
Small-GAN: Speeding up GAN Training using Core-Sets

Samarth Sinha 1 Han Zhang 2 Anirudh Goyal 3 Yoshua Bengio 3 Hugo Larochelle 2 3 Augustus Odena 2

Abstract
Recent work by Brock et al. (2018) suggests
that Generative Adversarial Networks (GANs)
benefit disproportionately from large mini-batch
sizes. Unfortunately, using large batches is slow
and expensive on conventional hardware. Thus,
it would be nice if we could generate batches
that were effectively large though actually small.
In this work, we propose a method to do this,
inspired by the use of Coreset-selection in ac-
tive learning. When training a GAN, we draw
a large batch of samples from the prior and then
compress that batch using Coreset-selection. To
create effectively large batches of ‘real’ images,
we create a cached dataset of Inception activa-
tions of each training image, randomly project
them down to a smaller dimension, and then
use Coreset-selection on those projected activa-
tions at training time. We conduct experiments
showing that this technique substantially reduces
training time and memory usage for modern
GAN variants, that it reduces the fraction of
dropped modes in a synthetic dataset, and that
it allows GANs to reach a new state of the art in
anomaly detection.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have become a popular research topic. Ar-
guably the most impressive results have been in image
synthesis (Brock et al., 2018; Salimans et al., 2018; Miy-
ato et al., 2018; Zhang et al., 2018; 2017), but they have
also been applied fruitfully to text generation (Fedus et al.,
2018; Guo et al., 2018), domain transfer learning (Zhu
et al., 2017; Zhang et al., 2017; Isola et al., 2017), and var-
ious other tasks (Xian et al., 2018; Ledig et al., 2017; Zhu
& Bento, 2017).

1University of Toronto, Vector Institute 2Google Brain 3Mila,
Universite de Montreal. Correspondence to: Samarth Sinha
<samarth.sinha@mail.utoronto.ca>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Recently, Brock et al. (2018) substantially improved the
results of Zhang et al. (2018) by using very large mini-
batches during training. The effect of large mini-batches
in the context of deep learning is well-studied (Smith et al.,
2017; Goyal et al., 2017; Keskar et al., 2016; Shallue et al.,
2018) and general consensus is that they can be helpful in
many circumstances, but the results of Brock et al. (2018)
suggest that GANs benefit disproportionately from large
batches. In fact, Table 1 of Brock et al. (2018) shows that
for the Frechet Inception Distance (FID) metric (Heusel
et al., 2017) on the ImageNet dataset, scores can be im-
proved from 18.65 to 12.39 simply by making the batch
eight times larger.

Unfortunately, increasing the batch size in this way is not
always possible, since it increases the computational re-
sources required to train these models – often beyond the
reach of conventional hardware. The experiments from the
BigGAN paper require a full ‘TPU Pod’. The ‘unofficial’
open source release of BigGAN works around this by accu-
mulating gradients across 8 different V100 GPUs and only
performing a gradient update on the parameters, every 8
gradient accumulation steps. It’s important to note that do-
ing this type of gradient accumulation is (due to the par-
allel nature of modern computing hardware) essentially 8
times slower than training on TPUs. Thus, while gradi-
ent check-pointing will technically allow you to train these
large models on conventional hardware, it’s far from an
ideal solution.

Future research on GANs would be much easier if we could
have the gains from large batches without such pain points.
In this paper, we take steps toward accomplishing that goal
by proposing a technique that allows for mimicking large
batches without the computational costs of actually using
large batches.

In this work, we use Core-set selection (Agarwal et al.,
2005) to sub-sample a large batch to produce a smaller
batch. The large batches are then discarded, and the sub-
sampled, smaller, batches are used to train the GAN. Infor-
mally, this procedure yields small batches with ‘coverage’
similar to that of the large batch – in particular the small
batch tries to ‘cover’ all the same modes as are covered in
the large batch. This technique yields many of the bene-
fits of having large batches with much less computational

Small-GAN

overhead. Moreover, it is generic, and so can be applied to
nearly all GAN variants.

Our contributions can be summarized as follows:

• We introduce a simple, computationally cheap method
to increase the ‘effective batch size’ of GANs, which
can be applied to any GAN variant.

• We conduct experiments on the CIFAR, LSUN, and
ImageNet data sets showing that our method can sub-
stantially improve FID across different GAN architec-
tures given a fixed batch size.

• We use our method to improve the performance of the
technique from Kumar et al. (2019), resulting in state-
of-the-art performance at GAN-based anomaly detec-
tion.

2. Background and Notation
2.1. Generative Adversarial Networks

A Generative Adversarial Network (or GAN) is a system
of two neural networks trained ‘adversarially’. The gener-
ator, G, takes as input samples from a prior z ∼ p(z) and
outputs the learned distribution, G(z). The discriminator,
D, receives as input both the training examples, X , and the
synthesized samples, G(z), and outputs a distribution D(.)
over the possible sample source. The discriminator is then
trained to maximize the following objective:

LD = −Ex∼pdata [logD(x)]− Ez∼p(z)[log(1−D(G(z)))]
(1)

while the generator is trained to minimize1:

LG = −Ez∼p(z)[logD(G(z))] (2)

Informally, the generator is trained to trick the discrimina-
tor into believing that the generated samples G(z) actually
come from the target distribution, p(x), while the discrim-
inator is trained to be able to distinguish the samples from
each other.

