
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Second-Order Provable Defenses against Adversarial Attacks

Appendix

A. Related work
Many defenses have been proposed to make neural networks
robust against adversarial examples. These methods can be
classified into empirical defenses which empirically seem
to be robust against known adversarial attacks, and certified
defenses, which are provably robust against such attacks.

Empirical defenses The best known empirical defense is
adversarial training (Kurakin et al., 2016; Madry et al., 2018;
Zhang et al., 2019b). In this method, a neural network is
trained to minimize the worst-case loss over a region around
the input. Although such defenses seem to work on existing
attacks, there is no guarantee that a more powerful attack
would not break them. In fact, most such defenses proposed
in the literature were later broken by stronger attacks (Atha-
lye & Carlini, 2018; Athalye et al., 2018; Carlini & Wagner,
2017; Uesato et al., 2018). To end this arms race between
defenses and attacks, a number of works have tried to focus
on certified defenses that have formal robustness guarantees.

Certified defenses A classifier is said to be certifiably ro-
bust if one can easily obtain a guarantee that a classifier’s
prediction remains constant within some region around the
input. Such defenses typically rely on certification methods
which are either exact or conservative. Exact methods report
whether or not there exists a adversarial perturbation inside
some lp norm ball. In contrast, conservative methods either
certify that no adversarial perturbation exists or decline to
make a certification; they may decline even when no such
perturbation exists. Exact methods are usually based on
Satisfiability Modulo Theories (Carlini et al., 2017; Ehlers,
2017; Huang et al., 2016; Katz et al., 2017) and Mixed In-
teger linear programming (Bunel et al., 2017; Cheng et al.,
2017; Dutta et al., 2018; Fischetti & Jo, 2018; Lomuscio
& Maganti, 2017). Unfortunately, they are computation-
ally inefficient and difficult to scale up to even moderately
sized neural networks. In contrast, conservative methods
are more scalable and efficient which makes them useful for
building certified defenses (Croce et al., 2018; Dvijotham
et al., 2018a;b; Gehr et al., 2018; Gowal et al., 2018; Mir-
man et al., 2018; Raghunathan et al., 2018a;b; Singh et al.,
2018; Wang et al., 2018a;b; Weng et al., 2018; Wong &
Kolter, 2017; Wong et al., 2018; Zhang et al., 2018b). How-
ever, even these methods have not been shown to scale to

practical networks that are large and expressive enough to
perform well on ImageNet, for example. To scale to such
large networks, randomized smoothing has been proposed
as a probabilistically certified defense.

Randomized smoothing Randomized smoothing was pre-
viously proposed by several works (Cao & Gong, 2017; Liu
et al., 2017) as a empirical defense without any formal guar-
antees. (Lécuyer et al., 2018) first proved robustness guaran-
tees for randomized smoothing classifier using inequalities
from differential privacy. (Li et al., 2018) improved upon the
same using tools from information theory. Recently, (Cohen
et al., 2019) provided a even tighter robustness guarantee
for randomized smoothing. (Salman et al., 2019) proposed
a method of adversarial training for the randomized smooth-
ing classifier giving state of the art results in the l2 norm
metric.

B. The Attack problem
For a given input x(0) with true label y and attack target t,
consider the attack problem. We are given that the eigen-
values of the Hessian ∇2

x(z
(L)
y − z

(L)
t) are bounded below

i.e:
mI ≼ ∇2

x (z(L)y − z
(L)
t) ∀x ∈ RD

Here m < 0 (since z
(L)
y − z

(L)
t is not convex in general).

The goal here is to find an adversarial example inside a l2
ball of radius ρ such that (z(L)y − z

(L)
t)(x) is minimized.

That is, we want to solve the following optimization:

p∗attack = min
∥x−x(0)∥≤ρ

[(z(L)y − z
(L)
t) (x)]

=min
x

max
η≥0

[(z(L)y − z
(L)
t) (x) + η

2
(∥x − x(0)∥

2
− ρ2)]

(1)

This optimization can be hard in general. Using the max-
min inequality (primal ≥ dual), we have:

p∗attack ≥max
η≥0

dattack(η)

dattack(η) =min
x

[(z(L)y − z
(L)
t) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)] (2)

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Second-Order Provable Defenses against Adversarial Attacks

We know that for every η ≥ 0, dattack(η) gives a lower
bound to the primal solution p∗attack. But solving dattack(η)
for any η ≥ 0 can be hard unless the objective is convex.
We prove that if the eigenvalues of the Hessian are bounded
below i.e:

mI ≼ ∇2
x (z(L)y − z

(L)
t) ∀x ∈ RD

In general m < 0, since (z(L)y − z
(L)
t) is non-convex.

dattack(η) is a convex optimization problem for −m ≤ η.
Equivalently the objective function, i.e the function inside
the minx:

[(z(L)y − z
(L)
t) (x) + η

2
(∥x − x(0)∥

2
− ρ2)]

is a convex function in x for −m ≤ η.
The Hessian of the above function is given by:

∇2
x (z(L)y − z

(L)
t) + ηI

Since we know that eigenvalues of ∇2
x(z

(L)
y − z

(L)
t) ≽mI,

we know that eigenvalues of the above Hessian are ≥ η +m.
For η ≥ −m, the eigenvalues are positive implying that the
objective function is convex.

Since dattack(η) gives a lower bound to p∗attack for every
η ≥ 0, we get the following result:

p∗attack ≥ d∗attack where d∗attack = max
−m≤η

dattack(η) (3)

Note that if x(attack) is the solution to d∗attack such that:
∥x(attack) − x(0)∥ = ρ, by the definition of d∗attack:

d∗attack = (z(L)y − z
(L)
t) (x(attack))

But then by the definition of p∗attack, p
∗

attack ≤ d∗attack,
implying that the duality gap is zero, i.e p∗attack = d∗attack.
This procedure leads to the Theorem 2.

C. Implementation Details
C.1. Computing the derivative of largest singular value

Our objective is to compute derivative of the largest singular
value, i.e ∥W(I)∥ with respect to W(I). Let u(I),v(I)

be the singular vectors such that W(I)v(I) = ∥W(I)∥u(I).
Then the derivative is given by:

∇W(I)∥W(I)∥ = u(I) (v(I))
T

v(I), ∥W(I)∥2 can be computed by running power itera-
tion on (W(I))T W(I). u(I) can be computed using the
identity:

u(I) = W(I)v(I)

γ(I)

We use 25 iterations of the power method to compute the
above quantities.

C.2. Update equation for the certificate problem

Our goal is to minimize ∥x − x(0)∥ such that

(z(L)y − z
(L)
t) (x) = 0. We know that the Hessian

satisfies the following LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t) ≼MI (4)

K is given by Theorem 4 for neural network of any depth
(L ≥ 2). For 2 layer networks, M and m are given by
Theorem 3. But for deeper networks (L ≥ 3), M = K,
m = −K. In either case, K ≥ max(∣m∣, ∣M ∣). Thus, we
also have:

−KI ≼ ∇2
x (z(L)y − z

(L)
t) ≼KI (5)

We will solve the dual (d∗cert) of the attack problem (p∗cert).

The primal problem (p∗cert) is given by:

p∗cert = min
z
(L)
y (x)=z

(L)
t (x)

[1
2
∥x − x(0)∥

2
]

p∗cert =min
x

max
η

[1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t) (x)]

Using inequality (4) and Theorem 1 part (a), we know that
the dual of the above problem is convex when −1/M ≤ η ≤
−1/m.

The corresponding dual problem (d∗cert) is given by:

d∗cert = max
−1/M≤η≤−1/m

dcert(η)

dcert(η) =min
x

[1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t) (x)]

For a given η, we have the following optimization:

dcert(η) =min
x

[1
2
∥x − x(0)∥2 + η (z(L)y − z

(L)
t) (x)]

We will use majorization-minimization to solve this opti-
mization.

At a point x(k), we aim to solve for the point x(k+1) that
decreases the objective function. Using the Taylor’s theorem
at point x(k), we have:

(z(L)y − z
(L)
t) (x)

= (z(L)y − z
(L)
t) (x(k)) + (g(k))

T (x − x(k))

+ 1

2
(x − x(k))

T
H(ξ) (x − x(k))

where g(k) is the gradient of (z(L)y −z(L)t) at x(k) and H(ξ)

is the Hessian at a point ξ on the line connecting x and x(k).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Second-Order Provable Defenses against Adversarial Attacks

Multiplying both sides by η, we get the following equation:

η (z(L)y − z
(L)
t) (x)

= η (z(L)y − z
(L)
t) (x(k)) + η (g(k))

T (x − x(k))

+ η
2
(x − x(k))

T
H(ξ) (x − x(k)) (6)

Using inequality (5), we know that −KI ≼ H(ξ) ≼
KI ∀ξ ∈ RD,

η

2
(x − x(k))

T
H(ξ) (x − x(k)) ≤ ∣ηK ∣

2
∥x − x(k)∥

2
(7)

Using equation (6) and inequality (7):

η (z(L)y − z
(L)
t) (x)

≤ [η (z(L)y − z
(L)
t) (x(k)) + η (g(k))

T
(x − x(k))

+ ∣ηK ∣
2

∥x − x(k)∥
2
]

Adding 1/2∥x − x(0)∥2 to both sides, we get the following
inequality:

1

2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t) (x)

≤ [1
2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t) (x(k))

+ η (g(k))
T
(x − x(k)) + ∣ηK ∣

2
∥x − x(k)∥

2
]

LHS is the objective function of dcert(η) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

∇x[
1

2
∥x − x(0)∥

2
+ η (z(L)y − z

(L)
t) (x(k))

+ η (g(k))
T
(x − x(k)) + ∣ηK ∣

2
∥x − x(k)∥

2
] = 0

x − x(0) + ηg(k) + ∣ηK ∣ (x − x(k)) = 0

(1 + ∣ηK ∣)x − x(0) + ηg(k) − ∣ηK ∣x(k) = 0

x = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0))

This gives the following iterative equation:

x(k+1) = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0)) (8)

C.3. Update equation for the attack problem

Our goal is to minimize z
(L)
y − z

(L)
t within an l2 ball of

radius of ρ. We know that the Hessian satisfies the following
LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t) ≼MI (9)

K is given by Theorem 4 for neural network of any depth
(L ≥ 2). For 2 layer networks, M and m are given by
Theorem 3. But for deeper networks (L ≥ 3), M = K,
m = −K. In either case, K ≥ max(∣m∣, ∣M ∣). Thus, we
also have:

−KI ≼ ∇2
x (z(L)y − z

(L)
t) ≼KI (10)

We solve the dual (d∗attack) of the attack problem (p∗attack)
for the given radius ρ.

