vations a(J).
Using the chain rule of the gradient, we have the following
properties for F(L,I):

F(L,L−1) =W(L) (40)

F(L,I) =W(L)diag (σ
′

(z(L−1)))F(L−1,I) (41)

Recall that in our notation: For a matrix E, Ei denotes the
column vector constructed by taking the transpose of the ith

row of the matrix E. Thus ith row of W(L) is (W(L)
i )

T

and F(L,I) is (F(L,I)i )
T

. Equating the ith rows in equation
(41), we get:

(F(L,I)i )
T
= (W(L)

i )
T
diag (σ

′

(z(L−1)))F(L−1,I)

Taking the transpose of both the sides and expressing the
RHS as a summation, we get:

F
(L,I)
i = ((W(L)

i )
T
diag (σ

′

(z(L−1)))F(L−1,I))
T

F
(L,I)
i =

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j )F(L−1,I)j (42)

Substituting W(L) using equation (40) into equation (37),
we get:

A
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

(43)

Substituting A
(L)
i using equation (43) into (36), we get:

∇2
xz
(L)
i =

[ (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j ) (∇2
xz
(L−1)
j ) ] (44)

Thus, equation (44) allows us to write the hessian of ith unit
at layer L, i.e (∇2

xz
(L)
i ) in terms of the hessian of jth unit

at layer L − 1, i.e (∇2
xz
(L−1)
j ).

We will prove the following using induction:

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag (F(L,I)i ⊙ σ

′′

(z(I)))B(I)

(45)

Note that for L = 2,∇2
xz
(L−1)
j = 0, ∀j ∈ N1. Thus using

(44) we have:

∇2
xz
(2)
i = (B(1))

T
diag (F(2,1)i ⊙ σ

′′

(z(1)))B(1)

Hence the induction hypothesis (45) is true for L = 2.
Now we will assume (45) is true for L − 1. Thus we have:

∇2
xz
(L−1)
j

=
L−2

∑
I=1

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)

∀j ∈ NL−1 (46)

We will prove the same for L.
Using equation (44), we have:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j ) (∇2
xz
(L−1)
j )

In the next set of steps, we will be working
with the second term of the above equation, i.e:
∑NL−1

j=1 W
(L)
i,j σ

′(z(L−1)j )(∇2
xz
(L−1)
j )
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Substituting ∇2
xz
(L−1)
j using equation (46) we get:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j ) [ (47)

L−2

∑
I=1

(B(I))diag (F(L−1,I)j ⊙ σ
′′

(z(I))) (B(I))
T
]

Combining the two summations in the second term, we get:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

L−2

∑
I=1

[W(L)
i,j σ

′

(z(L−1)j )

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)]

Exchanging the summation over I and summation over j:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j ) [

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)]

Since B(I) is independent of j, we take it out of the sum-
mation over j:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
[

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j )diag (F(L−1,I)j ⊙ σ
′′

(z(I))) ]B(I)

Using the property, α (diag(u)) + β (diag(v)) =
diag (αu + βv) ∀α,β ∈ R,u,v ∈ Rn; we can move the
summation inside the diagonal:

∇2
xz
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag[

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j )(F(L−1,I)j ⊙ σ
′′

(z(I)))]B(I)

Since σ
′′ (z(I)) is independent of j, we can take it out of

the summation over j:

∇2
xz
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag[

(
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j )F(L−1,I)j )⊙ σ
′′

(z(I)) ]B(I)

Using equation (42), we can replace
∑NL−1

j=1 W
(L)
i,j σ

′ (z(L−1)j )F(L−1,I)j with F
(L,I)
i :

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

E.4. Proof of Theorem 3

Using Lemma 1, we have the following formula for
∇2

x (z(2)y − z
(2)
t ):

∇2
x (z(2)y − z

(2)
t )

= (W(1))T diag((W(2)
y −W

(2)
t )⊙ σ

′′

(z(1)))W(1)

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i )σ

′′

(z(1)i )W(1)
i (W(1)

i )T (48)

We are also given that the activation function σ satisfies the
following property:

hL ≤ σ
′′

(x) ≤ hU ∀x ∈ R (49)

(a) We have to prove the following linear matrix inequali-
ties (LMIs):

N ≼ ∇2
x (z(2)y − z

(2)
t ) ≼ P ∀x ∈ RD (50)

where P and N are given as following:

P =
N1

∑
i=1

pi (W(2)
y,i −W

(2)
t,i )W

(1)
i (W(1)

i )
T

(51)

N =
N1

∑
i=1

ni (W(2)
y,i −W

(2)
t,i )W

(1)
i (W(1)

i )
T

(52)

pi =
⎧⎪⎪⎨⎪⎪⎩

hU , W
(2)
y,i −W

(2)
t,i ≥ 0

hL, W
(2)
y,i −W

(2)
t,i ≤ 0

⎫⎪⎪⎬⎪⎪⎭
,

ni =
⎧⎪⎪⎨⎪⎪⎩

hL, W
(2)
y,i −W

(2)
t,i ≥ 0

hU , W
(2)
y,i −W

(2)
t,i ≤ 0

⎫⎪⎪⎬⎪⎪⎭
(53)
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We first prove: N ≼ ∇2
x (z(2)y − z

(2)
t ) ∀x ∈ RD:

We substitute ∇2
x (z(2)y − z

(2)
t ) and N from equations

(48) and (52) respectively in ∇2
x (z(2)y − z

(2)
t ) −N:

∇2
x (z(2)y − z

(2)
t ) −N

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i ) (σ

′′

(z(1)i ) − ni)W(1)
i (W(1)

i )
T

Thus ∇2
x (z(2)y − z

(2)
t ) −N is a weighted sum of sym-

metric rank one matrices i.e, W(1)
i (W(1)

i )
T

and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W(2)

y,i −W
(2)
t,i ) (σ′′ (z(1)i ) − ni) is positive.