2.2. Frechet Inception Distance

We will refer frequently to the Frechet Inception Distance
(FID) (Heusel et al., 2017), to measure the effectiveness
of an image synthesis model. To compute this distance,
one assumes that we have a pre-trained Inception classifier.
One further assumes that the activations in the penultimate
layer of this classifier come from a multivariate Gaussian.

1This is the commonly used “Non-Saturating Cost”. There are
many others, but for brevity and since our technique we describe
is agnostic to the loss function, we will omit them.

If the activations on the real data areN(m,C) and the acti-
vations on the fake data areN(mw, Cw), the FID is defined
as:

‖m−mw‖22 +Tr
(
C + Cw − 2

(
CCw

)1/2)
(3)

Core-set selection: In computational geometry, a Core-
set Q of a set P is a subset Q ⊂ P that approximates the
‘shape’ of P (Agarwal et al., 2005). Core-sets are used to
quickly generate approximate solutions to problems whose
full solution on the original set would be burdensome to
compute. Given such a problem2, one computes Q, then
computes the solution to the problem for Q and converts
that into an approximate solution for the original set P .
The general Core-set selection problem can be formulated
several ways. Here we consider the the minimax facility
location formulation (Farahani & Hekmatfar, 2009):

min
Q:|Q|=k

max
xi∈P

min
xj∈Q

d(xi, xj) (4)

where k is the desired size of Q, and d(., .) is a metric on
P . Informally, the formula above encodes the following
objective: find some set Q of size k such that the maxi-
mum distance between a point in P and its nearest point
in Q is minimized. Since finding the exact solution to the
minimax facility location problem is NP-Hard (Wolsey &
Nemhauser, 2014), we will have to make do with a greedy
approximation, detailed in Section 3.3.

3. Using Core-set Sampling for GANs (or
Small-GAN)

We aim to use Core-set sampling to increase the effective
batch size during GAN training. This involves replacing
the basic sampling operation that is done implicitly when
minibatches are created. This implicit sampling operation
happens in two places: First, when we create a minibatch
of samples drawn from the prior distribution p(z). Second,
when we create a minibatch of samples from the target dis-
tribution pdata(x). The first of these replacements is rela-
tively simple, while the second presents challenges. In both
cases, we have to work around the fact that actually doing
Core-set sampling is computationally hard.

3.1. Sampling from the Prior

We need to sample from the prior when we update the dis-
criminator and generator parameters. Our Core-set sam-
pling algorithm doesn’t take into account the geometry of
the space we sample from, so sampling from a complicated

2As an example, consider computing the diameter of a point-
set (Agarwal et al., 2005).

Small-GAN

Algorithm 1 GreedyCoreset
Input: batch size (k), data points (x where |x| > k)
Output: subset of x of size k
s← {} . Initialize the sampled set
while |s| < k do . Iteratively add points to sampled set

p← argmaxxi /∈s minxj∈s d(xi, xj)
s← s ∪ {p}

end whilereturn s

density may cause trouble. This problem is not intractable,
but it’s nicer not to have to deal with it, so in the absence
of any evidence that the choice of prior affects the train-
ing, we define the prior in our experiments to be a uniform
distribution over a hypercube, but core-sets can be applied
to different prior distributions, such as a Gaussian distribu-
tion (Bachem et al., 2017). To add Core-set sampling to
the prior distribution, we randomly sample n points from
the prior, where n is greater than the desired batch size, k.
We then perform Core-set selection on the large batch of
size n to create a batch of size k. By applying Core-set
sampling on the randomly over-sampled prior, we obtain a
small sparse batch that approximates the shape of the hy-
percube. The smaller batch is what’s actually used to per-
form an SGD step.

3.2. Sampling from the Target Distribution

Sampling from the target distribution is more challenging.
The elements drawn from the distribution are high dimen-
sional images, so taking pairwise distances between them
will tend to work poorly due to concentration of distances
(Donoho et al., 2000; Sinha et al., 2019), and the fact that
Euclidean distances are semantically meaningless in image
space (Girod, 1993; Eskicioglu & Fisher, 1995).

To avoid these issues, we instead pre-process our data set
by computing the ‘Inception Embeddings’ of each image
using a pre-trained classifier (Szegedy et al., 2017). This is
commonly done in the transfer-learning literature, where it
is generally accepted that these embeddings have nontrivial
semantics (Yosinski et al., 2014). Since this pre-processing
happens only once at the beginning of training, it doesn’t
affect the per-training-step performance.

In order to further reduce the time taken by the Core-
set selection procedure, and inspired by the Johnson-
Lindenstrauss Lemma (Dasgupta & Gupta, 2003), we
take random low dimensional projections of the Incep-
tion Embeddings. This means that we multiply the Incep-
tion Embeddings by a fixed random matrix. This yields
low-dimensional embeddings where pairwise distances are
nearly preserved (Dasgupta & Gupta, 2003). Combined
with Core-set selection, this gives us representations of
the training set images which are low-dimensional and for

which pairwise Euclidean distances have meaningful se-
mantics. We can then use Core-set sampling on those rep-
resentations to select images at training time, analogous to
how we select images from the prior.

3.3. Greedy Core-set Selection

In the above sections, we have invoked Core-set selection
while glossing over the detail that exactly solving the k-
center problem is NP-hard. This is important, because we
propose to use Core-set selection at every training step3.
Fortunately, we can make do with an approximate solution,
which is faster to compute: we use the greedy k-center al-
gorithm (similar to Sener & Savarese (2017)) summarized
in Alg. 1.