The primal problem (p∗attack) is given by:

p∗attack = min
∥x−x(0)∥≤ρ

z(L)y − z
(L)
t

p∗attack =min
x

max
η≥0

[z(L)y − z
(L)
t + η

2
(∥x − x(0)∥

2
− ρ2)]

Using inequality (9) and Theorem 2 part (a), we know that
the dual of the above problem is convex when −m ≤ η.

The corresponding dual problem (d∗cert) is given by:

d∗attack = max
η≥−m

dattack(η)

where dattack(η) is given as follows:

dattack(η) =min
x

[(z(L)y − z
(L)
t) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

For a given η, we have the following optimization:

dattack(η) =min
x

[(z(L)y − z
(L)
t) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

We will use majorization-minimization to solve this opti-
mization.

At a point x(k), we have to solve for the point x(k+1) that
decreases the objective function. Using the Taylor’s theorem
at point x(k), we have:

(z(L)y − z
(L)
t) (x)

= (z(L)y − z
(L)
t) (x(k)) + (g(k))

T (x − x(k))

+ 1

2
(x − x(k))

T
H(ξ) (x − x(k)) (11)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Second-Order Provable Defenses against Adversarial Attacks

where g(k) is the gradient of (z(L)y −z(L)t) at x(k) and H(ξ)

is the Hessian at a point ξ on the line connecting x and x(k).

Using inequality (10), we know that −KI ≼ H(ξ) ≼
KI ∀ξ ∈ RD,

1

2
(x − x(k))

T
H(ξ) (x − x(k)) ≤ K

2
∥x − x(k)∥

2
(12)

Using equation (11) and inequality (12):

(z(L)y − z
(L)
t) (x)

≤ [(z(L)y − z
(L)
t) (x(k))

+ (g(k))
T (x − x(k)) + K

2
∥x − x(k)∥

2
]

Adding η/2(∥x − x(0)∥2 − ρ2) to both sides, we get the
following inequality:

(z(L)y − z
(L)
t) (x) + η

2
(∥x − x(0)∥

2
− ρ2)

≤ [(z(L)y − z
(L)
t) (x(k)) + (g(k))

T (x − x(k))

+ K
2

∥x − x(k)∥
2
+ η
2
(∥x − x(0)∥

2
− ρ2)]

LHS is the objective function of dattack(η) and RHS is an
upper bound. In majorization-minimization, we minimize
an upper bound on the objective function. Thus we set the
gradient of RHS with respect to x to zero and solve for x:

∇x[(z(L)y − z
(L)
t) (x(k)) + (g(k))

T (x − x(k))

+ K
2

∥x − x(k)∥
2
+ η
2
(∥x − x(0)∥

2
− ρ2)] = 0

Rearranging the above equation, we get:

g(k) +K (x − x(k)) + η (x − x(0)) = 0

(K + η)x + g(k) −Kx(k) − ηx(0) = 0

x = −(K + η)−1 (g(k) −Kx(k) − ηx(0))

This gives the following iterative equation:

x(k+1) = −(K + η)−1 (g(k) −Kx(k) − ηx(0)) (13)

C.4. Algorithm to compute the certificate

We start with the following initial values of
x, η, ηmin, ηmax:

ηmin = −1/M, ηmax = −1/m

η = 1

2
(ηmin + ηmax), x = x(0)

To solve the dual for a given value of η, we run 20 iterations
of the following update (derived in Appendix C.2):

x(k+1) = −(1 + ∣ηK ∣)−1 (ηg(k) − ∣ηK ∣x(k) − x(0))

To maximize the dual dcert(η) over η in the range
[−1/M, −1/m], we use a bisection method: If the solution
x for a given value of η, (z(L)y −z(L)t)(x) > 0, set ηmin = η,
else set ηmax = η. Set the new η = (ηmin + ηmax)/2 and
repeat. The maximum number of updates to η are set to 30.
This method satisfied linear convergence. The routine to
compute the certificate example is given in Algorithm 1.

Algorithm 1 Certificate optimization

Require: input x(0), label y, target t
m,M,K ← compute bounds(z(L)y − z

(L)
t)

ηmin ← −1/M
ηmax ← −1/m
η ← 1/2(ηmin + ηmax)
x← x(0)

for i in [1, . . . ,30] do
for j in [1, . . . ,20] do
g ← compute gradient(z(L)y − z

(L)
t ,x)

if ∥ηg + (x − x(0))∥ < 10−5 then
break

end if
x← −(1 + ∣ηK ∣)−1 (ηg − ∣ηK ∣x − x(0))

end for
if (z(L)y − z

(L)
t)(x) > 0 then

ηmin ← η
else
ηmax ← η

end if
η ← (ηmin + ηmax)/2

end for
return x

C.5. Algorithm to compute the attack

We start with the following initial values of
x, η, ηmin, ηmax:

ηmin = −m, ηmax = 20(1 −m)

η = 1

2
(ηmin + ηmax), x = x(0)

To solve the dual for a given value of η, we run 20 iterations
of the following update (derived in Appendix C.3):

x(k+1) = −(K + η)−1 (g(k) −Kx(k) − ηx(0))

To maximize the dual dcert(η) over η in the range
[−m, 20(1 −m)], we use a bisection method: If the so-
lution x for a given value of η, ∥x−x(0)∥ ≤ ρ, set ηmax = η,

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Second-Order Provable Defenses against Adversarial Attacks

else set ηmin = η. Set new η = (ηmin + ηmax)/2 and repeat.
The maximum number of updates to η are set to 30. This
method satisfied linear convergence. The routine to compute
the attack example is given in Algorithm 2.

Algorithm 2 Attack optimization

Require: input x(0), label y, target t , radius ρ
m,M,K ← compute bounds(z(L)y − z

(L)
t)

ηmin ← −m
ηmax ← 20(1 −m)
η ← 1/2(ηmin + ηmax)
x← x(0)

for i in [1, . . . ,30] do
for j in [1, . . . ,20] do
g ← compute gradient(z(L)y − z

(L)
t ,x)

if ∥g + η(x − x(0))∥ < 10−5 then
break

end if
x← −(K + η)−1 (g −Kx − ηx(0))

end for
if ∥x − x(0)∥ < ρ then
ηmax ← η

else
ηmin ← η

end if
η ← (ηmin + ηmax)/2

end for
return x

C.6. Computing certificate using local curvature
bounds

To compute the robustness certificate in a local region
around the input, we first compute the certificate using the
global bounds on the curvature. Using the same certificate
as the initial l2 radius of the safe region, we can refine our
certificate. Due to the reduction in curvature, this will surely
increase the value of the certificate. We then use the new
robustness certificate as the new l2 radius of the safe region
and repeat. We iterate over this process 5 times to compute
the local version of our robustness certificate.

To ensure that the optimization trajectory does not escape
the safe region, whenever the gradient descent step lies
outside the ”safe” region, we reduce the step size by a factor
of two until it lies inside the region.

D. Summary Table comparing out
certification method against existing
methods

Table 1 provides a summary table comparing our certifica-
tion method against the existing methods.

E. Proofs
E.1. Proof of Theorem 1

(a)

dcert(η) =min
x

[1
2
∥x − x(0)∥

2

+ η (z(L)y (x) − z
(L)
t (x))]

∇2
x[

1

2
∥x − x(0)∥

2
+ η (z(L)y (x) − z

(L)
t (x))]

= I + η∇2
x (z(L)y − z

(L)
t)

We are given that the Hessian ∇2
x(z

(L)
y −z(L)t) satisfies

the following LMIs:

mI ≼ ∇2
x (z(L)y − z

(L)
t) ≼MI ∀x ∈ Rn

The eigenvalues of I + η∇2
x(z

(L)
y − z

(L)
t) are bounded

between:

(1 + ηM, 1 + ηm), if η < 0

(1 + ηm, 1 + ηM), if η > 0

We are given that η satisfies the following inequalities
where m < 0,M > 0 since (z(L)y − z

(L)
t) is neither

convex, nor concave as a function of x:

−1
M

≤ η ≤ −1
m
, m < 0,M > 0

We have the following inequalities:

1 + ηM ≥ 0, 1 + ηm ≥ 0

Thus, I + η∇2
x(z

(L)
y − z

(L)
t) is a PSD matrix for all

x ∈ RD when −1/M ≤ η ≤ −1/m .
Thus 1/2∥x − x(0)∥2 + η(z(L)y − z

(L)
t)(x) is a convex

function in x and dcert(η) is a convex optimization
problem.

(b) For every value of η, dcert(η) is a lower bound for
p∗cert. Thus d∗cert = max−1/M≤ η ≤−1/m dcert(η) is a
lower bound for p∗cert, i.e:

d∗cert ≤ p∗cert (14)

Let η(cert),x(cert) be the solution of the above dual
optimization (d∗cert) such that

z(L)y (x(cert)) = z
(L)
t (x(cert)) (15)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Second-Order Provable Defenses against Adversarial Attacks

Table 1. Comparison of methods for providing provable robustness certification. Note that (Cohen et al., 2019) is a probabilistic certificate.
Method Non-trivial

bound
Multi-
layer

Activation
functions Norm

(Szegedy et al., 2014) 7 3 All l2

(Katz et al., 2017) 3 3 ReLU l∞

(Hein & Andriushchenko, 2017) 3 7 Differentiable l2

(Raghunathan et al., 2018a) 3 7 ReLU l∞

(Wong & Kolter, 2017) 3 3 ReLU l∞

(Weng et al., 2018) 3 3 ReLU l1, l2, l∞

(Zhang et al., 2018b) 3 3 All l1, l2, l∞

(Cohen et al., 2019) 3 3 All l2

Ours 3 3 Differentiable l2

d∗cert is given by the following:

d∗cert = [1
2
∥x(cert) − x(0)∥

2

+ η(cert) (z(L)y (x(cert)) − z
(L)
t (x(cert)))

´¹¹¸¹¹¹¶
=0

]

Since we are given that z(L)y (x(cert)) = z
(L)
t (x(cert)),

we get the following equation for d∗cert:

d∗cert =
1

2
∥x(cert) − x(0)∥

2
(16)

Since p∗cert is given by the following equation:

p∗cert = min
z
(L)
y (x)=z

(L)
t (x)

[1
2
∥x − x(0)∥

2
] (17)

Using equations (15) and (17), p∗cert is the minimum
value of 1/2∥x − x(0)∥2 ∀x ∶ z(L)y (x) = z

(L)
t (x):

p∗cert ≤
1

2
∥x(cert) − x(0)∥

2
(18)

From equation (16), we know that d∗cert =
1/2∥x(cert) − x(0)∥2. Thus, we get:

p∗cert ≤ d∗cert (19)

Using equation (14) we have d∗cert ≤ p∗cert and using
(19), p∗cert ≤ d∗cert

p∗cert = d∗cert

E.2. Proof of Theorem 2

(a)

dattack(η) =min
x

[(z(L)y − z
(L)
t) (x)

+ η
2
(∥x − x(0)∥

2
− ρ2)]

∇2
x[(z(L)y − z

(L)
t) (x) + η

2
∥x − x(0)∥

2
]

= ∇2
x (z(L)y − z

(L)
t) + ηI

Since the Hessian ∇2
x(z

(L)
y − z

(L)
t) is bounded below:

mI ≼ ∇2
x (z(L)y − z

(L)
t) ∀x ∈ Rn

The eigenvalues of ∇2
x(z

(L)
y − z

(L)
t) + ηI are bounded

below:

(m + η)I ≼ ∇2
x (z(L)y − z

(L)
t) + ηI

Since η ≥ −m.
η +m ≥ 0

Thus ∇2
x(z

(L)
y − z

(L)
t) + ηI is a PSD matrix for all

x ∈ RD when η ≥ −m.
Thus (z(L)y − z

(L)
t)(x) + η/2(∥x − x(0)∥2 − ρ2) is a

convex function in x and dattack(η) is a convex opti-
mization problem.