Using equations (49) and (53), we have the following:

(W(2)
y,i −W

(2)
t,i ) ≥ 0 Ô⇒ ni = hL

Ô⇒ (σ
′′

(z(1)i ) − ni) ≥ 0 ∀i ∈ [N1], ∀x ∈ RD

(W(2)
y,i −W

(2)
t,i ) ≤ 0 Ô⇒ ni = hU

Ô⇒ (σ
′′

(z(1)i ) − ni) ≤ 0 ∀i ∈ [N1], ∀x ∈ RD

Putting the above results together we have:

(W(2)
y,i −W

(2)
t,i ) (σ

′′

(z(1)i ) − ni) ≥ 0

∀i ∈ [N1], ∀x ∈ RD (54)

Thus ∇2
x (z(2)y − z

(2)
t ) −N is a PSD matrix i.e:

∇2
x (z(2)y − z

(2)
t ) −N

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i ) (σ

′′

(z(1)i ) − ni)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

always positive using eq. (54)

W
(1)
i (W(1)

i )
T

Ô⇒ N ≼ ∇2
x (z(2)y − z

(2)
t ) ∀x ∈ RD (55)

Now we prove that ∇2
x (z(2)y − z

(2)
t ) ≼ P ∀x ∈ RD:

We substitute ∇2
x (z(2)y − z

(2)
t ) and P from equations

(48) and (52) respectively in P −∇2
x (z(2)y − z

(2)
t ):

P −∇2
x (z(2)y − z

(2)
t )

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i ) (pi − σ

′′

(z(1)i ))W(1)
i (W(1)

i )T

Thus P −∇2
x (z(2)y − z

(2)
t ) is a weighted sum of sym-

metric rank one matrices i.e, W(1)
i (W(1)

i )
T

and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W(2)

y,i −W
(2)
t,i ) (pi − σ

′′ (z(1)i )) is positive.

Using equations (49) and (53), we have the following:

(W(2)
y,i −W

(2)
t,i ) ≥ 0 Ô⇒ pi = hU

Ô⇒ (pi − σ
′′

(z(1)i )) ≥ 0 ∀i ∈ N1, x ∈ RD

(W(2)
y,i −W

(2)
t,i ) ≤ 0 Ô⇒ pi = hL

Ô⇒ (pi − σ
′′

(z(1)i )) ≤ 0 ∀i ∈ N1, x ∈ RD

Putting the above results together we have:

Ô⇒ (W(2)
y,i −W

(2)
t,i ) (pi − σ

′′

(z(1)i )) ≥ 0

∀i ∈ [N1], x ∈ RD (56)

Thus P −∇2
x (z(2)y − z

(2)
t ) is PSD matrix i.e:

P −∇2
x (z(2)y − z

(2)
t )

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i ) (pi − σ

′′

(z(1)i ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

always positive using eq. (56)

W
(1)
i (W(1)

i )
T

Ô⇒ P ≽ ∇2
x (z(2)y − z

(2)
t ) ∀x ∈ RD (57)

Thus by proving the LMIs (55) and (57), we prove
(50).

(b) We have to prove that if hU ≥ 0 and hL ≤ 0, P is a
PSD matrix, N is a NSD matrix.
We are given hU ≥ 0, hL ≤ 0. Using equation (53), we
have the following:

(W(2)
y,i −W

(2)
t,i ) ≥ 0 Ô⇒ pi = hU ≥ 0

Ô⇒ pi (W(2)
y,i −W

(2)
t,i ) ≥ 0

(W(2)
y,i −W

(2)
t,i ) ≤ 0 Ô⇒ pi = hL ≤ 0

Ô⇒ pi (W(2)
y,i −W

(2)
t,i ) ≥ 0

Putting these results together we have:

Ô⇒ pi (W(2)
y,i −W

(2)
t,i ) ≥ 0 ∀i ∈ [N1] (58)

Thus P is a weighted sum of symmetric rank one

matrices i.e, W
(1)
i (W(1)

i )
T

and each coefficient

pi (W(2)
y,i −W

(2)
t,i ) is positive.

P =
N1

∑
i=1

pi (W(2)
y,i −W

(2)
t,i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
always positive using eq. (58)

W
(1)
i (W(1)

i )
T
≽ 0
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Using equation (53), we have the following:

(W(2)
y,i −W

(2)
t,i ) ≥ 0 Ô⇒ ni = hL ≤ 0

Ô⇒ ni (W(2)
y,i −W

(2)
t,i ) ≤ 0

(W(2)
y,i −W

(2)
t,i ) ≤ 0 Ô⇒ ni = hU ≥ 0

Ô⇒ ni (W(2)
y,i −W

(2)
t,i ) ≤ 0

Putting these results together we have:

Ô⇒ ni (W(2)
y,i −W

(2)
t,i ) ≥ 0 ∀i ∈ [N1] (59)

N =
N1

∑
i=1

ni (W(2)
y,i −W

(2)
t,i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
always positive using eq. (59)

W
(1)
i (W(1)

i )
T
≼ 0

Thus P is a PSD and N is a NSD matrix if hU ≥ 0 and
hL ≤ 0.

(c) We have to prove the following global bounds on the
eigenvalues of ∇2

x(z
(2)
y − z

(2)
t ):

mI ≼ ∇2
x (z(2)y − z

(2)
t ) ≼MI,

where M = max
∥v∥=1

vTPv, m = min
∥v∥=1

vTNv

Since ∇2
x (z(2)y − z

(2)
t ) ≼ P ∀x ∈ RD:

vT [∇2
x (z(2)y − z

(2)
t )]v ≤ vTPv

∀v ∈ RD, ∀x ∈ RD (60)

Let v∗, x∗ be vectors such that:

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t )]v∗

=max
x

max
∥v∥=1

vT [∇2
x (z(2)y − z

(2)
t )]v

Thus using inequality (60):

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t )]v∗ ≤ max

∥v∥=1
vTPv (61)

Since N ≼ ∇2
x (z(2)y − z

(2)
t ) ∀x ∈ RD:

vTNv ≤ vT [∇2
x (z(2)y − z

(2)
t )]v

∀v ∈ RD, ∀x ∈ RD (62)

Let v∗, x∗ be vectors such that:

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t )]v∗

=min
x

min
∥v∥=1

vT [∇2
x (z(2)y − z

(2)
t )]v

Thus using inequality (62):

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t )]v∗ ≥ min

∥v∥=1
vTNv (63)

Using the inequalities (61) and (63), we get:

mI ≼ ∇2
x (z(2)y − z

(2)
t ) ≼MI

where M =max∥v∥=1 v
TPv, m =min∥v∥=1 v

TNv

E.5. Proof of Theorem 4

We are given that the activation function σ is such that
σ
′

, σ
′′

are bounded, i.e:

∣σ
′

(x)∣ ≤ g, ∣σ
′′

(x)∣ ≤ h ∀x ∈ R (64)

We have to prove the following:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j ) ∀x ∈ RD

where S(L,I) is a matrix of size NL×NI defined as follows:

S(L,I) =
⎧⎪⎪⎨⎪⎪⎩

∣W(L)∣ I = L − 1

g ∣W(L)∣S(L−1,I) I ∈ [L − 2]
(65)

and r(I) is a scalar defined as follows:

r(I) =
⎧⎪⎪⎨⎪⎪⎩

∥W(1)∥ I = 1

g ∥W(I)∥ r(I−1) I ∈ [2, L − 1]
(66)

We will prove the same in 3 steps.
In step (a), we will prove:

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j ∀x ∈ RD (67)

In step (b), we will prove:

∥B(I)∥ ≤ r(I), ∀x ∈ RD (68)

In step (c), we will use (a) and (b) to prove:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(L,I)i,j ) (69)

Note that B(I) and F(L,I) are defined using (28) and (29)
respectively.

(a) We have to prove that for L ≥ 2, I ∈ [L − 1], i ∈
NL, j ∈ NI :

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j ∀x ∈ RD
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where S(L,I) is a matrix of size NI ×NJ defined as
follows:

S(L,I) =
⎧⎪⎪⎨⎪⎪⎩

∣W(L)∣ I = L − 1

g ∣W(L)∣S(L−1,J) I ∈ [L − 2]

We first prove the case when I = L − 1.
Using equation (40), F(L,L−1)i,j =W

(L)
i,j .

Since S
(L,L−1)
i,j = ∣W(L)

i,j ∣:

∣F(L,L−1)i,j ∣ = S
(L,L−1)
i,j

Hence for L ≥ 2, I = L − 1, we have equality in (67).
Hence proved.
Now, we will use proof by induction.
To prove the base case L = 2, note that I = L − 1 = 1
is the only possible value for I . Thus, using the result
for I = L− 1, the theorem holds for L = 2. This proves
the base case.
Now we assume the induction hypothesis is true for
depth = L − 1, I ∈ [L − 2]. and prove for depth =
L, I ∈ [L − 1]. Since for I = L − 1, we have proven
already, we prove for I ≤ L − 2.
Using equation (42), we have the following formula
for F(L,I)i :

F
(L,I)
i =

NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k )F(L−1,I)k

Taking the jth element of the vectors on both sides:

F
(L,I)
i,j =

NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k )F(L−1,I)k,j (70)

By induction hypothesis, we know that:

∣F(L−1,I)k,j ∣ ≤ S
(L−1,I)
k,j (71)

Using the absolute value properties for equation (70),
we have:

∣F(L,I)i,j ∣ = ∣
NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k )F(L−1,I)k,j ∣

∣F(L,I)i,j ∣ ≤
NL−1

∑
k=1

∣W(L)
i,k σ

′

(z(L−1)k )F(L−1,I)k,j ∣

∣F(L,I)i,j ∣ ≤
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣σ

′

(z(L−1)k )∣ ∣F(L−1,I)k,j ∣

Using ∣σ′(x)∣ ≤ g ∀x ∈ R (inequality (64)) :

∣F(L,I)i,j ∣ ≤ g
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣F(L−1,I)k,j ∣

Using the induction hypothesis (inequality (71)):

∣F(L,I)i,j ∣ ≤ g
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣S(L−1,I)k,j ∣

Using equation (65) for definition of S(L,I)i,j :

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j

Hence we prove (67) for all L ≥ 2 and I ≤ L − 1 using
induction.

(b) We have to prove that for 1 ≤ I ≤M − 1:

∥B(I)∥ ≤ r(I), ∀x ∈ RD

where r(I) is a scalar given as follows:

r(I) =
⎧⎪⎪⎨⎪⎪⎩

∥W(1)∥ I = 1

g ∥W(I)∥ r(I−1) I ∈ [2, L − 1]

Using equation (38), for I = 1 we have:

∥B(1)∥ = ∥W(1)∥ = r(1) (72)

Using equation (39), for I > 1, we have:

∥B(I)∥ = ∥W(I)diag (σ
′

(z(I−1)))B(I−1)∥

∥B(I)∥ ≤ ∥W(I)∥ ∥diag (σ
′

(z(I−1)))∥ ∥B(I−1)∥

Since ∥diag (σ′ (z(I−1)))∥ = maxj ∣σ
′ (z(I−1)j )∣, us-

ing equation (64):

∥B(I)∥ ≤ g ∥W(I)∥ ∥B(I−1)∥ ≤ g ∥W(I)∥ r(I−1)
(73)

Using inequalities (72) and (73), the proof follows
using induction.

(c) We have to prove that:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j )

Using Lemma 1, we have the following equation for
∇2

xz
(L)
i :

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)
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Using the properties of norm we have:

∥∇2
xz
(L)
i ∥

= ∥
L−1

∑
I=1

(B(I))
T
diag (F(L,I)i ⊙ σ

′′

(z(I)))B(I)∥

≤
L−1

∑
I=1

∥diag (F(L,I)i ⊙ σ
′′

(z(I)))∥ ∥B(I)∥
2

≤
L−1

∑
I=1

max
j

( ∣F(L,I)i,j σ
′′

(z(I)j )∣ ) ∥B(I)∥
2

In the last inequality, we use the property that norm of
a diagonal matrix is the maximum absolute value of
the diagonal element. Using the product property of
absolute value, we get:

∥∇2
xz
(L)
i ∥ ≤

L−1

∑
I=1

max
j

( ∣F(L,I)i,j ∣ ∣σ
′′

(z(I)j )∣ ) ∥B(I)∥
2

Since ∣F(L,I)i,j ∣ and ∣σ′′ (z(I)j )∣ are positive terms:

∥∇2
xz
(L)
i ∥

≤
L−1

∑
I=1

max
j

( ∣F(L,I)i,j ∣ )max
j

( ∣σ
′′

(z(I)j )∣ ) ∥B(I)∥
2

Since ∥σ′′∥ is bounded by h:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

max
j

( ∣F(L,I)i,j ∣ ) ∥B(I)∥
2

Using inequality (67):

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

max
j

(S(I)i,j ) ∥B(I)∥
2

Using inequality (68):

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j ) ∀x ∈ RD

E.6. Proof of Theorem 1

Theorem 1. For a binary classifier f , let g denote the indi-
cator function such that g(x) = 1 ⇐⇒ f(x) > 0, g(x) =
0 otherwise. Let ĝ be the function constructed by applying
randomized smoothing on g such that:

ĝ (u) = 1

(2πs2)n/2 ∫RD
g(v) exp(−∥v − u∥2

2s2
)dv

then the curvature of the resulting function ĝ is bounded i.e:

− I

s2
≼ ∇2

u ĝ ≼
I

s2

Proof.