3.4. Small-GAN

Our full proposed algorithm for GAN training is presented
in Alg. 2. Our technique is agnostic to the underlying GAN
framework and therefore can replace random sampling of
mini-batches for all GAN variants. More implementation
details and design choices are presented in Section 4.

4. Experiments
In this section we look at the performance of our proposed
sampling method on various tasks: In the first experiment,
we train a GAN on a Gaussian mixture dataset with a large
number of modes and confirm our method substantially
mitigates ‘mode-dropping’. In the second, we apply our
technique to GAN-based anomaly detection (Kumar et al.,
2019) and significantly improve on prior results. Finally,
we test our method on standard image synthesis bench-
marks and confirm that our technique seriously reduces the
need for large mini-batches in GAN training. The variety
of settings in these experiments testifies to the generality of
our proposed technique.

3Though the Core-set sampling does happens on CPU and so
could be done in parallel to the GPU operations used to train the
model, as long as the Core-set sampling time doesn’t exceed the
time of a forward and backward pass – which it doesn’t.

Small-GAN

Algorithm 2 Small-GAN
Input: target batch size (k), starting batch size (n > k), Inception embeddings (φI)
Output: a trained GAN

Initialize networks G and D
for step = 1 to ... do

z ∼ p(z) . Sample n points from the prior
x ∼ p(x) . Sample n points from the data distribution
φ(x)← φI(x) . Get cached embeddings for x
ẑ ← GreedyCoreset(z) . Get Core-set of z
φ̂(x)← GreedyCoreset(φ(x)) . Get Core-set of embeddings
x̂← φ−1I (φ̂(x)) . Get x corresponding to sampled embeddings
Update GAN parameters as usual

end for

4.1. Implementation Details

For our Core-set algorithm, the distance function, d(·, ·)
is the Euclidean distance for both the prior and target dis-
tributions. Since we use the current state-of-the-art GAN
architectures, each GAN model is trained with the same
hyper-parameters and optimizers as was proposed in the
corresponding paper, to ensure fair comparison. The only
hyper-parameter altered is the batch-size, which is stated
for all experiments. For over-sampling, we use a factor of
4 for the prior p(z) and a factor of 8 for the target, p(x), un-
less otherwise stated. We investigate the effects of different
over-sampling factors in the ablation study in Section 5.3.

4.2. Mixture of Gaussians

We first investigate the problem of mode dropping (Arora
et al., 2018) in GANs, where the GAN generator is unable
to recover some modes from the target data set. We in-
vestigate the performance of training a GAN to recover a
different number of modes of 2D isotropic Gaussian distri-
butions, with a standard deviation of 0.05. We use a similar
experimental setup as Azadi et al. (2018), where our gen-
erator and discriminator are parameterized using 4 ReLU-
fully connected networks, and use the standard GAN loss
in Eq. 1 and 2. To evaluate the performance of the mod-
els, we generate 10, 000 samples and assign them to their
closest mode. As in Azadi et al. (2018), the metrics we
use to evaluate performance are: i) ‘high quality samples’,
which are samples within 4 standard deviations of the as-
signed mode and ii) ‘recovered modes’ which are mixture
components with at least one assigned sample.

Our results are present in table 1, where we experiment
with an increasing number of modes. We see that as the
number of modes increases, a normal GAN suffers from in-
creased mode dropping and lower sample quality compared
to Core-set selection. With 100 modes, Core-set selection
recovers 97.33% of the modes compared to 90.67% for
the vanilla GAN. Core-set selection also generates 49.87%

‘high quality’ samples compared to 23.31% for the vanilla
GAN.

4.3. Anomaly Detection

To see whether our method can be useful for more than just
GANs, we also apply it to the Maximum Entropy Generator
(MEG) from Kumar et al. (2019). MEG is an energy-based
model whose training procedure requires maximizing the
entropy of the samples generated from the model. Since
MEG gives density estimates for arbitrary data points, it
can be used for anomaly detection – a fundamental goal
of machine learning research (Chandola et al., 2009; Kwon
et al., 2017) – in which one aims to find samples that are
‘atypical’ given a source data set. Kumar et al. (2019)
do use MEG successfully for this purpose, achieving re-
sults close to the state-of-the-art technique for GAN-based
anomaly detection (Zenati et al., 2018). We hypothesized
that – since energy estimates can in theory be improved by
larger batch sizes – these results could be further improved
by using Core-set selection, and we ran an experiment to
confirm this hypothesis.

We follow the experimental set-up from Kumar et al.
(2019) by training the MEG with all samples from a cho-
sen MNIST digit left-out during training. Those samples
then serve as the ‘anomaly class’ during evaluation. We
report the area under the precision-recall curve and aver-
age the score over the last 10 epochs. The results are re-
ported in Table 2, which provides clear evidence in favor
of our above hypothesis: for all digits tested, adding Core-
set selection to MEG substantially improves the results. By
performing these experiments, we aim to show the gen-
eral applicability of Core-set selection, not to suggest that
MEG is superior to BiGANs (Zenati et al., 2018) on the
task. We think it’s likely that similar improvements could
be achieved by using Core-set selection with BiGANs.