(b) For every value of η, dattack(η) is a lower bound
for p∗attack. Thus d∗attack = max−m≤η dattack(η) is
a lower bound for p∗attack:

d∗attack ≤ p∗attack (20)

Let η(attack),x(attack) be the solution of the above
dual optimization (d∗attack) such that

∥x(attack) − x(0)∥ = ρ (21)

d∗attack is given by the following:

d∗attack = [(z(L)y − z
(L)
t) (x(attack)) (22)

+ η
(attack)

2
(∥x(attack) − x(0)∥

2
− ρ2)

´¹¹¸¹¹¶
=0

]

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Second-Order Provable Defenses against Adversarial Attacks

Since we are given that ∥x(attack) − x(0)∥ = ρ, we get
the following equation for d∗attack:

d∗attack = (z(L)y − z
(L)
t) (x(attack)) (23)

Since p∗attack is given by the following equation:

p∗attack = min
∥x−x(0)∥≤ρ

[(z(L)y − z
(L)
t) (x)] (24)

Using equations (21) and (24), p∗attack is the minimum
value of (z(L)y − z

(L)
t)(x) ∀ ∥x − x(0)∥ ≤ ρ:

p∗attack ≤ (z(L)y − z
(L)
t) (x(attack)) (25)

From equation (23), we know that d∗attack = (z(L)y −
z
(L)
t)(x(attack)). Thus, we get:

p∗attack ≤ d∗attack (26)

Using equation (20) we have d∗attack ≤ p∗attack and
using (26), p∗attack ≤ d∗attack

p∗attack = d∗attack

E.3. Proof of Lemma 1

We have to prove that for an L layer neural network, the
hessian of the ith hidden unit in the Lth layer with respect
to the input x, i.e ∇2

xz
(L)
i is given by the following formula:

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

(27)

where B(I), I ∈ [L] is a matrix of size NI ×D defined as
follows:

B(I) = [∇xz
(I)
1 ,∇xz

(I)
2 , . . . ,∇xz

(I)
NI

]
T

(28)

and F(L,I), I ∈ [L− 1] is a matrix of size NL ×NI defined
as follows:

F(L,I) = [∇a(I)z
(L)
1 ,∇a(I)z

(L)
2 , . . . ,∇a(I)z

(L)
NL

]
T

(29)

∇2
xz
(L)
i can be written in terms of the activations of the

previous layer using the following formula:

∇2
xz
(L)
i =

NI−1

∑
j=1

W
(L)
i,j (∇2

xa
(L−1)
j) (30)

Using the chain rule of the Hessian and a(I) = σ(z(I)), we
can write ∇2

xa
(L−1)
j in terms of ∇xz

(L−1)
j and ∇2

xz
(L−1)
j as

the following:

∇2
xa
(L−1)
j = σ

′′

(z(L−1)j) (∇xz
(L−1)
j) (∇xz

(L−1)
j)

T

+ σ
′

(z(L−1)j) (∇2
xz
(L−1)
j) (31)

Replacing ∇2
xa
(L−1)
j using equation (31) into equation (30),

we get:

∇2
x (z(L)i) =

NL−1

∑
j=1

W
(L)
i,j [σ

′′

(z(L−1)j) (∇xz
(L−1)
j) (∇xz

(L−1)
j)

T

+ σ
′

(z(L−1)j) (∇2
xz
(L−1)
j)]

∇2
x (z(L)i) = (32)

NL−1

∑
j=1

W
(L)
i,j σ

′′

(z(L−1)j) (∇xz
(L−1)
j) (∇xz

(L−1)
j)

T

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j) (∇2
xz
(L−1)
j) (33)

For each I ∈ [2, L], i ∈ NI , we define the matrix A
(I)
i as

the following:

∇2
x (z(I)i)

=
NI−1

∑
j=1

W
(I)
i,j σ

′′

(z(I−1)j) (∇xz
(I−1)
j) (∇xz

(I−1)
j)

T

´¹¹¹¸¹¹¶
A
(I)
i

+
NI−1

∑
j=1

W
(I)
i,j σ

′

(z(I−1)j) (∇2
xz
(I−1)
j) (34)

A
(I)
i =

NI−1

∑
j=1

W
(I)
i,j σ

′′

(z(I−1)j) (∇xz
(I−1)
j) (∇xz

(I−1)
j)

T

(35)

Substituting A
(L)
i using equation (35) into equation (33),

we get:

∇2
x (z(L)i) =A

(L)
i +

NI−1

∑
j=1

W
(I)
i,j σ

′

(z(I−1)j) (∇2
xz
(I−1)
j)

(36)

We first simplify the expression for A
(L)
i . Note

that A
(L)
i is a sum of symmetric rank one ma-

trices (∇xz
(L−1)
j) (∇xz

(L−1)
j)

T
with the coefficient

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Second-Order Provable Defenses against Adversarial Attacks

W
(L)
i,j σ

′′ (z(L−1)j) for each j. We create a diagonal ma-

trix for the coefficients and another matrix B(L−1) such that
each jth row of B(L−1) is the vector ∇xz

(L−1)
j . This leads

to the following equation:

A
(L)
i =

NL−1

∑
j=1

W
(L)
i,j σ

′′

(z(L−1)j) (∇xz
(L−1)
j) (∇xz

(L−1)
j)

T

= (B(L−1))
T
diag (W(L)

i ⊙ σ
′′

(z(L−1)))B(L−1)

(37)

B(I) where I ∈ [L] is a matrix of size NI ×D defined as
follows:

B(I) = [∇xz
(I)
1 ,∇xz

(I)
2 , . . . ,∇xz

(I)
NI

]
T

, I ∈ [L]

Thus B(I) is the jacobian of z(I) with respect to the input
x.
Using the chain rule of the gradient, we have the following
properties of B(I):

B(1) =W(1) (38)

B(I) =W(I)diag (σ
′

(z(I−1)))B(I−1) (39)

Similarly, F(I,J) where I ∈ [L], J ∈ [I − 1] is a matrix of
size NI ×NJ defined as follows:

F(I,J) = [∇a(J)z
(I)
1 ,∇a(J)z

(I)
2 , . . . ,∇a(J)z

(I)
NI

]
T

Thus F(I,J) is the jacobian of z(I) with respect to the acti-
vations a(J).
Using the chain rule of the gradient, we have the following
properties for F(L,I):

F(L,L−1) =W(L) (40)

F(L,I) =W(L)diag (σ
′

(z(L−1)))F(L−1,I) (41)

Recall that in our notation: For a matrix E, Ei denotes the
column vector constructed by taking the transpose of the ith

row of the matrix E. Thus ith row of W(L) is (W(L)
i)

T

and F(L,I) is (F(L,I)i)
T

. Equating the ith rows in equation
(41), we get:

(F(L,I)i)
T
= (W(L)

i)
T
diag (σ

′

(z(L−1)))F(L−1,I)

Taking the transpose of both the sides and expressing the
RHS as a summation, we get:

F
(L,I)
i = ((W(L)

i)
T
diag (σ

′

(z(L−1)))F(L−1,I))
T

F
(L,I)
i =

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j)F(L−1,I)j (42)

Substituting W(L) using equation (40) into equation (37),
we get:

A
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

(43)

Substituting A
(L)
i using equation (43) into (36), we get:

∇2
xz
(L)
i =

[(B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j) (∇2
xz
(L−1)
j)] (44)

Thus, equation (44) allows us to write the hessian of ith unit
at layer L, i.e (∇2

xz
(L)
i) in terms of the hessian of jth unit

at layer L − 1, i.e (∇2
xz
(L−1)
j).

We will prove the following using induction:

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag (F(L,I)i ⊙ σ

′′

(z(I)))B(I)

(45)

Note that for L = 2,∇2
xz
(L−1)
j = 0, ∀j ∈ N1. Thus using

(44) we have:

∇2
xz
(2)
i = (B(1))

T
diag (F(2,1)i ⊙ σ

′′

(z(1)))B(1)

Hence the induction hypothesis (45) is true for L = 2.
Now we will assume (45) is true for L − 1. Thus we have:

∇2
xz
(L−1)
j

=
L−2

∑
I=1

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)

∀j ∈ NL−1 (46)

We will prove the same for L.
Using equation (44), we have:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j) (∇2
xz
(L−1)
j)

In the next set of steps, we will be working
with the second term of the above equation, i.e:
∑NL−1

j=1 W
(L)
i,j σ

′(z(L−1)j)(∇2
xz
(L−1)
j)

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Second-Order Provable Defenses against Adversarial Attacks

Substituting ∇2
xz
(L−1)
j using equation (46) we get:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j) [(47)

L−2

∑
I=1

(B(I))diag (F(L−1,I)j ⊙ σ
′′

(z(I))) (B(I))
T
]

Combining the two summations in the second term, we get:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
NL−1

∑
j=1

L−2

∑
I=1

[W(L)
i,j σ

′

(z(L−1)j)

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)]

Exchanging the summation over I and summation over j:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j) [

(B(I))
T
diag (F(L−1,I)j ⊙ σ

′′

(z(I)))B(I)]

Since B(I) is independent of j, we take it out of the sum-
mation over j:

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
[

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j)diag (F(L−1,I)j ⊙ σ
′′

(z(I)))]B(I)

Using the property, α (diag(u)) + β (diag(v)) =
diag (αu + βv) ∀α,β ∈ R,u,v ∈ Rn; we can move the
summation inside the diagonal:

∇2
xz
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag[

NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j)(F(L−1,I)j ⊙ σ
′′

(z(I)))]B(I)

Since σ
′′ (z(I)) is independent of j, we can take it out of

the summation over j:

∇2
xz
(L)
i = (B(L−1))