∇u ĝ (u)

= 1

(2πs2)n/2 ∫RD
g(v)(v − u)

s2
exp(−∥v − u∥2

2s2
)dv

∇2
u ĝ (u)

= 1

(2πs2)n/2 ∫RD
g(v)−I

s2
exp(−∥v − u∥2

2s2
)dv

+ 1

(2πs2)n/2 ∫RD
g(v)(v − u)(v − u)T

s4
[

exp(−∥v − u∥2
2s2

)]dv

Since 0 ≤ g(v) ≤ 1, −I/s2 ≼ 0, (v − u)(v − u)T ≽ 0 and
exp(x) ≥ 0 ∀x:

∇2
u ĝ (u) =

1

(2πs2)n/2 ∫RD
g(v)−I

s2
exp(−∥v − u∥2

2s2
)dv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Negative Semi-Definite

+ 1

(2πs2)n/2 ∫RD
g(v)(v − u)(v − u)T

s4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Positive Semi-Definite

[

exp(−∥v − u∥2
2s2

)]dv

∇2
u ĝ (u) ≼

1

(2πs2)n/2 ∫RD

(v − u)(v − u)T
s4

[

exp(−∥v − u∥2
2s2

)]dv

∇2
u ĝ (u) ≼

1

(2πs2)n/2 ∫RD

qqT

s4
exp(−∥q∥2

2s2
)dq

∇2
u ĝ (u) ≼

I

s2

∇2
u ĝ (u) ≽

1

(2πs2)n/2 ∫RD

−I
s2

exp(−∥v − u∥2
2s2

)dv

∇2
u ĝ (u) ≽ −

I

s2

F. Computing g, h, hU and hL for different
activation functions

F.1. Softplus activation

For softplus activation, we have the following. We use S(x)
to denote sigmoid:

σ(x) = log(1 + exp(x))
σ
′

(x) = S(x)
σ
′′

(x) = S(x)(1 − S(x))
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To bound S(x)(1 − S(x)), let α denote S(x). We know
that 0 ≤ α ≤ 1:

α(1 − α) = 1

4
− (1

2
− α)

2

Thus, S(x)(1 − S(x)) is maximum at S(x) = 1/2 and
minimum at S(x) = 0 and S(x) = 1. The maximum value
is 0.25 and minimum value is 0.

0 ≤ S(x)(1 − S(x)) ≤ 0.25 Ô⇒ 0 ≤ σ
′′

(x) ≤ 0.25

Thus, hU = 0.25, hL = 0 (for use in Theorem 3) and g =
1, h = 0.25 (for use in Theorem 4).

F.2. Sigmoid activation

For sigmoid activation, we have the following. We use S(x)
to denote sigmoid:

σ(x) = S(x) = 1

1 + exp(−x)
σ
′

(x) = S(x)(1 − S(x))
σ
′′

(x) = S(x)(1 − S(x))(1 − 2S(x))

The second derivative of sigmoid (σ′′(x)) can be bounded
using standard differentiation. Let α denote S(x). We
know that 0 ≤ α ≤ 1:

hL ≤ σ
′′

(x) ≤ hU
hL = min

0≤α≤1
α(1 − α)(1 − 2α)

hU = max
0≤α≤1

α(1 − α)(1 − 2α)

To solve for both hL and hU , we first differentiate α(1 −
α)(1 − 2α) with respect to α:

∇α (α(1 − α)(1 − 2α)) = ∇α (2α3 − 3α2 + α)
= (6α2 − 6α + 1)

Solving for 6α2 − 6α + 1 = 0, we get the solutions:

α = (3 +
√
3

6
),(3 −

√
3

6
)

Since both (3+
√
3/6), (3−

√
3/6) lie between 0 and 1, we

check for the second derivatives:

∇2
α (α(1 − α)(1 − 2α)) = ∇α (6α2 − 6α + 1)

= 12α − 6 = 6(2α − 1)

At α = (3 +
√
3)/6, ∇2

α = 6(2α − 1) = 2
√
3 > 0.

At α = (3 −
√
3)/6, ∇2

α = 6(2α − 1) = −2
√
3 < 0.

Thus α = (3 +
√
3)/6 is a local minima, α = (3 −

√
3)/6 is

a local maxima.

Substituting the two critical points into α(1 − α)(1 − 2α),
we get hU = 9.623 × 10−2, hL = −9.623 × 10−2.
Thus, hU = 9.623 × 10−2, hL = −9.623 × 10−2 (for use in
Theorem 3) and g = 0.25, h = 0.09623 (for use in Theorem
4).

F.3. Tanh activation

For tanh activation, we have the following:

σ(x) = tanh(x) = exp(x) − exp(−x)
exp(x) + exp(−x)

σ
′

(x) = (1 − tanh(x)) (1 + tanh(x))
σ
′′

(x) = −2 tanh(x) (1 − tanh(x)) (1 + tanh(x))

The second derivative of tanh , i.e (σ′′(x)) can be bounded
using standard differentiation. Let α denote tanh(x). We
know that −1 ≤ α ≤ 1:

hL ≤ σ
′′

(x) ≤ hU
hL = min

0≤α≤1
−2α(1 − α)(1 + α)

hU = max
0≤α≤1

−2α(1 − α)(1 + α)

To solve for both hL and hU , we first differentiate −2α(1 −
α)(1 + α) with respect to α:

∇α (−2α(1 − α)(1 + α)) = ∇α (2α3 − 2α) = (6α2 − 2)

Solving for 6α2 − 2 = 0, we get the solutions:

α = − 1√
3
,
1√
3

Since both −1/
√
3,1/

√
3 lie between -1 and 1, we check

for the second derivatives:

∇2
α (−2α(1 − α)(1 + α)) = ∇α (6α2 − 2) = 12α

At α = −1/
√
3, ∇2

α = 12α = −4
√
3 < 0.