Small-GAN

Number of % of Recovered % of Recovered % of High-Quality % of High-Quality
Modes Modes (GAN) Modes (Ours) Samples (GAN) Samples (Ours)

25 100 100 95.76 98.9
36 100 100 92.73 95.34
49 98.12 99.85 84.28 88.1
64 96.13 99.01 68.81 82.11
81 92.59 98.84 49.74 71.75
100 90.67 97.33 23.31 49.87

Table 1. Experiments with large number of modes

Held-out Digit Bi-GAN MEG Core-set+MEG
1 0.287 0.281 0.351
4 0.443 0.401 0.501
5 0.514 0.402 0.518
7 0.347 0.29 0.387
9 0.307 0.342 0.39

Table 2. Experiments with Anomaly Detection on MNIST dataset. The Held-out digit represents the digit that was held out of the training
set during training and treated as the anomaly class. The numbers reported is the area under the precision-recall curve.

4.4. Image Synthesis

4.4.1. CIFAR AND LSUN

We also conduct experiments on standard image synthesis
benchmarks. To further show the generality of our method,
we experiment with two different GAN architectures and
two image datasets. We use Spectral Normalization-GAN
(Miyato et al., 2018) and Self Attention-GAN (Zhang et al.,
2018) on the CIFAR (Krizhevsky et al., 2009) and LSUN
(Yu et al., 2015) datasets, respectively. For the LSUN
dataset, which consists of 10 different categories, we train
the model using the ‘outdoor church’ subset of the data.

For evaluation, we measured the FID scores (Heusel et al.,
2017) of 50, 000 generated samples from the trained mod-
els4. We compare the performance using SN-GANs with
and without Core-set selection across progressively dou-
bling batch sizes. We observe a similar effect to Brock
et al. (2018): just by increasing the mini-batch size by a
factor of 4, from 128 to 512, we are able to improve the
FID scores from 18.75 to 15.68 for SN-GANs. This fur-
ther demonstrates the importance of large mini-batches for
GAN training.

Adding Core-set selection significantly improves the per-
formance of the underlying GAN for all batch-sizes. For a
batch size of 128, our model using Core-set sampling sig-
nificantly outperforms the normal SN-GAN trained with a
batch size of 256, and is comparable to an SN-GAN trained

4Note that we measure the performance of all the models using
the PyTorch version of FID scores, and not the official Tensorflow
one. We ran all our experiments with the same code for accurate
comparison.

with a batch size of 512. The results suggest that the mod-
els perform significantly better for any given batch size
when Coreset-sampling is used.

However, Core-set sampling does become less helpful as
the underlying batch size increases: for SN-GAN, the per-
formance improvement at a batch size of 128 is much larger
than the improvement at a batch size of 512. This supports
the hypothesis that Core-set selection works by approxi-
mating the coverage of a larger batch; a larger batch can
already recover more modes of the data - so under this hy-
pothesis, we would expect Core-set selection to help less
for batches that are already large.

We see similar results when experimenting with Self At-
tention GANs (SAGAN) (Zhang et al., 2018) on the LSUN
dataset (Yu et al., 2015). Compared to our results with SN-
GAN, increasing the batch size results in a smaller differ-
ence in the performance for the SAGAN model, but we still
see the FID improve from 14.82 to 12.63 as the batch-size
is increased by a factor of 4. Using Core-set sampling with
a batch size of 64, we are able to achieve a comparable
score to when the model is trained with a batch size of 128.

We believe that one reason for a comparably smaller advan-
tage of using Core-set sampling on LSUN is the nature of
the data itself: using the ‘outdoor church’ subset of LSUN
reduces the total number of ‘modes’ possible in the target
distribution, since images of churches have fewer differ-
ences than the images in CIFAR-10 data set. We see simi-
lar effects in the mixture of Gaussians experiment (See 4.2)
where the relative difference between a GAN trained with
and without Core-set sampling increases as the number of

Small-GAN

Small-GAN Small-GAN Small-GAN
GAN (batch- (batch-size GAN (batch- (batch-size GAN (batch- (batch-size
size = 128) = 128) size = 256) = 256) size = 512) = 512)
18.75 ± 0.2 16.73 ± 0.1 17.9 ± 0.1 16.22 ± 0.3 15.68 ± 0.2 15.08 ± 0.1

Table 3. FID scores for CIFAR using SN-GAN as the batch-size is progressively doubled. The FID score is calculated using 50, 000
generated samples from the generator.

Small-GAN (batch- GAN (batch- GAN (batch- GAN (batch-
size = 64) size = 64) size = 128) size = 256)

13.08 14.82 13.02 12.63

Table 4. FID scores for LSUN using SAGAN as the batch-size is progressively doubled. The FID score is calculated using 50, 000
generated samples from the generator. All experiments were run on the ‘outdoor church’ subset of the dataset.

modes are increased.

4.4.2. IMAGENET

Finally, in order to test that our method would work ‘at
scale’, we ran an experiment on the ImageNet data set. Us-
ing the code at https://github.com/heykeetae/
Self-Attention-GAN, we trained two GANs: The
first is trained exactly as described in the open-source code.
The second is trained using Coreset selection, with all other
hyper-parameters unchanged. Simply adding Coreset se-
lection to the existing SAGAN code materially improved
the FID (which we compute using 50000 samples): the
baseline model had an FID of 19.40 and the Core-set model
had an FID of 17.33.

