
A. Proofs
Proposition 3. ∀P,Q ∈ P(X ) such that P � Q, ∀T ∈ L∞(Q) such that im(T ) ⊆ dom((f ′)−1), and ∀R ⊆ L∞≥0(Q)
such that {1} ⊆ R we have:

If (T ;P,Q) ≤ LRf (T ;P,Q) ≤ IW (T ;P,Q). (22)

Proof. From Propositions 1, and thatR ⊆ L∞≥0(Q), we have:

If (T ;P,Q) = inf
r∈L∞≥0

(Q)
`f (T, r;P,Q) ≤ inf

r∈R
`f (T, r;P,Q) = LRf (T ;P,Q). (27)

From Proposition 2 and that {1} ⊆ R, we have:

LRf (T ;P,Q) = inf
r∈R

`f (T, r;P,Q) ≤ inf
r∈1

`f (T, r;P,Q) = LRf (T ;P,Q) ≤ IW (T ;P,Q). (28)

Combining the two inequalities completes the proof.

Theorem 1. For {1} ⊆ R ⊆ L∞≥0(Q), define

Df,R(P‖Q) := sup
T∈F
LRf (T ;P,Q) (23)

where F := {T : X → dom((f ′)−1), T ∈ L∞(Q)}. Then

Df (P‖Q) ≤ Df,R(P‖Q) ≤ sup
T∈F

IW (T ;P,Q). (24)

Proof. From Proposition 1, we have the following upper bound for Df,R(P‖Q):

sup
T∈F

inf
r∈R

EP [f(r)] + EP [T ]− EQ[r · T ] (29)

≤ sup
T∈F

inf
r∈{1}

EP [f(r)] + EP [T ]− EQ[r · T ]

= sup
T∈F

EP [T ]− EQ[T ] = IPMF (P,Q),

We also have the following lower bound for Df,R(P‖Q):

sup
T∈F

inf
r∈R

EP [f(r)] + EP [T ]− EQ[r · T ] (30)

≥ sup
T∈F

inf
r∈L∞≥0

(Q)
EP [f(r)] + EP [T ]− EQ[r · T ]

= sup
T∈F

EP [T ]− EQ[f∗(T )] = Df (P‖Q).

Therefore, Df,R(P‖Q) is bounded between Df (P‖Q) and IPMF (P,Q) and thus it is a valid divergence over P(X ).

Theorem 2. Let f(u) = u log u and F a set of real-valued bounded measurable functions on X . For any fixed choice of
P,Q, and T ∈ F , we have

arg min
r∈∆(Q)

EQ[f(r)] + EP [T ]− EQ[r · T ] =
eT

EQ[eT ]
(26)

Proof. Consider the following Lagrangian:

h(r, λ) := EQ[f(r)]− EQ[r · T ] + λ(EQ[r]− 1) (31)

where λ ∈ R and we formalize the constraint r ∈ ∆(r) with EQ[r]− 1 = 0. Taking the functional derivative ∂h/∂r and
setting it to zero, we have:

f ′(r) dQ− T dQ+ λ (32)
= (log r + 1) dQ− T dQ+ λ = 0,

so r = exp(T − (λ+ 1)). We can then apply the constraint EQ[r] = 1, where we solve λ+ 1 = EQ[eT ], and consequently
the optimal r = eT /EQ[eT ] ∈ ∆(Q).