At α = 1/
√
3, ∇2

α = 12α = 4
√
3 > 0.

Thus α = 1/
√
3 is a local minima, α = −1/

√
3 is a local

maxima.
Substituting the two critical points into −2α(1 − α)(1 + α),
we get hU = 0.76981, hL = −0.76981.
Thus, hU = 0.76981, hL = −0.76981 (for use in Theorem
3) and g = 1, h = 0.76981 (for use in Theorem 4).

G. Quadratic bounds for two-layer ReLU
networks

For a 2 layer network with ReLU activation, such that the
input x lies in the ball ∥x − x(0)∥ ≤ ρ, we can compute the
bounds over z(1) directly:

W
(1)
i x(0) + b

(1)
i − ρ ∥W(1)

i ∥ ≤ z
(1)
i

z
(1)
i ≤W

(1)
i x(0) + b

(1)
i + ρ ∥W(1)

i ∥
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Thus we can get a lower bound and upper bound for each
z
(1)
i . We define di and ui as the following:

di =W
(1)
i x(0) + b

(1)
i − ρ ∥W(1)

i ∥ (74)

ui =W
(1)
i x(0) + b

(1)
i + ρ ∥W(1)

i ∥ (75)

We can derive the following quadratic lower and upper
bounds for each a

(1)
i :

a
(1)
i ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−di
(ui − di)2

(z(1)i )
2
+ u2i + d2i

(ui − di)2
z
(1)
i − u2i di

(ui − di)2
if ∣di∣ ≤ ∣ui∣

ui
(ui − di)2

(z(1)i )
2
− 2uidi

(ui − di)2
z
(1)
i + uid

2
i

(ui − di)2
if ∣di∣ ≥ ∣ui∣

a
(1)
i ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 2∣di∣ ≤ ∣ui∣
z
(1)
i ∣di∣ ≥ 2∣ui∣
1

ui − di
(z(1)i )

2
− di
ui − di

z
(1)
i otherwise

The above steps are exactly the same as the quadratic upper
and lower bounds used in (Zhang et al., 2018a).
Using the above two inequalities and the identity:

z(2)y − z
(2)
t =

N1

∑
i=1

(W(2)
y,i −W

(2)
t,i )a

(1)
i

we can compute a quadratic lower bound for z
(2)
y −

z
(2)
t in terms of z

(1)
i by taking the lower bound for

a
(1)
i when (W(2)

y,i −W
(2)
t,i ) > 0 and upper bound when

(W(2)
y,i −W

(2)
t,i ) <= 0. Furthermore since z

(1)
i =W

(1)
i x +

b
(1)
i , we can express the resulting quadratic in terms of x.

Thus, we get the following quadratic function :

z(2)y − z
(2)
t ≥ 1

2
xTPx + q + r

The coefficients P, q and r can be determined using the
above procedure. Note that unlike in (Zhang et al., 2018a),
RHS can be a non-convex function.
Thus, it becomes an optimization problem where the goal
is to minimize the distance 1/2 ∥x − x(0)∥2 subject to RHS
(which is quadratic in x) being zero. That is both our objec-
tive and constraint are quadratic functions. In the optimiza-
tion literature, this is called the S-procedure and is one of
the few non-convex problems that can be solved efficiently
(Boyd & Vandenberghe, 2004).
We start with two initial values called ρlow (initialized to 0)
and ρhigh (initialized to 5).
We start with an initial value of ρ, initialized at
1/2 (ρlow + ρhigh) to compute di (eq. (74)) and ui (eq.

(75)). If the final distance after solving the S-procedure
is less than ρ, we set ρlow = ρ. if the final distance is greater
than ρ, we set ρhigh = ρ. Set new ρ = 1/2 (ρlow + ρhigh).
Repeat until convergence.

H. Additional experiments
Empirical accuracy means the fraction of test samples that
were correctly classified after running a PGD attack (Madry
et al., 2018) with an l2 bound on the adversarial perturba-
tions. Certified accuracy means the fraction of test samples
that were classified correctly initially and had the robust-
ness certificate greater than a pre-specified attack radius ρ.
Unless otherwise specified, for both empirical and certified
accuracy, we use ρ = 0.5. Unless otherwise specified, we
use the class with the second largest logit as the attack target
for the given input (i.e. the class t). Unless specified, the
experiments were run on the MNIST dataset while noting
that our results are scalable for more complex datasets. The
notation (L × [1024], activation) denotes a neural network
with L layers with the specified activation function, (γ = c)
denotes standard training with γ set to c, (CRT, c) denotes
CRT training with γ = c. Certificates CROWN and CRC are
computed over 150 correctly classified images.

H.1. Computing Klb and Kub

First, note that K does not depend on the input, but on net-
work weights W(I), label y and target t. Different images
may still have different K because label y and target t may
be different.

To compute Klb in the table, first for each pair y and t, we
find the largest eigenvalue of the Hessian of all test images
that have label y and second largest logit of class t. Then we
take the max of the largest eigenvalue across all test images.
This gives a rough estimate of the largest curvature in the
vicinity of test images with label y and target t. We can
directly take the mean across all such pairs to compute Klb.
However, we find that some pairs y and t were infrequent
(with barely 1,2 test images in them). Thus, for all such
pairs we cannot get a good estimate of the largest curvature
in vicinity. We select all pairs y and t that have at least 100
images in them and compute Klb by taking the mean across
all such pairs.

To compute Kub in the table, we compute K for all pairs y
and t that have at least 100 images, i.e at least 100 images
should have label y and target t. And then we compute the
mean across all K that satisfy this condition. This was done
to do a fair comparison with Klb. Figure 1 shows a plot of
the Kub and Klb with increasing γ for a sigmoid network
(with 4 layers).
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Figure 1. Effect of γ on Kub and Klb for a 4 layer network. We
observe a similar trend as in 2 and 3 layer networks (Figure 1). At
γ = 0, we observe Kub ≈ 15418 ×Klb.