5. Further Analysis
5.1. Timing Analysis

Since random sampling can be done very quickly, it is im-
portant to investigate the amount of time it takes to train
GANs with and without Core-set sampling. We measured
the time for SN-GAN to do 50 gradient steps on the CIFAR
dataset with various mini-batch sizes: the results are in Ta-
ble 5. On average, for each gradient step, the time added by
performing Core-Set sampling is only 0.024 seconds. Since
we perform Core-set construction on the Inception embed-
dings, we do not incur an additional dataloading cost while
training the models since a mini-batch of the same size is
needed from the data-loader. Similarly, GPU memory also
scales linearly with the mini-batch size, so using a mini-
batch which is quarter in size will lead to quarter of the
GPU memory being used for each gradient step.

5.2. Comparison to Gradient Check-pointing

It’s worth being very explicit about the cost of gradient
check-pointing – the other way of simulating large batches.
If I use gradient check-pointing on batches of size 128 to

simulate a batch of size 1024, that means we need to do a
forward and backward pass, 8 times, in serial. If I use Core-
set selection to turn a pseudo-batch of 1024 samples into a
batch of 128, then, apart from the cost of actually doing the
Core-set sampling (which we found in the last section to
be negligible), it is 8 times faster, because the only forward
and backward pass that happens happens only once, on a
batch of size 128.

5.3. Ablation Study

We conduct an ablation study to investigate the reasons for
the effectiveness of Core-set selection. We also investigate
the effect of different sampling factors and other hyper-
parameters. We run all ablation experiments on the task of
image synthesis using SN-GAN (Miyato et al., 2018) with
the CIFAR-10 dataset (Krizhevsky et al., 2009). We use the
same hyperparameters as in our main image synthesis ex-
periments and a batch size of 128, unless otherwise stated.

5.4. Examination of Main Hyper-Parameters

We examine i) the importance of the chosen target distri-
bution for Core-set selection and ii) the importance of per-
forming Core-set selection on that target distribution. The
FID scores are reported in Table 6. The importance of the
target distribution is clear, since performing Core-set selec-
tion directly on the images (experiment B) performs similar
to random-sampling.

Experiment C supports our hypothesis that performing a
random projection on the Inception embeddings can pre-
serve semantic information while reducing the dimension-
ality of the features. This increases the effectiveness of
Core-set sampling and reduces sampling time. Our ablation
study also shows the importance of performing Core-set se-
lection on both the prior and target distribution. The FID
scores of the models are considerably worse when Core-set
sampling is used on either distribution alone.

https://github.com/heykeetae/Self-Attention-GAN
https://github.com/heykeetae/Self-Attention-GAN

Small-GAN

Small-GAN (batch SN-GAN (batch SN-GAN (batch SN-GAN (batch
size = 128) size = 128) size = 256) size = 512)

14.51s 13.31s 26.46s 51.64s

Table 5. Timing to perform 50 gradient updates for SN-GAN with and without Core-sets. The time is measured in seconds. All the
experiments were performed on a single NVIDIA Titan-XP GPU.

Small-GAN A B C D E
16.73 18.75 18.09 17.03 17.88 17.45

Table 6. FID scores for CIFAR using SN-GAN. The experiment list is: A = Training an SN-GAN, B = Core-set selection directly on
the images, C = Core-set applied directly on Inception embeddings without a random projection, D = Core-set applied only on the prior
distribution, E = Core-set applied only on target distribution.

5.5. Examination of Sampling Factors

Another important hyper-parameter for training GANs us-
ing Core-set selection is the sampling factor. In Table 7 we
varied the factors by which both the prior and the target dis-
tributions were over-sampled. We see that using 4 for the
sampling factor for the prior and 8 for the sampling factor
for the target distribution results in the best performance.
One interesting observation: that the performance eventu-
ally starts degrading as the sampling factor is increased.
Since the greedy algorithm in Alg. 1 sequentially selects
the point that is the furthest away from the the already sam-
pled set, we believe that when the sampling factors are set
too high, the algorithm becomes sensitive to outliers.

5.6. Potential Distorting Effects of Core-set Sampling

Theoretically, Core-set sampling of the training distribu-
tion can cause some distortion of the distribution learned
by the generator. However, there are good ways to mitigate
this, as we will discuss. Moreover, in cases where Core-set
sampling causes more distortion, a baseline GAN will tend
to distort things in the opposite direction.

To examine this phenomenon further, we trained GANs us-
ing 4 different algorithms on a mixture of two Gaussians
with mixing coefficients of 0.01 and 0.99. We will refer to
these as the 0.01-mode and the 0.99-mode in the following
discussion. For all 4 experiments, we use a batch size of
10. The results are as follows:

5.6.1. VANILLA GAN

Training a ‘vanilla’ GAN on this mixture of two Gaussians
results in the 0.01-mode being completely dropped. This
is consistent with existing results on GANs. It’s also im-
portant because it suggests that, even if Core-set sampling
is unavoidably distorting (which it’s not - see below), there
might not be a non-distorting baseline that works in the
same situation.