T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag[

(
NL−1

∑
j=1

W
(L)
i,j σ

′

(z(L−1)j)F(L−1,I)j)⊙ σ
′′

(z(I))]B(I)

Using equation (42), we can replace
∑NL−1

j=1 W
(L)
i,j σ

′ (z(L−1)j)F(L−1,I)j with F
(L,I)
i :

∇2
xz
(L)
i

= (B(L−1))
T
diag (F(L,L−1)i ⊙ σ

′′

(z(L−1)))B(L−1)

+
L−2

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

E.4. Proof of Theorem 3

Using Lemma 1, we have the following formula for
∇2

x (z(2)y − z
(2)
t):

∇2
x (z(2)y − z

(2)
t)

= (W(1))T diag((W(2)
y −W

(2)
t)⊙ σ

′′

(z(1)))W(1)

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i)σ

′′

(z(1)i)W(1)
i (W(1)

i)T (48)

We are also given that the activation function σ satisfies the
following property:

hL ≤ σ
′′

(x) ≤ hU ∀x ∈ R (49)

(a) We have to prove the following linear matrix inequali-
ties (LMIs):

N ≼ ∇2
x (z(2)y − z

(2)
t) ≼ P ∀x ∈ RD (50)

where P and N are given as following:

P =
N1

∑
i=1

pi (W(2)
y,i −W

(2)
t,i)W

(1)
i (W(1)

i)
T

(51)

N =
N1

∑
i=1

ni (W(2)
y,i −W

(2)
t,i)W

(1)
i (W(1)

i)
T

(52)

pi =
⎧⎪⎪⎨⎪⎪⎩

hU , W
(2)
y,i −W

(2)
t,i ≥ 0

hL, W
(2)
y,i −W

(2)
t,i ≤ 0

⎫⎪⎪⎬⎪⎪⎭
,

ni =
⎧⎪⎪⎨⎪⎪⎩

hL, W
(2)
y,i −W

(2)
t,i ≥ 0

hU , W
(2)
y,i −W

(2)
t,i ≤ 0

⎫⎪⎪⎬⎪⎪⎭
(53)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Second-Order Provable Defenses against Adversarial Attacks

We first prove: N ≼ ∇2
x (z(2)y − z

(2)
t) ∀x ∈ RD:

We substitute ∇2
x (z(2)y − z

(2)
t) and N from equations

(48) and (52) respectively in ∇2
x (z(2)y − z

(2)
t) −N:

∇2
x (z(2)y − z

(2)
t) −N

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i) (σ

′′

(z(1)i) − ni)W(1)
i (W(1)

i)
T

Thus ∇2
x (z(2)y − z

(2)
t) −N is a weighted sum of sym-

metric rank one matrices i.e, W(1)
i (W(1)

i)
T

and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W(2)

y,i −W
(2)
t,i) (σ′′ (z(1)i) − ni) is positive.

Using equations (49) and (53), we have the following:

(W(2)
y,i −W

(2)
t,i) ≥ 0 Ô⇒ ni = hL

Ô⇒ (σ
′′

(z(1)i) − ni) ≥ 0 ∀i ∈ [N1], ∀x ∈ RD

(W(2)
y,i −W

(2)
t,i) ≤ 0 Ô⇒ ni = hU

Ô⇒ (σ
′′

(z(1)i) − ni) ≤ 0 ∀i ∈ [N1], ∀x ∈ RD

Putting the above results together we have:

(W(2)
y,i −W

(2)
t,i) (σ

′′

(z(1)i) − ni) ≥ 0

∀i ∈ [N1], ∀x ∈ RD (54)

Thus ∇2
x (z(2)y − z

(2)
t) −N is a PSD matrix i.e:

∇2
x (z(2)y − z

(2)
t) −N

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i) (σ

′′

(z(1)i) − ni)
´¹¹¸¹¹¹¶

always positive using eq. (54)

W
(1)
i (W(1)

i)
T

Ô⇒ N ≼ ∇2
x (z(2)y − z

(2)
t) ∀x ∈ RD (55)

Now we prove that ∇2
x (z(2)y − z

(2)
t) ≼ P ∀x ∈ RD:

We substitute ∇2
x (z(2)y − z

(2)
t) and P from equations

(48) and (52) respectively in P −∇2
x (z(2)y − z

(2)
t):

P −∇2
x (z(2)y − z

(2)
t)

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i) (pi − σ

′′

(z(1)i))W(1)
i (W(1)

i)T

Thus P −∇2
x (z(2)y − z

(2)
t) is a weighted sum of sym-

metric rank one matrices i.e, W(1)
i (W(1)

i)
T

and it is
PSD if and only if coefficient of each rank one ma-
trix i.e, (W(2)

y,i −W
(2)
t,i) (pi − σ

′′ (z(1)i)) is positive.

Using equations (49) and (53), we have the following:

(W(2)
y,i −W

(2)
t,i) ≥ 0 Ô⇒ pi = hU

Ô⇒ (pi − σ
′′

(z(1)i)) ≥ 0 ∀i ∈ N1, x ∈ RD

(W(2)
y,i −W

(2)
t,i) ≤ 0 Ô⇒ pi = hL

Ô⇒ (pi − σ
′′

(z(1)i)) ≤ 0 ∀i ∈ N1, x ∈ RD

Putting the above results together we have:

Ô⇒ (W(2)
y,i −W

(2)
t,i) (pi − σ

′′

(z(1)i)) ≥ 0

∀i ∈ [N1], x ∈ RD (56)

Thus P −∇2
x (z(2)y − z

(2)
t) is PSD matrix i.e:

P −∇2
x (z(2)y − z

(2)
t)

=
N1

∑
i=1

(W(2)
y,i −W

(2)
t,i) (pi − σ

′′

(z(1)i))
´¹¹¹¸¹¹¹¶

always positive using eq. (56)

W
(1)
i (W(1)

i)
T

Ô⇒ P ≽ ∇2
x (z(2)y − z

(2)
t) ∀x ∈ RD (57)

Thus by proving the LMIs (55) and (57), we prove
(50).

(b) We have to prove that if hU ≥ 0 and hL ≤ 0, P is a
PSD matrix, N is a NSD matrix.
We are given hU ≥ 0, hL ≤ 0. Using equation (53), we
have the following:

(W(2)
y,i −W

(2)
t,i) ≥ 0 Ô⇒ pi = hU ≥ 0

Ô⇒ pi (W(2)
y,i −W

(2)
t,i) ≥ 0

(W(2)
y,i −W

(2)
t,i) ≤ 0 Ô⇒ pi = hL ≤ 0

Ô⇒ pi (W(2)
y,i −W

(2)
t,i) ≥ 0

Putting these results together we have:

Ô⇒ pi (W(2)
y,i −W

(2)
t,i) ≥ 0 ∀i ∈ [N1] (58)

Thus P is a weighted sum of symmetric rank one

matrices i.e, W
(1)
i (W(1)

i)
T

and each coefficient

pi (W(2)
y,i −W

(2)
t,i) is positive.

P =
N1

∑
i=1

pi (W(2)
y,i −W

(2)
t,i)

´¹¹¸¹¹¶
always positive using eq. (58)

W
(1)
i (W(1)

i)
T
≽ 0

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Second-Order Provable Defenses against Adversarial Attacks

Using equation (53), we have the following:

(W(2)
y,i −W

(2)
t,i) ≥ 0 Ô⇒ ni = hL ≤ 0

Ô⇒ ni (W(2)
y,i −W

(2)
t,i) ≤ 0

(W(2)
y,i −W

(2)
t,i) ≤ 0 Ô⇒ ni = hU ≥ 0

Ô⇒ ni (W(2)
y,i −W

(2)
t,i) ≤ 0

Putting these results together we have:

Ô⇒ ni (W(2)
y,i −W

(2)
t,i) ≥ 0 ∀i ∈ [N1] (59)

N =
N1

∑
i=1

ni (W(2)
y,i −W

(2)
t,i)

´¹¹¹¸¹¹¹¶
always positive using eq. (59)

W
(1)
i (W(1)

i)
T
≼ 0

Thus P is a PSD and N is a NSD matrix if hU ≥ 0 and
hL ≤ 0.

(c) We have to prove the following global bounds on the
eigenvalues of ∇2

x(z
(2)
y − z

(2)
t):

mI ≼ ∇2
x (z(2)y − z

(2)
t) ≼MI,

where M = max
∥v∥=1

vTPv, m = min
∥v∥=1

vTNv

Since ∇2
x (z(2)y − z

(2)
t) ≼ P ∀x ∈ RD:

vT [∇2
x (z(2)y − z

(2)
t)]v ≤ vTPv

∀v ∈ RD, ∀x ∈ RD (60)

Let v∗, x∗ be vectors such that:

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t)]v∗

=max
x

max
∥v∥=1

vT [∇2
x (z(2)y − z

(2)
t)]v

Thus using inequality (60):

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t)]v∗ ≤ max

∥v∥=1
vTPv (61)

Since N ≼ ∇2
x (z(2)y − z

(2)
t) ∀x ∈ RD:

vTNv ≤ vT [∇2
x (z(2)y − z

(2)
t)]v

∀v ∈ RD, ∀x ∈ RD (62)

Let v∗, x∗ be vectors such that:

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t)]v∗

=min
x

min
∥v∥=1

vT [∇2
x (z(2)y − z

(2)
t)]v

Thus using inequality (62):

(v∗)T [∇2
x∗ (z(2)y − z

(2)
t)]v∗ ≥ min

∥v∥=1
vTNv (63)

Using the inequalities (61) and (63), we get:

mI ≼ ∇2
x (z(2)y − z

(2)
t) ≼MI

where M =max∥v∥=1 v
TPv, m =min∥v∥=1 v

TNv

E.5. Proof of Theorem 4

We are given that the activation function σ is such that
σ
′

, σ
′′

are bounded, i.e:

∣σ
′

(x)∣ ≤ g, ∣σ
′′

(x)∣ ≤ h ∀x ∈ R (64)

We have to prove the following:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j) ∀x ∈ RD

where S(L,I) is a matrix of size NL×NI defined as follows:

S(L,I) =
⎧⎪⎪⎨⎪⎪⎩

∣W(L)∣ I = L − 1

g ∣W(L)∣S(L−1,I) I ∈ [L − 2]
(65)

and r(I) is a scalar defined as follows:

r(I) =
⎧⎪⎪⎨⎪⎪⎩

∥W(1)∥ I = 1

g ∥W(I)∥ r(I−1) I ∈ [2, L − 1]
(66)

We will prove the same in 3 steps.
In step (a), we will prove:

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j ∀x ∈ RD (67)

In step (b), we will prove:

∥B(I)∥ ≤ r(I), ∀x ∈ RD (68)

In step (c), we will use (a) and (b) to prove:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(L,I)i,j) (69)

Note that B(I) and F(L,I) are defined using (28) and (29)
respectively.