H.2. Comparison with provable defenses

In this section, we compare Curvature-based Robust Train-
ing (Ours) against state-of-the-art interval-bound propaga-
tion based adversarial training methods: COAP i.e Con-
vex Outer Adversarial Polytope (Wong & Kolter, 2017)
and CROWN-IBP (Zhang et al., 2019a) with different at-
tack radius on MNIST and Fashion-MNIST datasets. For
CROWN-IBP, we vary the final beta parameter between 0.5
to 3 (using an interval of 0.1) and choose the model with
best certified accuracy.

Table 2. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 0.5 on MNIST
dataset. Note that the certified accuracy of softplus network with
CROWN-IBP is significantly less than that of a similar ReLU
network.

Network Training Standard
Accuracy

Certified
Accuracy

2×[1024],
softplus

CRT, 0.01 98.69% 95.5%
CROWN-IBP 98.72% 89.31%

2×[1024],
relu

CROWN-IBP 98.69% 91.38%
COAP 98.8% 90.2%

3×[1024],
softplus

CRT, 0.01 98.56% 94.44%
CROWN-IBP 98.55% 88.67%

3×[1024],
relu

CROWN-IBP 98.9% 90.67%
COAP 98.9% 89.0%

4×[1024],
softplus

CRT, 0.01 98.43% 93.35%
CROWN-IBP 98.34% 87.41%

4×[1024],
relu

CROWN-IBP 98.78% 90.45%
COAP 98.9% 89.0%

Table 3. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 0.5 on Fashion-
MNIST dataset.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus CRT, 0.01 88.45% 78.45%

2×[1024],
relu

COAP 86.0% 74.0%
CROWN-IBP 85.89% 74.62%

3×[1024],
softplus CRT, 0.01 86.21% 76.94%

3×[1024],
relu

COAP 85.9% 74.3%
CROWN-IBP 86.27% 74.56%

4×[1024],
softplus CRT, 0.01 86.37% 75.02%

4×[1024],
relu

COAP 85.9% 74.2%
CROWN-IBP 86.03% 74.38%

Table 4. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 1.58 on MNIST
dataset. We again observe that the certified accuracy of softplus
network with CROWN-IBP is significantly less than that of a
similar ReLU network.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus

CRT, 0.01 98.68% 69.79%
CROWN-IBP 88.48% 42.36%

2×[1024],
relu

COAP 89.33% 44.29%
CROWN-IBP 89.49% 44.96%

3×[1024],
softplus

CRT, 0.01 98.26% 14.21%
CRT, 0.03 97.82% 50.72%
CRT, 0.05 97.43% 57.78%
CROWN-IBP 86.58% 42.14%

3×[1024],
relu

COAP 89.12% 44.21%
CROWN-IBP 87.77% 44.74%

4×[1024],
softplus

CRT, 0.01 97.80% 6.25%
CRT, 0.03 97.09% 29.64%
CRT, 0.05 96.33% 44.44%
CRT, 0.07 95.60% 53.19%
CROWN-IBP 82.74% 41.34%

4×[1024],
relu

COAP 90.17% 44.66%
CROWN-IBP 84.4% 43.83%
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Table 5. Comparison between CRT and Randomized Smooth-
ing(Cohen et al., 2019). s denotes the standard deviation for
smoothing. We use ρ = 0.5. For CRT, we use γ = 0.01

Network
Randomized Smoothing CRT

s = 0.25 s = 0.50 s = 1.0

2×[1024],
sigmoid 93.75% 93.09% 88.91%

95.61%

2×[1024],
tanh 94.61% 93.08% 82.26% 95.00%

3×[1024],
sigmoid 94.00% 93.03% 86.58% 94.99%

3×[1024],
tanh 93.69% 91.68% 80.55% 94.16%

4×[1024],
sigmoid 93.68% 92.45% 84.99% 93.41%

4×[1024],
tanh 93.57% 92.19% 83.90% 91.37%

H.3. Comparing Randomized Smoothing with CRT

Since, randomized smoothing is designed to work in untar-
geted attack settings while CRT is for targeted attacks, we
make the following changes in randomized smoothing. First,
we use n0 = 100 initial samples to select the label class (l)
and false target class (t). The samples for estimation were
n = 100,000 and failure probability was α = 0.001. Then
we use the binary version of randomized smoothing for esti-
mation, i.e classify between y and t. To find the adversarial
example for adversarial training, we use the cross entropy
loss for 2 classes (y and t).

H.4. Additional experiments

Table 6. Table showing success rates (primal = dual) for differ-
ent values of γ. Certificate success rate denotes the fraction of
points (x(0)) satisfying zy − zt = 0, Attack success rate denotes
the fraction of points (x(0)) satisfying ∥x(attack) − x(0)∥2 = ρ
implying primal = dual in Theorems 1 and 2 respectively. We
observe that as we increase γ, the fraction of points satisfying
primal = dual increases for both the certificate and attack prob-
lems. This can be attributed to the curvature bound K(W, y, t)
becoming tight on increasing γ.

Network γ Accuracy
Attack
success
rate

Certificate
success
rate

2×[1024],
sigmoid

0. 98.77% 5.05% 2.24%
0.01 98.57% 100% 15.68%
0.02 98.59% 100% 31.56%
0.03 98.30% 100% 44.17%

3×[1024],
sigmoid

0. 98.52% 0.% 0.12%
0.01 98.23% 44.86% 3.34%
0.03 97.86% 100% 11.51%
0.05 97.60% 100% 22.59%

4×[1024],
sigmoid

0. 98.22% 0.% 0.01%
0.01 97.24% 24.42% 2.68%
0.03 96.27% 44.42% 6.45%
0.05 95.77% 99.97% 12.40%
0.06 95.52% 100% 15.87%
0.07 95.24% 100% 19.53%
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Table 7. Results for CIFAR-10 dataset (only curvature regularization, no CRT training)

Network Training Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate
(mean)

CROWN CRC

2 × [1024], sigmoid
standard 46.23% 37.82% 14.10% 0.37219 0.38173
γ = 0.01 45.42% 38.17% 26.50% 0.40540 0.55010

3 × [1024], sigmoid
standard 48.57% 34.80% 0.00% 0.19127 0.01404
γ = 0.01 50.31% 39.87% 18.28% 0.24778 0.37895

4 × [1024], sigmoid
standard 46.04% 34.38% 0.00% 0.19340 0.00191
γ = 0.01 48.28% 40.10% 21.07% 0.29654 0.40005

Table 8. Comparison between CRT, PGD (Madry et al., 2018) and TRADES (Zhang et al., 2019b) for sigmoid and tanh networks. CRC
outperforms CROWN significantly for 2 layer networks and when trained with our regularizer for deeper networks. CRT outperforms
TRADES and PGD giving higher certified accuracy.