Core-set Sampling Training a GAN with Core-set sampling
(sampling factor of 20) results in considerable distortion:
90.9% of samples are from the 0.99-mode and 8.9% of
samples are from the 0.01-mode (the rest of the samples
were over 4 standard deviations from either mean) - so the
0.01 mode is over-represented by about a factor of 10. This
makes a lot of sense: the final batch size is 10, and we take
200 samples to start, so the expected number of 0.01-mode
samples in our original batch is 2. Core-set sampling will
ensure we keep at least 1 of those 2 in our final batch of 10,
yielding a 10% representation for a mode that should only
have 1% representation. It’s worth pointing out that you
have to make the skew over mixture coefficients quite high
relative to the batch size for this to matter, but there likely
exist interesting data-sets that have this characteristic.

Thus, we test two methods for reducing the distortion:

5.6.2. ANNEALING SAMPLING FACTORS

Training a GAN with Core-set sampling but annealing the
sampling factor from 20 to 2 during training results in
98.3% and 1.6% of samples from the 0.99 and 0.01 modes,
respectively. This is a substantial reduction in distortion.
Moreover, this result is far preferable to the result we got
training on the vanilla GAN, which completely dropped the
0.01 mode.

5.6.3. FINE-TUNING ON RANDOMLY SAMPLED DATA

Training a GAN with Core-set sampling to start and then
random sampling near the end results in 99.5% and 0.5%
of samples from the 0.99 and 0.01 modes, respectively, for
our best try. This method resulted in some instability - the
longer the GAN is training using random samples, the more
likely the GAN was to drop the 0.01 mode. For this reason
we would probably recommend the annealing method in
practice.

Small-GAN

A B C D E F G H I
18.01 17.8 17.59 17.12 16.83 16.73 16.9 17.95 20.79

Table 7. FID scores for CIFAR using SN-GAN. Each of the experiment shows a different pair of over-sampling factors for the prior and
target distributions. The factors are listed as: sampling factor for prior distribution × sampling factor for target distribution. A = 2× 2;
B = 2× 4; C = 4× 2; D = 4× 4; E = 8× 4; F = 4× 8; G = 8× 8; H = 16× 16; I = 32× 32

5.6.4. FINAL OBSERVATIONS:

We have two more observations to make about this: First,
the FID should in principle be sensitive to such distortions,
and so the fact Core-set sampling was able to improve
the FID in some sense suggests that – on CIFAR, LSUN,
and ImageNet — the distortion was not significant. Sec-
ond, Discriminator Rejection Sampling Azadi et al. (2018)
seems like another promising way to reduce distortion. We
have not omitted accidentally, but because the annealing
method described above seems satisfactory for our pur-
posed and is also much simpler.

6. Related Work
6.1. Variance Reduction in GANs

Researchers have proposed reducing variance in GAN
training from an optimization perspective, by directly
changing the way each of the networks are optimized.
Some have proposed applying the extra-gradient method
(Chavdarova et al., 2019), and others have proposed casting
the minimax two-player game as a variational-inequality
problem (Gidel et al., 2018). Brock et al. (2018) recently
proposed reducing variance by using large mini-batches.

6.2. Stability in GAN Training

Stabilizing GANs has been extensively studied theoret-
ically. Researchers have worked on improving the dy-
namics of the two player minimax game in a variety of
ways (Nagarajan & Kolter, 2017; Mescheder et al., 2018;
Mescheder, 2018; Li et al., 2017b; Arora et al., 2017).

Training instability has been linked to the architectural
properties of GANs: especially to the discriminator (Miy-
ato et al., 2018). Proposed architectural stabilization
techniques include using Convolutional Neural Networks
(CNNs) (Radford et al., 2015), using very large batch sizes
(Brock et al., 2018), using an ensemble of the discrimina-
tors (Durugkar et al., 2016), using spectral normalization
for the discriminator (Miyato et al., 2018), adding self-
attention layers for the generator and discriminator net-
works (Vaswani et al., 2017; Zhang et al., 2018) and using
iterative updates to a global generator and discriminator us-
ing an ensemble(Chavdarova & Fleuret, 2018).

Different objectives have also been proposed to stabilize
and improve GAN training (Arjovsky et al., 2017; Gulra-

jani et al., 2017; Li et al., 2017a; Mao et al., 2017; Mroueh
& Sercu, 2017; Bellemare et al., 2017; Dieng et al., 2019).

6.3. Core-set Selection

Core-set sampling has been widely studied from an algo-
rithmic perspective in attempts to find better approximate
solutions to the original NP-Hard problem (Agarwal et al.,
2005; Clarkson, 2010; Pratap & Sen, 2018).

The optimality of the sub-sampled solutions have also been
studied theoretically (Barahona & Chudak, 2005; Gold-
man, 1971). Lucic et al. (2017) theoretically show how
training a Gaussian Mixture Models trained using a sub-
set of points found using Core-sets will have similar like-
lihood to the one trained on the full set of data. Bachem
et al. (2017) further demonstrates how Core-sets can be ap-
plied to data distributions with non-trivial manifold geom-
etry, such as a Gaussian distribution. See Phillips (2016)
for a recent survey on Core-set selection algorithms.

Core-sets have been applied to many machine learn-
ing problems such as k-means and approximate cluster-
ing (Har-Peled & Mazumdar, 2004; Har-Peled & Kushal,
2007; Bādoiu et al., 2002)), active learning for SVMs
(Tsang et al., 2005; 2007), unsupervised subset selection
for hidden Markov models (Wei et al., 2013) scalable
Bayesian inference, (Huggins et al., 2016) and mixture
models (Feldman et al., 2011). We are not aware of Core-
set selection being applied to GANs.