(a) We have to prove that for L ≥ 2, I ∈ [L − 1], i ∈
NL, j ∈ NI :

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j ∀x ∈ RD

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Second-Order Provable Defenses against Adversarial Attacks

where S(L,I) is a matrix of size NI ×NJ defined as
follows:

S(L,I) =
⎧⎪⎪⎨⎪⎪⎩

∣W(L)∣ I = L − 1

g ∣W(L)∣S(L−1,J) I ∈ [L − 2]

We first prove the case when I = L − 1.
Using equation (40), F(L,L−1)i,j =W

(L)
i,j .

Since S
(L,L−1)
i,j = ∣W(L)

i,j ∣:

∣F(L,L−1)i,j ∣ = S
(L,L−1)
i,j

Hence for L ≥ 2, I = L − 1, we have equality in (67).
Hence proved.
Now, we will use proof by induction.
To prove the base case L = 2, note that I = L − 1 = 1
is the only possible value for I . Thus, using the result
for I = L− 1, the theorem holds for L = 2. This proves
the base case.
Now we assume the induction hypothesis is true for
depth = L − 1, I ∈ [L − 2]. and prove for depth =
L, I ∈ [L − 1]. Since for I = L − 1, we have proven
already, we prove for I ≤ L − 2.
Using equation (42), we have the following formula
for F(L,I)i :

F
(L,I)
i =

NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k)F(L−1,I)k

Taking the jth element of the vectors on both sides:

F
(L,I)
i,j =

NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k)F(L−1,I)k,j (70)

By induction hypothesis, we know that:

∣F(L−1,I)k,j ∣ ≤ S
(L−1,I)
k,j (71)

Using the absolute value properties for equation (70),
we have:

∣F(L,I)i,j ∣ = ∣
NL−1

∑
k=1

W
(L)
i,k σ

′

(z(L−1)k)F(L−1,I)k,j ∣

∣F(L,I)i,j ∣ ≤
NL−1

∑
k=1

∣W(L)
i,k σ

′

(z(L−1)k)F(L−1,I)k,j ∣

∣F(L,I)i,j ∣ ≤
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣σ

′

(z(L−1)k)∣ ∣F(L−1,I)k,j ∣

Using ∣σ′(x)∣ ≤ g ∀x ∈ R (inequality (64)) :

∣F(L,I)i,j ∣ ≤ g
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣F(L−1,I)k,j ∣

Using the induction hypothesis (inequality (71)):

∣F(L,I)i,j ∣ ≤ g
NL−1

∑
k=1

∣W(L)
i,k ∣ ∣S(L−1,I)k,j ∣

Using equation (65) for definition of S(L,I)i,j :

∣F(L,I)i,j ∣ ≤ S
(L,I)
i,j

Hence we prove (67) for all L ≥ 2 and I ≤ L − 1 using
induction.

(b) We have to prove that for 1 ≤ I ≤M − 1:

∥B(I)∥ ≤ r(I), ∀x ∈ RD

where r(I) is a scalar given as follows:

r(I) =
⎧⎪⎪⎨⎪⎪⎩

∥W(1)∥ I = 1

g ∥W(I)∥ r(I−1) I ∈ [2, L − 1]

Using equation (38), for I = 1 we have:

∥B(1)∥ = ∥W(1)∥ = r(1) (72)

Using equation (39), for I > 1, we have:

∥B(I)∥ = ∥W(I)diag (σ
′

(z(I−1)))B(I−1)∥

∥B(I)∥ ≤ ∥W(I)∥ ∥diag (σ
′

(z(I−1)))∥ ∥B(I−1)∥

Since ∥diag (σ′ (z(I−1)))∥ = maxj ∣σ
′ (z(I−1)j)∣, us-

ing equation (64):

∥B(I)∥ ≤ g ∥W(I)∥ ∥B(I−1)∥ ≤ g ∥W(I)∥ r(I−1)
(73)

Using inequalities (72) and (73), the proof follows
using induction.

(c) We have to prove that:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j)

Using Lemma 1, we have the following equation for
∇2

xz
(L)
i :

∇2
xz
(L)
i =

L−1

∑
I=1

(B(I))
T
diag(F(L,I)i ⊙ σ

′′

(z(I)))B(I)

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Second-Order Provable Defenses against Adversarial Attacks

Using the properties of norm we have:

∥∇2
xz
(L)
i ∥

= ∥
L−1

∑
I=1

(B(I))
T
diag (F(L,I)i ⊙ σ

′′

(z(I)))B(I)∥

≤
L−1

∑
I=1

∥diag (F(L,I)i ⊙ σ
′′

(z(I)))∥ ∥B(I)∥
2

≤
L−1

∑
I=1

max
j

(∣F(L,I)i,j σ
′′

(z(I)j)∣) ∥B(I)∥
2

In the last inequality, we use the property that norm of
a diagonal matrix is the maximum absolute value of
the diagonal element. Using the product property of
absolute value, we get:

∥∇2
xz
(L)
i ∥ ≤

L−1

∑
I=1

max
j

(∣F(L,I)i,j ∣ ∣σ
′′

(z(I)j)∣) ∥B(I)∥
2

Since ∣F(L,I)i,j ∣ and ∣σ′′ (z(I)j)∣ are positive terms:

∥∇2
xz
(L)
i ∥

≤
L−1

∑
I=1

max
j

(∣F(L,I)i,j ∣)max
j

(∣σ
′′

(z(I)j)∣) ∥B(I)∥
2

Since ∥σ′′∥ is bounded by h:

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

max
j

(∣F(L,I)i,j ∣) ∥B(I)∥
2

Using inequality (67):

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

max
j

(S(I)i,j) ∥B(I)∥
2

Using inequality (68):

∥∇2
xz
(L)
i ∥ ≤ h

L−1

∑
I=1

(r(I))
2
max
j

(S(I)i,j) ∀x ∈ RD

E.6. Proof of Theorem 1

Theorem 1. For a binary classifier f , let g denote the indi-
cator function such that g(x) = 1 ⇐⇒ f(x) > 0, g(x) =
0 otherwise. Let ĝ be the function constructed by applying
randomized smoothing on g such that:

ĝ (u) = 1

(2πs2)n/2 ∫RD
g(v) exp(−∥v − u∥2

2s2
)dv

then the curvature of the resulting function ĝ is bounded i.e:

− I

s2
≼ ∇2

u ĝ ≼
I

s2

Proof.

∇u ĝ (u)

= 1

(2πs2)n/2 ∫RD
g(v)(v − u)

s2
exp(−∥v − u∥2

2s2
)dv

∇2
u ĝ (u)

= 1

(2πs2)n/2 ∫RD
g(v)−I

s2
exp(−∥v − u∥2

2s2
)dv

+ 1

(2πs2)n/2 ∫RD
g(v)(v − u)(v − u)T

s4
[

exp(−∥v − u∥2
2s2

)]dv

Since 0 ≤ g(v) ≤ 1, −I/s2 ≼ 0, (v − u)(v − u)T ≽ 0 and
exp(x) ≥ 0 ∀x:

∇2
u ĝ (u) =

1

(2πs2)n/2 ∫RD
g(v)−I

s2
exp(−∥v − u∥2

2s2
)dv

´¹¹¹¸¹¹¹¶
Negative Semi-Definite

+ 1

(2πs2)n/2 ∫RD
g(v)(v − u)(v − u)T

s4
´¹¹¸¹¹¶

Positive Semi-Definite

[

exp(−∥v − u∥2
2s2

)]dv

∇2
u ĝ (u) ≼

1

(2πs2)n/2 ∫RD

(v − u)(v − u)T
s4

[

exp(−∥v − u∥2
2s2

)]dv

∇2
u ĝ (u) ≼

1

(2πs2)n/2 ∫RD

qqT

s4
exp(−∥q∥2

2s2
)dq

∇2
u ĝ (u) ≼

I

s2

∇2
u ĝ (u) ≽

1

(2πs2)n/2 ∫RD

−I
s2

exp(−∥v − u∥2
2s2

)dv

∇2
u ĝ (u) ≽ −

I

s2

F. Computing g, h, hU and hL for different
activation functions

F.1. Softplus activation

For softplus activation, we have the following. We use S(x)
to denote sigmoid:

σ(x) = log(1 + exp(x))
σ
′

(x) = S(x)
σ
′′

(x) = S(x)(1 − S(x))

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Second-Order Provable Defenses against Adversarial Attacks

To bound S(x)(1 − S(x)), let α denote S(x). We know
that 0 ≤ α ≤ 1:

α(1 − α) = 1

4
− (1

2
− α)

2

Thus, S(x)(1 − S(x)) is maximum at S(x) = 1/2 and
minimum at S(x) = 0 and S(x) = 1. The maximum value
is 0.25 and minimum value is 0.

0 ≤ S(x)(1 − S(x)) ≤ 0.25 Ô⇒ 0 ≤ σ
′′

(x) ≤ 0.25

Thus, hU = 0.25, hL = 0 (for use in Theorem 3) and g =
1, h = 0.25 (for use in Theorem 4).

F.2. Sigmoid activation

For sigmoid activation, we have the following. We use S(x)
to denote sigmoid:

σ(x) = S(x) = 1

1 + exp(−x)
σ
′

(x) = S(x)(1 − S(x))
σ
′′

(x) = S(x)(1 − S(x))(1 − 2S(x))

The second derivative of sigmoid (σ′′(x)) can be bounded
using standard differentiation. Let α denote S(x). We
know that 0 ≤ α ≤ 1:

hL ≤ σ
′′

(x) ≤ hU
hL = min

0≤α≤1
α(1 − α)(1 − 2α)

hU = max
0≤α≤1

α(1 − α)(1 − 2α)

To solve for both hL and hU , we first differentiate α(1 −
α)(1 − 2α) with respect to α:

∇α (α(1 − α)(1 − 2α)) = ∇α (2α3 − 3α2 + α)
= (6α2 − 6α + 1)

Solving for 6α2 − 6α + 1 = 0, we get the solutions:

α = (3 +
√
3

6
),(3 −

√
3

6
)

Since both (3+
√
3/6), (3−

√
3/6) lie between 0 and 1, we

check for the second derivatives:

∇2
α (α(1 − α)(1 − 2α)) = ∇α (6α2 − 6α + 1)

= 12α − 6 = 6(2α − 1)

At α = (3 +
√
3)/6, ∇2

α = 6(2α − 1) = 2
√
3 > 0.

At α = (3 −
√
3)/6, ∇2

α = 6(2α − 1) = −2
√
3 < 0.

Thus α = (3 +
√
3)/6 is a local minima, α = (3 −

√
3)/6 is

a local maxima.