Network Training Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate
(mean)

CROWN CRC

2×[1024],
sigmoid

PGD 98.80% 96.26% 93.37% 0.37595 0.82702
TRADES 98.87% 96.76% 95.13% 0.41358 0.92300
CRT, 0.01 98.57% 96.28% 95.59% 0.43061 1.54673

2×[1024],
tanh

PGD 98.76% 95.79% 84.11% 0.30833 0.61340
TRADES 98.63% 96.20% 93.72% 0.40601 0.86287
CRT, 0.01 98.52% 95.90% 95.00% 0.37691 1.47016

3×[1024],
sigmoid

PGD 98.84% 96.14% 0.00% 0.29632 0.07290
TRADES 98.95% 96.79% 0.00% 0.30576 0.09108
CRT, 0.01 98.23% 95.70% 94.99% 0.39603 1.24100

3×[1024],
tanh

PGD 98.78% 94.92% 0.00% 0.12706 0.03036
TRADES 98.16% 94.78% 0.00% 0.15875 0.02983
CRT, 0.01 98.15% 95.00% 94.16% 0.28004 1.14995

4×[1024],
sigmoid

PGD 98.84% 96.26% 0.00% 0.25444 0.00658
TRADES 98.76% 96.67% 0.00% 0.26128 0.00625
CRT, 0.01 97.83% 94.65% 93.41% 0.40327 1.06208

4×[1024],
tanh

PGD 98.53% 94.53% 0.00% 0.07439 0.00140
TRADES 97.08% 92.85% 0.00% 0.11889 0.00068
CRT, 0.01 97.24% 93.05% 91.37% 0.33649 0.93890
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Table 9. Comparison between CRC and CROWN-general (CROWN-Ada for relu) for different targets. For CRT training, we use γ = 0.01.
We compare CRC with CROWN-general for different targets for 150 correctly classified images. Runner-up means class with second
highest logit is considered as adversarial class. Random means any random class other than the label is considered adversarial. Least
means class with smallest logit is adversarial. For 2-layer networks, CRC outperforms CROWN-general significantly even without
adversarial training. For deeper networks (3 and 4 layers), CRC works better on networks that are trained with curvature regularization.
Both CROWN and CRC are computed on CPU but the running time numbers mentioned here are not directly comparable because our
CRC implementation uses a batch of images while the CROWN implementation uses a single image at a time.

Network Training Target
Certificate (mean) Time per Image (s)

CROWN CRC CROWN CRC

2 × [1024], relu standard
runner-up 0.50110 0.59166 0.1359 2.3492
random 0.68506 0.83080 0.2213 3.5942
least 0.86386 1.04883 0.1904 3.0292

2 × [1024], sigmoid

standard
runner-up 0.28395 0.48500 0.1818 0.1911
random 0.38501 0.69087 0.1870 0.1912
least 0.47639 0.85526 0.1857 0.1920

CRT, 0.01
runner-up 0.43061 1.54673 0.1823 0.1910
random 0.52847 1.99918 0.1853 0.1911
least 0.62319 2.41047 0.1873 0.1911

2 × [1024], tanh

standard
runner-up 0.23928 0.40047 0.1672 0.1973
random 0.31281 0.52025 0.1680 0.1986
least 0.38964 0.63081 0.1726 0.1993

CRT, 0.01
runner-up 0.37691 1.47016 0.1633 0.1963
random 0.45896 1.87571 0.1657 0.1982
least 0.52800 2.21704 0.1697 0.1981

3 × [1024], sigmoid

standard
runner-up 0.24644 0.06874 1.6356 0.5012
random 0.29496 0.08275 1.5871 0.5090
least 0.33436 0.09771 1.6415 0.5056

CRT, 0.01
runner-up 0.39603 1.24100 1.5625 0.5013
random 0.46808 1.54622 1.6142 0.4974
least 0.51906 1.75916 1.6054 0.4967

3 × [1024], tanh

standard
runner-up 0.08174 0.01169 1.4818 0.4908
random 0.10012 0.01432 1.5906 0.4963
least 0.12132 0.01757 1.5888 0.5076

CRT, 0.01
runner-up 0.28004 1.14995 1.4832 0.4926
random 0.32942 1.41032 1.5637 0.4957
least 0.38023 1.65692 1.5626 0.4930

4 × [1024], sigmoid

standard
runner-up 0.19501 0.00454 4.7814 0.8107
random 0.21417 0.00542 4.6313 0.8377
least 0.22706 0.00609 4.7973 0.8313

CRT, 0.01
runner-up 0.40327 1.06208 4.1830 0.8088
random 0.47038 1.29095 4.3922 0.7333
least 0.52249 1.49521 4.4676 0.7879

4 × [1024], tanh

standard
runner-up 0.03554 0.00028 5.7016 0.8836
random 0.04247 0.00036 5.8379 0.8602
least 0.04895 0.00044 5.8298 0.9045

CRT, 0.01
runner-up 0.33649 0.93890 3.8815 0.8182
random 0.41617 1.18956 4.0013 0.8215
least 0.47778 1.41429 4.3856 0.8311



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Second-Order Provable Defenses against Adversarial Attacks

Table 10. In this table, we measure the effect of increasing γ, when the network is trained with CRT on standard, empirical, certified
robust accuracy, Klb and Kub (defined in subsection H.1) for different depths (2, 3, 4 layer) and activations (sigmoid, tanh). We find
that for all networks γ = 0.01 works best. We find that the lower bound, Klb increases (for γ = 0) for deeper networks suggesting that
deep networks have higher curvature. Furthermore, for a given γ (say 0.005), we find that the gap between Kub and Klb increases as we
increase the depth suggesting that K is not a tight bound for deeper networks.