6.4. Core-set Selection in Deep Learning

Core-set selection is largely under-explored in the Deep
Learning literature, but interest has recently increased.
Sener & Savarese (2017) proposed to use Core-set sam-
pling as a batch-mode active learning sampler for CNNs.
Their method used the ‘embeddings’ of a trained network
to sample from.

Mussay et al. (2019) proposed using Core-set selection on
the activations of a neural network for network compres-
sion. Core-set selection has also been used in continual
learning to sample points for episodic memory (Nguyen
et al., 2017).

Small-GAN

7. Conclusion
In this work we present a general way to mimic using a
large batch-size in GANs while minimizing computational
overhead. This technique uses Core-set selection and im-
proves performance in a wide variety of contexts. Impor-
tantly, it isN times faster than using gradient accumulation
acrossN batches. This work also suggests further research:
a similar method could be applied to other learning tasks
where large mini-batches may be useful, including super-
vised learning.

We hope that this technique becomes a standard part of the
GAN practitioner toolkit. We also hope that it can help
drive further advances in research on large, sophisticated
GAN models, which without some technique like this are
difficult for most researchers to train due to computational
constraints.

8. Acknowledgements
We would like to thank Colin Raffel, Abhijeet Jagdev,
Nicolas Gagné and Hugo Berard for invaluable feedback
on the paper. We would also like to thank Nvidia for donat-
ing NVIDIA DGX-1, and Compute Canada for providing
resources for this research.

References
Agarwal, P. K., Har-Peled, S., and Varadarajan, K. R. Ge-

ometric approximation via coresets. Combinatorial and
computational geometry, 52:1–30, 2005.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. Gener-
alization and equilibrium in generative adversarial nets
(gans). In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 224–232.
JMLR. org, 2017.

Arora, S., Risteski, A., and Zhang, Y. Do gans learn the
distribution? some theory and empirics. 2018.

Azadi, S., Olsson, C., Darrell, T., Goodfellow, I., and
Odena, A. Discriminator rejection sampling. arXiv
preprint arXiv:1810.06758, 2018.

Bachem, O., Lucic, M., and Krause, A. Practical core-
set constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017.

Bādoiu, M., Har-Peled, S., and Indyk, P. Approximate clus-
tering via core-sets. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pp.
250–257. ACM, 2002.

Barahona, F. and Chudak, F. A. Near-optimal solutions
to large-scale facility location problems. Discrete Opti-
mization, 2(1):35–50, 2005.

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed,
S., Lakshminarayanan, B., Hoyer, S., and Munos, R. The
cramer distance as a solution to biased wasserstein gra-
dients. arXiv preprint arXiv:1705.10743, 2017.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Chandola, V., Banerjee, A., and Kumar, V. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):
15, 2009.

Chavdarova, T. and Fleuret, F. Sgan: An alternative train-
ing of generative adversarial networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9407–9415, 2018.

Chavdarova, T., Gidel, G., Fleuret, F., and Lacoste-Julien,
S. Reducing noise in gan training with variance reduced
extragradient. arXiv preprint arXiv:1904.08598, 2019.

Clarkson, K. L. Coresets, sparse greedy approximation,
and the frank-wolfe algorithm. ACM Transactions on
Algorithms (TALG), 6(4):63, 2010.

Dasgupta, S. and Gupta, A. An elementary proof of a theo-
rem of johnson and lindenstrauss. Random Structures &
Algorithms, 22(1):60–65, 2003.

Dieng, A. B., Ruiz, F. J., Blei, D. M., and Titsias,
M. K. Prescribed generative adversarial networks. arXiv
preprint arXiv:1910.04302, 2019.

Donoho, D. L. et al. High-dimensional data analysis: The
curses and blessings of dimensionality. AMS math chal-
lenges lecture, 1(2000):32, 2000.

Durugkar, I., Gemp, I., and Mahadevan, S. Gen-
erative multi-adversarial networks. arXiv preprint
arXiv:1611.01673, 2016.

Eskicioglu, A. M. and Fisher, P. S. Image quality measures
and their performance. IEEE Transactions on communi-
cations, 43(12):2959–2965, 1995.

Farahani, R. Z. and Hekmatfar, M. Facility location: con-
cepts, models, algorithms and case studies. Springer,
2009.

Fedus, W., Goodfellow, I., and Dai, A. M. Maskgan: bet-
ter text generation via filling in the . arXiv preprint
arXiv:1801.07736, 2018.

Small-GAN

Feldman, D., Faulkner, M., and Krause, A. Scalable train-
ing of mixture models via coresets. In Advances in
neural information processing systems, pp. 2142–2150,
2011.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and
Lacoste-Julien, S. A variational inequality perspec-
tive on generative adversarial networks. arXiv preprint
arXiv:1802.10551, 2018.

Girod, B. What’s wrong with mean-squared error? Digital
images and human vision, pp. 207–220, 1993.

Goldman, A. Optimal center location in simple networks.
Transportation science, 5(2):212–221, 1971.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch sgd: Training imagenet in
1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in neural information processing systems,
pp. 5767–5777, 2017.

Guo, J., Lu, S., Cai, H., Zhang, W., Yu, Y., and Wang, J.
Long text generation via adversarial training with leaked
information. In Thirty-Second AAAI Conference on Ar-
tificial Intelligence, 2018.