Substituting the two critical points into α(1 − α)(1 − 2α),
we get hU = 9.623 × 10−2, hL = −9.623 × 10−2.
Thus, hU = 9.623 × 10−2, hL = −9.623 × 10−2 (for use in
Theorem 3) and g = 0.25, h = 0.09623 (for use in Theorem
4).

F.3. Tanh activation

For tanh activation, we have the following:

σ(x) = tanh(x) = exp(x) − exp(−x)
exp(x) + exp(−x)

σ
′

(x) = (1 − tanh(x)) (1 + tanh(x))
σ
′′

(x) = −2 tanh(x) (1 − tanh(x)) (1 + tanh(x))

The second derivative of tanh , i.e (σ′′(x)) can be bounded
using standard differentiation. Let α denote tanh(x). We
know that −1 ≤ α ≤ 1:

hL ≤ σ
′′

(x) ≤ hU
hL = min

0≤α≤1
−2α(1 − α)(1 + α)

hU = max
0≤α≤1

−2α(1 − α)(1 + α)

To solve for both hL and hU , we first differentiate −2α(1 −
α)(1 + α) with respect to α:

∇α (−2α(1 − α)(1 + α)) = ∇α (2α3 − 2α) = (6α2 − 2)

Solving for 6α2 − 2 = 0, we get the solutions:

α = − 1√
3
,
1√
3

Since both −1/
√
3,1/

√
3 lie between -1 and 1, we check

for the second derivatives:

∇2
α (−2α(1 − α)(1 + α)) = ∇α (6α2 − 2) = 12α

At α = −1/
√
3, ∇2

α = 12α = −4
√
3 < 0.

At α = 1/
√
3, ∇2

α = 12α = 4
√
3 > 0.

Thus α = 1/
√
3 is a local minima, α = −1/

√
3 is a local

maxima.
Substituting the two critical points into −2α(1 − α)(1 + α),
we get hU = 0.76981, hL = −0.76981.
Thus, hU = 0.76981, hL = −0.76981 (for use in Theorem
3) and g = 1, h = 0.76981 (for use in Theorem 4).

G. Quadratic bounds for two-layer ReLU
networks

For a 2 layer network with ReLU activation, such that the
input x lies in the ball ∥x − x(0)∥ ≤ ρ, we can compute the
bounds over z(1) directly:

W
(1)
i x(0) + b

(1)
i − ρ ∥W(1)

i ∥ ≤ z
(1)
i

z
(1)
i ≤W

(1)
i x(0) + b

(1)
i + ρ ∥W(1)

i ∥

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Second-Order Provable Defenses against Adversarial Attacks

Thus we can get a lower bound and upper bound for each
z
(1)
i . We define di and ui as the following:

di =W
(1)
i x(0) + b

(1)
i − ρ ∥W(1)

i ∥ (74)

ui =W
(1)
i x(0) + b

(1)
i + ρ ∥W(1)

i ∥ (75)

We can derive the following quadratic lower and upper
bounds for each a

(1)
i :

a
(1)
i ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−di
(ui − di)2

(z(1)i)
2
+ u2i + d2i

(ui − di)2
z
(1)
i − u2i di

(ui − di)2
if ∣di∣ ≤ ∣ui∣

ui
(ui − di)2

(z(1)i)
2
− 2uidi

(ui − di)2
z
(1)
i + uid

2
i

(ui − di)2
if ∣di∣ ≥ ∣ui∣

a
(1)
i ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 2∣di∣ ≤ ∣ui∣
z
(1)
i ∣di∣ ≥ 2∣ui∣
1

ui − di
(z(1)i)

2
− di
ui − di

z
(1)
i otherwise

The above steps are exactly the same as the quadratic upper
and lower bounds used in (Zhang et al., 2018a).
Using the above two inequalities and the identity:

z(2)y − z
(2)
t =

N1

∑
i=1

(W(2)
y,i −W

(2)
t,i)a

(1)
i

we can compute a quadratic lower bound for z
(2)
y −

z
(2)
t in terms of z

(1)
i by taking the lower bound for

a
(1)
i when (W(2)

y,i −W
(2)
t,i) > 0 and upper bound when

(W(2)
y,i −W

(2)
t,i) <= 0. Furthermore since z

(1)
i =W

(1)
i x +

b
(1)
i , we can express the resulting quadratic in terms of x.

Thus, we get the following quadratic function :

z(2)y − z
(2)
t ≥ 1

2
xTPx + q + r

The coefficients P, q and r can be determined using the
above procedure. Note that unlike in (Zhang et al., 2018a),
RHS can be a non-convex function.
Thus, it becomes an optimization problem where the goal
is to minimize the distance 1/2 ∥x − x(0)∥2 subject to RHS
(which is quadratic in x) being zero. That is both our objec-
tive and constraint are quadratic functions. In the optimiza-
tion literature, this is called the S-procedure and is one of
the few non-convex problems that can be solved efficiently
(Boyd & Vandenberghe, 2004).
We start with two initial values called ρlow (initialized to 0)
and ρhigh (initialized to 5).
We start with an initial value of ρ, initialized at
1/2 (ρlow + ρhigh) to compute di (eq. (74)) and ui (eq.

(75)). If the final distance after solving the S-procedure
is less than ρ, we set ρlow = ρ. if the final distance is greater
than ρ, we set ρhigh = ρ. Set new ρ = 1/2 (ρlow + ρhigh).
Repeat until convergence.

H. Additional experiments
Empirical accuracy means the fraction of test samples that
were correctly classified after running a PGD attack (Madry
et al., 2018) with an l2 bound on the adversarial perturba-
tions. Certified accuracy means the fraction of test samples
that were classified correctly initially and had the robust-
ness certificate greater than a pre-specified attack radius ρ.
Unless otherwise specified, for both empirical and certified
accuracy, we use ρ = 0.5. Unless otherwise specified, we
use the class with the second largest logit as the attack target
for the given input (i.e. the class t). Unless specified, the
experiments were run on the MNIST dataset while noting
that our results are scalable for more complex datasets. The
notation (L × [1024], activation) denotes a neural network
with L layers with the specified activation function, (γ = c)
denotes standard training with γ set to c, (CRT, c) denotes
CRT training with γ = c. Certificates CROWN and CRC are
computed over 150 correctly classified images.

H.1. Computing Klb and Kub

First, note that K does not depend on the input, but on net-
work weights W(I), label y and target t. Different images
may still have different K because label y and target t may
be different.

To compute Klb in the table, first for each pair y and t, we
find the largest eigenvalue of the Hessian of all test images
that have label y and second largest logit of class t. Then we
take the max of the largest eigenvalue across all test images.
This gives a rough estimate of the largest curvature in the
vicinity of test images with label y and target t. We can
directly take the mean across all such pairs to compute Klb.
However, we find that some pairs y and t were infrequent
(with barely 1,2 test images in them). Thus, for all such
pairs we cannot get a good estimate of the largest curvature
in vicinity. We select all pairs y and t that have at least 100
images in them and compute Klb by taking the mean across
all such pairs.

To compute Kub in the table, we compute K for all pairs y
and t that have at least 100 images, i.e at least 100 images
should have label y and target t. And then we compute the
mean across all K that satisfy this condition. This was done
to do a fair comparison with Klb. Figure 1 shows a plot of
the Kub and Klb with increasing γ for a sigmoid network
(with 4 layers).

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Second-Order Provable Defenses against Adversarial Attacks

Figure 1. Effect of γ on Kub and Klb for a 4 layer network. We
observe a similar trend as in 2 and 3 layer networks (Figure 1). At
γ = 0, we observe Kub ≈ 15418 ×Klb.

H.2. Comparison with provable defenses

In this section, we compare Curvature-based Robust Train-
ing (Ours) against state-of-the-art interval-bound propaga-
tion based adversarial training methods: COAP i.e Con-
vex Outer Adversarial Polytope (Wong & Kolter, 2017)
and CROWN-IBP (Zhang et al., 2019a) with different at-
tack radius on MNIST and Fashion-MNIST datasets. For
CROWN-IBP, we vary the final beta parameter between 0.5
to 3 (using an interval of 0.1) and choose the model with
best certified accuracy.

Table 2. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 0.5 on MNIST
dataset. Note that the certified accuracy of softplus network with
CROWN-IBP is significantly less than that of a similar ReLU
network.

Network Training Standard
Accuracy

Certified
Accuracy

2×[1024],
softplus

CRT, 0.01 98.69% 95.5%
CROWN-IBP 98.72% 89.31%

2×[1024],
relu

CROWN-IBP 98.69% 91.38%
COAP 98.8% 90.2%

3×[1024],
softplus

CRT, 0.01 98.56% 94.44%
CROWN-IBP 98.55% 88.67%

3×[1024],
relu

CROWN-IBP 98.9% 90.67%
COAP 98.9% 89.0%

4×[1024],
softplus

CRT, 0.01 98.43% 93.35%
CROWN-IBP 98.34% 87.41%

4×[1024],
relu

CROWN-IBP 98.78% 90.45%
COAP 98.9% 89.0%

Table 3. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 0.5 on Fashion-
MNIST dataset.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus CRT, 0.01 88.45% 78.45%

2×[1024],
relu

COAP 86.0% 74.0%
CROWN-IBP 85.89% 74.62%

3×[1024],
softplus CRT, 0.01 86.21% 76.94%

3×[1024],
relu

COAP 85.9% 74.3%
CROWN-IBP 86.27% 74.56%

4×[1024],
softplus CRT, 0.01 86.37% 75.02%

4×[1024],
relu

COAP 85.9% 74.2%
CROWN-IBP 86.03% 74.38%

Table 4. Comparison with interval-bound propagation based ad-
versarial training methods with attack radius ρ = 1.58 on MNIST
dataset. We again observe that the certified accuracy of softplus
network with CROWN-IBP is significantly less than that of a
similar ReLU network.