Network γ
Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Curvature bound (mean)

Klb Kub

2×[1024],
sigmoid

0.0 98.77% 96.17% 95.04% 7.2031 72.0835
0.005 98.82% 96.33% 95.61% 3.8411 8.2656
0.01 98.57% 96.28% 95.59% 2.8196 5.4873
0.02 98.59% 95.97% 95.22% 2.2114 3.7228
0.03 98.30% 95.73% 94.94% 1.8501 2.9219

2×[1024],
tanh

0.0 98.65% 95.48% 92.69% 12.8434 107.5689
0.005 98.71% 95.88% 94.76% 4.8116 10.1860
0.01 98.52% 95.90% 95.00% 3.4269 6.3529
0.02 98.35% 95.71% 94.77% 2.3943 4.1513
0.03 98.29% 95.39% 94.54% 1.9860 3.933

3×[1024],
sigmoid

0. 98.52% 90.26% 0.00% 19.2131 3294.9070
0.005 98.41% 95.81% 94.91% 2.6249 13.4985
0.01 98.23% 95.70% 94.99% 1.9902 8.6654
0.02 97.99% 95.33% 94.64% 1.4903 5.4380
0.03 97.86% 94.98% 94.15% 1.2396 4.1409
0.04 97.73% 94.60% 93.88% 1.0886 3.3354
0.05 97.60% 94.45% 93.65% 0.9677 2.7839

3×[1024],
tanh

0. 98.19% 86.38% 0.00% 133.7992 17767.5918
0.005 98.13% 94.56% 93.01% 3.2461 17.5500
0.01 98.15% 95.00% 94.16% 2.2347 10.8635
0.02 97.84% 94.79% 94.05% 1.6556 6.7072
0.03 97.70% 94.19% 93.42% 1.3546 5.0533
0.04 97.57% 94.04% 92.95% 1.1621 4.0071
0.05 97.31% 93.66% 92.65% 1.0354 3.3439

4×[1024],
sigmoid

0. 98.22% 83.04% 0.00% 86.9974 343582.3125
0.01 97.83% 94.65% 93.41% 1.6823 10.2289
0.02 97.33% 94.02% 92.94% 1.2089 6.5573
0.03 97.07% 93.52% 92.65% 1.0144 4.9576
0.04 96.70% 92.78% 91.95% 0.8840 3.9967
0.05 96.38% 92.29% 91.33% 0.7890 3.4183
0.07 96.08% 91.83% 90.67% 0.6614 2.6905

4×[1024],
tanh

0. 97.45% 75.18% 0.00% 913.6984 37148156
0.01 97.24% 93.05% 91.37% 1.9114 12.2148
0.02 96.82% 92.65% 91.35% 1.3882 7.1771
0.03 96.27% 91.43% 90.09% 1.1643 5.1671
0.04 95.62% 90.69% 89.41% 0.9620 3.9061
0.05 95.77% 90.69% 89.40% 0.9160 3.2909
0.07 95.24% 89.51% 87.91% 0.7540 2.5635
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Table 11. In this table, we measure the impact of increasing curvature regularization (γ) on accuracy, empirical robust accuracy, certified
robust accuracy, CROWN-general and CRC when the network is trained without any adversarial training. We find that adding a very small
amount of curvature regularization has a minimal impact on the accuracy but significantly increases CRC. Increase in CROWN certificate
is not of similar magnitude. Somewhat surprisingly, we observe that even without any adversarial training, we can get nontrivial certified
accuracies of 84.73%,88.66%,89.61% on 2,3,4 layer sigmoid networks respectively.

Network γ
Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate (mean)

CROWN CRC

2 × [1024], sigmoid

0. 98.37% 76.28% 54.17% 0.28395 0.48500
0.005 97.96% 88.65% 82.68% 0.36125 0.83367
0.01 98.08% 88.82% 83.53% 0.32548 0.84719
0.02 97.88% 88.90% 83.68% 0.34744 0.86632
0.03 97.73% 89.28% 84.73% 0.35387 0.90490

2 × [1024], tanh

0. 98.34% 79.10% 14.42% 0.23938 0.40047
0.005 98.01% 89.95% 85.70% 0.27262 0.89672
0.01 97.99% 90.17% 86.18% 0.28647 0.93819
0.02 97.64% 90.13% 86.40% 0.30075 0.99166
0.03 97.52% 89.96% 86.22% 0.30614 0.98771

3 × [1024], sigmoid

0. 98.37% 85.19% 0.00% 0.24644 0.06874
0.005 97.98% 91.93% 88.66% 0.38030 0.99044
0.01 97.71% 91.49% 88.33% 0.39799 1.07842
0.02 97.50% 91.34% 88.38% 0.38091 1.08396
0.03 97.16% 91.10% 88.63% 0.41015 1.15505
0.04 97.03% 90.96% 88.48% 0.42704 1.18073
0.05 96.76% 90.65% 88.30% 0.43884 1.19296

3 × [1024], tanh

0. 97.91% 77.40% 0.00% 0.08174 0.01169
0.005 97.45% 91.32% 88.57% 0.28196 0.95367
0.01 97.29% 90.98% 88.31% 0.31237 1.05915
0.02 97.04% 90.21% 87.77% 0.30901 1.08607
0.03 96.88% 90.02% 87.52% 0.34148 1.11717
0.04 96.53% 89.61% 86.87% 0.36583 1.11307
0.05 96.31% 89.25% 86.26% 0.38519 1.11689

4 × [1024], sigmoid

0. 98.39% 83.27% 0.00% 0.19501 0.00454
0.01 97.41% 91.71% 89.61% 0.40620 1.05323
0.02 96.47% 90.03% 87.77% 0.45074 1.14219
0.03 96.24% 90.40% 88.14% 0.47961 1.30671
0.04 95.65% 89.61% 87.54% 0.49987 1.35129
0.05 95.36% 89.10% 87.09% 0.51187 1.36064
0.07 95.23% 88.03% 85.93% 0.54754 1.27948

4 × [1024], tanh

0. 97.65% 69.20% 0.00% 0.03554 0.00028
0.01 96.52% 89.38% 86.40% 0.34778 0.97365
0.02 96.09% 88.79% 86.09% 0.41662 1.10860
0.03 95.74% 88.36% 85.65% 0.44981 1.17400
0.04 95.10% 87.50% 84.74% 0.48356 1.21957
0.05 95.14% 87.72% 84.77% 0.49113 1.25076
0.07 94.34% 86.67% 83.90% 0.49750 1.24198
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