Har-Peled, S. and Kushal, A. Smaller coresets for k-median
and k-means clustering. Discrete & Computational Ge-
ometry, 37(1):3–19, 2007.

Har-Peled, S. and Mazumdar, S. On coresets for k-means
and k-median clustering. In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing,
pp. 291–300. ACM, 2004.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems, pp. 6626–6637,
2017.

Huggins, J., Campbell, T., and Broderick, T. Coresets for
scalable bayesian logistic regression. In Advances in
Neural Information Processing Systems, pp. 4080–4088,
2016.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.

In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1125–1134, 2017.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, Citeseer,
2009.

Kumar, R., Goyal, A., Courville, A., and Bengio, Y. Maxi-
mum entropy generators for energy-based models. arXiv
preprint arXiv:1901.08508, 2019.

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., and Kim,
K. J. A survey of deep learning-based network anomaly
detection. Cluster Computing, pp. 1–13, 2017.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 4681–4690, 2017.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
B. Mmd gan: Towards deeper understanding of moment
matching network. In Advances in Neural Information
Processing Systems, pp. 2203–2213, 2017a.

Li, J., Madry, A., Peebles, J., and Schmidt, L. Towards un-
derstanding the dynamics of generative adversarial net-
works. arXiv preprint arXiv:1706.09884, 2017b.

Lucic, M., Faulkner, M., Krause, A., and Feldman, D.
Training gaussian mixture models at scale via core-
sets. The Journal of Machine Learning Research, 18(1):
5885–5909, 2017.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. Least squares generative adversarial
networks. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2794–2802, 2017.

Mescheder, L. On the convergence properties of gan train-
ing. arXiv preprint arXiv:1801.04406, 1:16, 2018.

Mescheder, L., Geiger, A., and Nowozin, S. Which training
methods for gans do actually converge? arXiv preprint
arXiv:1801.04406, 2018.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
Spectral normalization for generative adversarial net-
works. arXiv preprint arXiv:1802.05957, 2018.

Mroueh, Y. and Sercu, T. Fisher gan. In Advances in Neural
Information Processing Systems, pp. 2513–2523, 2017.

Small-GAN

Mussay, B., Osadchy, M., Braverman, V., Zhou, S., and
Feldman, D. Data-independent neural pruning via core-
sets, 2019.

Nagarajan, V. and Kolter, J. Z. Gradient descent gan opti-
mization is locally stable. In Advances in Neural Infor-
mation Processing Systems, pp. 5585–5595, 2017.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner,
R. E. Variational continual learning. arXiv preprint
arXiv:1710.10628, 2017.

Phillips, J. M. Coresets and sketches. arXiv preprint
arXiv:1601.00617, 2016.

Pratap, R. and Sen, S. Faster coreset construction for pro-
jective clustering via low-rank approximation. In In-
ternational Workshop on Combinatorial Algorithms, pp.
336–348. Springer, 2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Salimans, T., Zhang, H., Radford, A., and Metaxas, D.
Improving gans using optimal transport. arXiv preprint
arXiv:1803.05573, 2018.

Sener, O. and Savarese, S. Active learning for convo-
lutional neural networks: A core-set approach. arXiv
preprint arXiv:1708.00489, 2017.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of data
parallelism on neural network training. arXiv preprint
arXiv:1811.03600, 2018.

Sinha, S., Ebrahimi, S., and Darrell, T. Variational adver-
sarial active learning. arXiv preprint arXiv:1904.00370,
2019.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.
Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489, 2017.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of resid-
ual connections on learning. In Thirty-First AAAI Con-
ference on Artificial Intelligence, 2017.

Tsang, I. W., Kwok, J. T., and Cheung, P.-M. Core vec-
tor machines: Fast svm training on very large data sets.
Journal of Machine Learning Research, 6(Apr):363–
392, 2005.

Tsang, I. W., Kocsor, A., and Kwok, J. T. Simpler core
vector machines with enclosing balls. In Proceedings of
the 24th international conference on Machine learning,
pp. 911–918. ACM, 2007.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wei, K., Liu, Y., Kirchhoff, K., and Bilmes, J. Using doc-
ument summarization techniques for speech data subset
selection. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pp. 721–726, 2013.

Wolsey, L. A. and Nemhauser, G. L. Integer and combina-
torial optimization. John Wiley & Sons, 2014.

Xian, Y., Lorenz, T., Schiele, B., and Akata, Z. Feature
generating networks for zero-shot learning. In Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, pp. 5542–5551, 2018.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Advances in neural information processing systems, pp.
3320–3328, 2014.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T.,
and Xiao, J. Lsun: Construction of a large-scale im-
age dataset using deep learning with humans in the loop.
arXiv preprint arXiv:1506.03365, 2015.

Zenati, H., Foo, C. S., Lecouat, B., Manek, G., and Chan-
drasekhar, V. R. Efficient gan-based anomaly detection.
arXiv preprint arXiv:1802.06222, 2018.

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang,
X., and Metaxas, D. N. Stackgan: Text to photo-realistic
image synthesis with stacked generative adversarial net-
works. In Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 5907–5915, 2017.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A.
Self-attention generative adversarial networks. arXiv
preprint arXiv:1805.08318, 2018.

Zhu, J.-J. and Bento, J. Generative adversarial active learn-
ing. arXiv preprint arXiv:1702.07956, 2017.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE interna-
tional conference on computer vision, pp. 2223–2232,
2017.