Network Training Standard
Accuracy

Certified
Robust
Accuracy

2×[1024],
softplus

CRT, 0.01 98.68% 69.79%
CROWN-IBP 88.48% 42.36%

2×[1024],
relu

COAP 89.33% 44.29%
CROWN-IBP 89.49% 44.96%

3×[1024],
softplus

CRT, 0.01 98.26% 14.21%
CRT, 0.03 97.82% 50.72%
CRT, 0.05 97.43% 57.78%
CROWN-IBP 86.58% 42.14%

3×[1024],
relu

COAP 89.12% 44.21%
CROWN-IBP 87.77% 44.74%

4×[1024],
softplus

CRT, 0.01 97.80% 6.25%
CRT, 0.03 97.09% 29.64%
CRT, 0.05 96.33% 44.44%
CRT, 0.07 95.60% 53.19%
CROWN-IBP 82.74% 41.34%

4×[1024],
relu

COAP 90.17% 44.66%
CROWN-IBP 84.4% 43.83%

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Second-Order Provable Defenses against Adversarial Attacks

Table 5. Comparison between CRT and Randomized Smooth-
ing(Cohen et al., 2019). s denotes the standard deviation for
smoothing. We use ρ = 0.5. For CRT, we use γ = 0.01

Network
Randomized Smoothing CRT

s = 0.25 s = 0.50 s = 1.0

2×[1024],
sigmoid 93.75% 93.09% 88.91%

95.61%

2×[1024],
tanh 94.61% 93.08% 82.26% 95.00%

3×[1024],
sigmoid 94.00% 93.03% 86.58% 94.99%

3×[1024],
tanh 93.69% 91.68% 80.55% 94.16%

4×[1024],
sigmoid 93.68% 92.45% 84.99% 93.41%

4×[1024],
tanh 93.57% 92.19% 83.90% 91.37%

H.3. Comparing Randomized Smoothing with CRT

Since, randomized smoothing is designed to work in untar-
geted attack settings while CRT is for targeted attacks, we
make the following changes in randomized smoothing. First,
we use n0 = 100 initial samples to select the label class (l)
and false target class (t). The samples for estimation were
n = 100,000 and failure probability was α = 0.001. Then
we use the binary version of randomized smoothing for esti-
mation, i.e classify between y and t. To find the adversarial
example for adversarial training, we use the cross entropy
loss for 2 classes (y and t).

H.4. Additional experiments

Table 6. Table showing success rates (primal = dual) for differ-
ent values of γ. Certificate success rate denotes the fraction of
points (x(0)) satisfying zy − zt = 0, Attack success rate denotes
the fraction of points (x(0)) satisfying ∥x(attack) − x(0)∥2 = ρ
implying primal = dual in Theorems 1 and 2 respectively. We
observe that as we increase γ, the fraction of points satisfying
primal = dual increases for both the certificate and attack prob-
lems. This can be attributed to the curvature bound K(W, y, t)
becoming tight on increasing γ.

Network γ Accuracy
Attack
success
rate

Certificate
success
rate

2×[1024],
sigmoid

0. 98.77% 5.05% 2.24%
0.01 98.57% 100% 15.68%
0.02 98.59% 100% 31.56%
0.03 98.30% 100% 44.17%

3×[1024],
sigmoid

0. 98.52% 0.% 0.12%
0.01 98.23% 44.86% 3.34%
0.03 97.86% 100% 11.51%
0.05 97.60% 100% 22.59%

4×[1024],
sigmoid

0. 98.22% 0.% 0.01%
0.01 97.24% 24.42% 2.68%
0.03 96.27% 44.42% 6.45%
0.05 95.77% 99.97% 12.40%
0.06 95.52% 100% 15.87%
0.07 95.24% 100% 19.53%

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Second-Order Provable Defenses against Adversarial Attacks

Table 7. Results for CIFAR-10 dataset (only curvature regularization, no CRT training)

Network Training Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate
(mean)

CROWN CRC

2 × [1024], sigmoid
standard 46.23% 37.82% 14.10% 0.37219 0.38173
γ = 0.01 45.42% 38.17% 26.50% 0.40540 0.55010

3 × [1024], sigmoid
standard 48.57% 34.80% 0.00% 0.19127 0.01404
γ = 0.01 50.31% 39.87% 18.28% 0.24778 0.37895

4 × [1024], sigmoid
standard 46.04% 34.38% 0.00% 0.19340 0.00191
γ = 0.01 48.28% 40.10% 21.07% 0.29654 0.40005

Table 8. Comparison between CRT, PGD (Madry et al., 2018) and TRADES (Zhang et al., 2019b) for sigmoid and tanh networks. CRC
outperforms CROWN significantly for 2 layer networks and when trained with our regularizer for deeper networks. CRT outperforms
TRADES and PGD giving higher certified accuracy.

Network Training Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate
(mean)

CROWN CRC

2×[1024],
sigmoid

PGD 98.80% 96.26% 93.37% 0.37595 0.82702
TRADES 98.87% 96.76% 95.13% 0.41358 0.92300
CRT, 0.01 98.57% 96.28% 95.59% 0.43061 1.54673

2×[1024],
tanh

PGD 98.76% 95.79% 84.11% 0.30833 0.61340
TRADES 98.63% 96.20% 93.72% 0.40601 0.86287
CRT, 0.01 98.52% 95.90% 95.00% 0.37691 1.47016

3×[1024],
sigmoid

PGD 98.84% 96.14% 0.00% 0.29632 0.07290
TRADES 98.95% 96.79% 0.00% 0.30576 0.09108
CRT, 0.01 98.23% 95.70% 94.99% 0.39603 1.24100

3×[1024],
tanh

PGD 98.78% 94.92% 0.00% 0.12706 0.03036
TRADES 98.16% 94.78% 0.00% 0.15875 0.02983
CRT, 0.01 98.15% 95.00% 94.16% 0.28004 1.14995

4×[1024],
sigmoid

PGD 98.84% 96.26% 0.00% 0.25444 0.00658
TRADES 98.76% 96.67% 0.00% 0.26128 0.00625
CRT, 0.01 97.83% 94.65% 93.41% 0.40327 1.06208

4×[1024],
tanh

PGD 98.53% 94.53% 0.00% 0.07439 0.00140
TRADES 97.08% 92.85% 0.00% 0.11889 0.00068
CRT, 0.01 97.24% 93.05% 91.37% 0.33649 0.93890

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Second-Order Provable Defenses against Adversarial Attacks

Table 9. Comparison between CRC and CROWN-general (CROWN-Ada for relu) for different targets. For CRT training, we use γ = 0.01.
We compare CRC with CROWN-general for different targets for 150 correctly classified images. Runner-up means class with second
highest logit is considered as adversarial class. Random means any random class other than the label is considered adversarial. Least
means class with smallest logit is adversarial. For 2-layer networks, CRC outperforms CROWN-general significantly even without
adversarial training. For deeper networks (3 and 4 layers), CRC works better on networks that are trained with curvature regularization.
Both CROWN and CRC are computed on CPU but the running time numbers mentioned here are not directly comparable because our
CRC implementation uses a batch of images while the CROWN implementation uses a single image at a time.

Network Training Target
Certificate (mean) Time per Image (s)

CROWN CRC CROWN CRC

2 × [1024], relu standard
runner-up 0.50110 0.59166 0.1359 2.3492
random 0.68506 0.83080 0.2213 3.5942
least 0.86386 1.04883 0.1904 3.0292

2 × [1024], sigmoid

standard
runner-up 0.28395 0.48500 0.1818 0.1911
random 0.38501 0.69087 0.1870 0.1912
least 0.47639 0.85526 0.1857 0.1920

CRT, 0.01
runner-up 0.43061 1.54673 0.1823 0.1910
random 0.52847 1.99918 0.1853 0.1911
least 0.62319 2.41047 0.1873 0.1911

2 × [1024], tanh

standard
runner-up 0.23928 0.40047 0.1672 0.1973
random 0.31281 0.52025 0.1680 0.1986
least 0.38964 0.63081 0.1726 0.1993

CRT, 0.01
runner-up 0.37691 1.47016 0.1633 0.1963
random 0.45896 1.87571 0.1657 0.1982
least 0.52800 2.21704 0.1697 0.1981

3 × [1024], sigmoid

standard
runner-up 0.24644 0.06874 1.6356 0.5012
random 0.29496 0.08275 1.5871 0.5090
least 0.33436 0.09771 1.6415 0.5056

CRT, 0.01
runner-up 0.39603 1.24100 1.5625 0.5013
random 0.46808 1.54622 1.6142 0.4974
least 0.51906 1.75916 1.6054 0.4967

3 × [1024], tanh

standard
runner-up 0.08174 0.01169 1.4818 0.4908
random 0.10012 0.01432 1.5906 0.4963
least 0.12132 0.01757 1.5888 0.5076

CRT, 0.01
runner-up 0.28004 1.14995 1.4832 0.4926
random 0.32942 1.41032 1.5637 0.4957
least 0.38023 1.65692 1.5626 0.4930

4 × [1024], sigmoid

standard
runner-up 0.19501 0.00454 4.7814 0.8107
random 0.21417 0.00542 4.6313 0.8377
least 0.22706 0.00609 4.7973 0.8313

CRT, 0.01
runner-up 0.40327 1.06208 4.1830 0.8088
random 0.47038 1.29095 4.3922 0.7333
least 0.52249 1.49521 4.4676 0.7879

4 × [1024], tanh

standard
runner-up 0.03554 0.00028 5.7016 0.8836
random 0.04247 0.00036 5.8379 0.8602
least 0.04895 0.00044 5.8298 0.9045

CRT, 0.01
runner-up 0.33649 0.93890 3.8815 0.8182
random 0.41617 1.18956 4.0013 0.8215
least 0.47778 1.41429 4.3856 0.8311

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Second-Order Provable Defenses against Adversarial Attacks

Table 10. In this table, we measure the effect of increasing γ, when the network is trained with CRT on standard, empirical, certified
robust accuracy, Klb and Kub (defined in subsection H.1) for different depths (2, 3, 4 layer) and activations (sigmoid, tanh). We find
that for all networks γ = 0.01 works best. We find that the lower bound, Klb increases (for γ = 0) for deeper networks suggesting that
deep networks have higher curvature. Furthermore, for a given γ (say 0.005), we find that the gap between Kub and Klb increases as we
increase the depth suggesting that K is not a tight bound for deeper networks.

Network γ
Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Curvature bound (mean)

Klb Kub

2×[1024],
sigmoid

0.0 98.77% 96.17% 95.04% 7.2031 72.0835
0.005 98.82% 96.33% 95.61% 3.8411 8.2656
0.01 98.57% 96.28% 95.59% 2.8196 5.4873
0.02 98.59% 95.97% 95.22% 2.2114 3.7228
0.03 98.30% 95.73% 94.94% 1.8501 2.9219

2×[1024],
tanh

0.0 98.65% 95.48% 92.69% 12.8434 107.5689
0.005 98.71% 95.88% 94.76% 4.8116 10.1860
0.01 98.52% 95.90% 95.00% 3.4269 6.3529
0.02 98.35% 95.71% 94.77% 2.3943 4.1513
0.03 98.29% 95.39% 94.54% 1.9860 3.933

3×[1024],
sigmoid

0. 98.52% 90.26% 0.00% 19.2131 3294.9070
0.005 98.41% 95.81% 94.91% 2.6249 13.4985
0.01 98.23% 95.70% 94.99% 1.9902 8.6654
0.02 97.99% 95.33% 94.64% 1.4903 5.4380
0.03 97.86% 94.98% 94.15% 1.2396 4.1409
0.04 97.73% 94.60% 93.88% 1.0886 3.3354
0.05 97.60% 94.45% 93.65% 0.9677 2.7839

3×[1024],
tanh

0. 98.19% 86.38% 0.00% 133.7992 17767.5918
0.005 98.13% 94.56% 93.01% 3.2461 17.5500
0.01 98.15% 95.00% 94.16% 2.2347 10.8635
0.02 97.84% 94.79% 94.05% 1.6556 6.7072
0.03 97.70% 94.19% 93.42% 1.3546 5.0533
0.04 97.57% 94.04% 92.95% 1.1621 4.0071
0.05 97.31% 93.66% 92.65% 1.0354 3.3439

4×[1024],
sigmoid

0. 98.22% 83.04% 0.00% 86.9974 343582.3125
0.01 97.83% 94.65% 93.41% 1.6823 10.2289
0.02 97.33% 94.02% 92.94% 1.2089 6.5573
0.03 97.07% 93.52% 92.65% 1.0144 4.9576
0.04 96.70% 92.78% 91.95% 0.8840 3.9967
0.05 96.38% 92.29% 91.33% 0.7890 3.4183
0.07 96.08% 91.83% 90.67% 0.6614 2.6905

4×[1024],
tanh

0. 97.45% 75.18% 0.00% 913.6984 37148156
0.01 97.24% 93.05% 91.37% 1.9114 12.2148
0.02 96.82% 92.65% 91.35% 1.3882 7.1771
0.03 96.27% 91.43% 90.09% 1.1643 5.1671
0.04 95.62% 90.69% 89.41% 0.9620 3.9061
0.05 95.77% 90.69% 89.40% 0.9160 3.2909
0.07 95.24% 89.51% 87.91% 0.7540 2.5635

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Second-Order Provable Defenses against Adversarial Attacks

Table 11. In this table, we measure the impact of increasing curvature regularization (γ) on accuracy, empirical robust accuracy, certified
robust accuracy, CROWN-general and CRC when the network is trained without any adversarial training. We find that adding a very small
amount of curvature regularization has a minimal impact on the accuracy but significantly increases CRC. Increase in CROWN certificate
is not of similar magnitude. Somewhat surprisingly, we observe that even without any adversarial training, we can get nontrivial certified
accuracies of 84.73%,88.66%,89.61% on 2,3,4 layer sigmoid networks respectively.

Network γ
Standard
Accuracy

Empirical
Robust
Accuracy

Certified
Robust
Accuracy

Certificate (mean)

CROWN CRC

2 × [1024], sigmoid

0. 98.37% 76.28% 54.17% 0.28395 0.48500
0.005 97.96% 88.65% 82.68% 0.36125 0.83367
0.01 98.08% 88.82% 83.53% 0.32548 0.84719
0.02 97.88% 88.90% 83.68% 0.34744 0.86632
0.03 97.73% 89.28% 84.73% 0.35387 0.90490

2 × [1024], tanh

0. 98.34% 79.10% 14.42% 0.23938 0.40047
0.005 98.01% 89.95% 85.70% 0.27262 0.89672
0.01 97.99% 90.17% 86.18% 0.28647 0.93819
0.02 97.64% 90.13% 86.40% 0.30075 0.99166
0.03 97.52% 89.96% 86.22% 0.30614 0.98771

3 × [1024], sigmoid

0. 98.37% 85.19% 0.00% 0.24644 0.06874
0.005 97.98% 91.93% 88.66% 0.38030 0.99044
0.01 97.71% 91.49% 88.33% 0.39799 1.07842
0.02 97.50% 91.34% 88.38% 0.38091 1.08396
0.03 97.16% 91.10% 88.63% 0.41015 1.15505
0.04 97.03% 90.96% 88.48% 0.42704 1.18073
0.05 96.76% 90.65% 88.30% 0.43884 1.19296

3 × [1024], tanh

0. 97.91% 77.40% 0.00% 0.08174 0.01169
0.005 97.45% 91.32% 88.57% 0.28196 0.95367
0.01 97.29% 90.98% 88.31% 0.31237 1.05915
0.02 97.04% 90.21% 87.77% 0.30901 1.08607
0.03 96.88% 90.02% 87.52% 0.34148 1.11717
0.04 96.53% 89.61% 86.87% 0.36583 1.11307
0.05 96.31% 89.25% 86.26% 0.38519 1.11689

4 × [1024], sigmoid

0. 98.39% 83.27% 0.00% 0.19501 0.00454
0.01 97.41% 91.71% 89.61% 0.40620 1.05323
0.02 96.47% 90.03% 87.77% 0.45074 1.14219
0.03 96.24% 90.40% 88.14% 0.47961 1.30671
0.04 95.65% 89.61% 87.54% 0.49987 1.35129
0.05 95.36% 89.10% 87.09% 0.51187 1.36064
0.07 95.23% 88.03% 85.93% 0.54754 1.27948

4 × [1024], tanh

0. 97.65% 69.20% 0.00% 0.03554 0.00028
0.01 96.52% 89.38% 86.40% 0.34778 0.97365
0.02 96.09% 88.79% 86.09% 0.41662 1.10860
0.03 95.74% 88.36% 85.65% 0.44981 1.17400
0.04 95.10% 87.50% 84.74% 0.48356 1.21957
0.05 95.14% 87.72% 84.77% 0.49113 1.25076
0.07 94.34% 86.67% 83.90% 0.49750 1.24198

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Second-Order Provable Defenses against Adversarial Attacks

References
Athalye, A. and Carlini, N. On the robustness of the cvpr

2018 white-box adversarial example defenses. ArXiv,
abs/1804.03286, 2018.

Athalye, A., Carlini, N., and Wagner, D. A. Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples. In ICML, 2018.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.
ISBN 0521833787.

Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In NeurIPS, 2017.

Cao, X. and Gong, N. Z. Mitigating evasion attacks to deep
neural networks via region-based classification. ArXiv,
abs/1709.05583, 2017.

Carlini, N. and Wagner, D. Adversarial examples are not
easily detected: Bypassing ten detection methods. In
Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, AISec ’17, 2017.

Carlini, N., Katz, G., Barrett, C. E., and Dill, D. L. Provably
minimally-distorted adversarial examples. 2017.

Cheng, C.-H., Nührenberg, G., and Ruess, H. Maximum
resilience of artificial neural networks. In ATVA, 2017.

Cohen, J. M., Rosenfeld, E., and Kolter, J. Z. Certified
adversarial robustness via randomized smoothing. In
ICML, 2019.

Croce, F., Andriushchenko, M., and Hein, M. Provable
robustness of relu networks via maximization of linear
regions. ArXiv, abs/1810.07481, 2018.

Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A. Out-
put range analysis for deep feedforward neural networks.
In NFM, 2018.

Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic,
R., O’Donoghue, B., Uesato, J., and Kohli, P. Train-
ing verified learners with learned verifiers. ArXiv,
abs/1805.10265, 2018a.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., and
Kohli, P. A dual approach to scalable verification of deep
networks. In UAI, 2018b.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. ArXiv, abs/1705.01320, 2017.

Fischetti, M. and Jo, J. Deep neural networks and mixed
integer linear optimization. Constraints, 23:296–309,
2018.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. T. Ai2: Safety and ro-
bustness certification of neural networks with abstract
interpretation. 2018 IEEE Symposium on Security and
Privacy (SP), pp. 3–18, 2018.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C.,
Uesato, J., Arandjelovic, R., Mann, T. A., and Kohli, P.
On the effectiveness of interval bound propagation for
training verifiably robust models. ArXiv, abs/1810.12715,
2018.

Hein, M. and Andriushchenko, M. Formal guarantees on
the robustness of a classifier against adversarial manipu-
lation. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 30,
pp. 2266–2276. 2017.

Huang, X., Kwiatkowska, M. Z., Wang, S., and Wu, M.
Safety verification of deep neural networks. ArXiv,
abs/1610.06940, 2016.

Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. Reluplex: An efficient smt solver for verify-
ing deep neural networks. In CAV, 2017.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial
machine learning at scale. ArXiv, abs/1611.01236, 2016.

Lécuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and Jana,
S. K. K. Certified robustness to adversarial examples with
differential privacy. In IEEE S&P 2019, 2018.

Li, B. H., Chen, C., Wang, W., and Carin, L. Certified
adversarial robustness with additive gaussian noise. 2018.

Liu, X., Cheng, M., Zhang, H., and Hsieh, C.-J. Towards
robust neural networks via random self-ensemble. ArXiv,
abs/1712.00673, 2017.

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Second-Order Provable Defenses against Adversarial Attacks

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward relu neural networks. ArXiv,
abs/1706.07351, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant
to adversarial attacks. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=rJzIBfZAb.

Mirman, M., Gehr, T., and Vechev, M. T. Differentiable ab-
stract interpretation for provably robust neural networks.
In ICML, 2018.

Raghunathan, A., Steinhardt, J., and Liang, P. Cer-
tified defenses against adversarial examples. ArXiv,
abs/1801.09344, 2018a.

Raghunathan, A., Steinhardt, J., and Liang, P. Semidefi-
nite relaxations for certifying robustness to adversarial
examples. In NeurIPS, 2018b.

Salman, H., Yang, G., Li, J., Zhang, P., Zhang, H., Razen-
shteyn, I. P., and Bubeck, S. Provably robust deep learn-
ing via adversarially trained smoothed classifiers. ArXiv,
abs/1906.04584, 2019.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. T. Fast and effective robustness certification. In
NeurIPS, 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. In International Confer-
ence on Learning Representations, 2014. URL http:
//arxiv.org/abs/1312.6199.

Uesato, J., O’Donoghue, B., Kohli, P., and van den Oord,
A. Adversarial risk and the dangers of evaluating against
weak attacks. In ICML, 2018.

Wang, S., Chen, Y., Abdou, A., and Jana, S. K. K. Mixtrain:
Scalable training of verifiably robust neural networks.
2018a.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
K. K. Efficient formal safety analysis of neural networks.
In NeurIPS, 2018b.

Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Boning, D. S., Dhillon, I. S., and Daniel, L. Towards
fast computation of certified robustness for relu networks.
ArXiv, abs/1804.09699, 2018.

Wong, E. and Kolter, J. Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
ArXiv, abs/1711.00851, 2017.

Wong, E., Schmidt, F. R., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. In NeurIPS, 2018.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifi-
cation with general activation functions. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 31, pp. 4939–4948. Curran
Associates, Inc., 2018a.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness cer-
tification with general activation functions. ArXiv,
abs/1811.00866, 2018b.

Zhang, H., Chen, H., Xiao, C., Li, B., Boning, D. S.,
and Hsieh, C. Towards stable and efficient train-
ing of verifiably robust neural networks. CoRR,
abs/1906.06316, 2019a. URL http://arxiv.org/
abs/1906.06316.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and
Jordan, M. I. Theoretically principled trade-off between
robustness and accuracy. In ICML, 2019b.

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1906.06316
http://arxiv.org/abs/1906.06316