B. Example KL-WGAN Implementation in PyTorch
def get_kl_ratio(v):

vn = torch.logsumexp(v.view(-1), dim=0) - torch.log(torch.tensor(v.size(0)).float())
return torch.exp(v - vn)

def loss_kl_dis(dis_fake, dis_real, temp=1.0):
"""
Critic loss for KL-WGAN.
dis_fake, dis_real are the critic outputs for generated samples and real samples.
temp is a hyperparameter that scales down the critic outputs.
We use the hinge loss from BigGAN PyTorch implementation.
"""
loss_real = torch.mean(F.relu(1. - dis_real))
dis_fake_ratio = get_kl_ratio(dis_fake / temp)
dis_fake = dis_fake * dis_fake_ratio
loss_fake = torch.mean(F.relu(1. + dis_fake))
return loss_real, loss_fake

def loss_kl_gen(dis_fake, temp=1.0):
"""
Generator loss for KL-WGAN.
dis_fake is the critic outputs for generated samples.
temp is a hyperparameter that scales down the critic outputs.
We use the hinge loss from BigGAN PyTorch implementation.
"""
dis_fake_ratio = get_kl_ratio(dis_fake / temp)
dis_fake = dis_fake * dis_fake_ratio
loss = -torch.mean(dis_fake)
return loss

C. Argument about χ2-Divergences
We present a similar argument to Theorem 2 to χ2-divergences, where f(u) = (u− 1)2.

Theorem 3. Let f(u) = (u− 1)2 and F is a set of real-valued bounded measurable functions on X . For any fixed choice
of P,Q, and T ∈ F such that T ≥ 0, T − E[T ] + 2 ≥ 0, we have

arg min
r∈∆(Q)

EQ[f(r)] + EP [T ]− EQr [T ] =
T − EQ[T ] + 2

2

Proof. Consider the following Lagrangian:

h(r, λ) := EQ[f(r)]− EQ[r · T ] + λ(EQ[r]− 1) (33)

where λ ∈ R and we formalize the constraint r ∈ ∆(r) with EQ[r]− 1 = 0. Taking the functional derivative ∂h/∂r and
setting it to zero, we have:

f ′(r) dQ− T dQ+ λ (34)
= 2r dQ− T dQ+ λ = 0,

so r = (T − λ)/2. We can then apply the constraint EQ[r] = 1, where we solve λ = EQ[T ] − 2, and consequently the
optimal r = (T − EQ[T ] + 2)/2 ∈ ∆(Q).

In practice, when the constraint T − EQ[T ] + 2 ≥ 0 is not true, then one could increase the values when T is small, using

T̂ = max(T, c) + b (35)

where b, c are some constants that satisfies ˆT (x)− EQ[T̂ ] + 2 ≥ 0 for all x ∈ X . Similar to the KL case, we encourage
higher weights to be assigned to higher quality samples.



If we plug in this optimal r, we obtain the following objective:

EP [T ]− EQ[T ] +
1

4
EQ[T 2] +

1

4
(EQ[T ])2 = EP [T ]− EQ[T ]− VarQ[T ]

4
. (36)

Let us now consider P = Pdata, Q = Pdata+Gθ
2 , then the f -divergence corresponding to f(u) = (u− 1)2:

Df (P‖Q) =

∫
X

(P (x)−Q(x))2

P (x)+Q(x)
2

dx, (37)

is the squared χ2-distance between P and Q. So the objective becomes:

min
θ

max
φ

EPdata
[Dθ]− EGθ [Dφ]−VarMθ

[Dφ], (38)

where Mθ = (Pdata +Gθ)/2 and we replace T/2 with Dφ. In comparison, the χ2-GAN objective (Tao et al., 2018) for θ is:

(EPdata
[Dθ]− EGθ [Dφ])2

VarMθ
[Dφ]

. (39)

They do not exactly minimize χ2-divergence, or a squared χ2-divergence, but a normalized version of the 4-th power of it,
hence the square term over EPdata

[Dθ]− EGθ [Dφ].

D. Additional Experimental Details
For 2d experiments, we consider the WGAN and KL-WGAN objectives with the same architecture and training procedure.
Specifically, our generator is a 2 layer MLP with 100 neurons and LeakyReLU activations on each hidden layer, with a
latent code dimension of 2; our discriminator is a 2 layer MLP with 100 neurons and LeakyReLU activations on each
hidden layer. We use spectral normalization (Miyato et al., 2018) over the weights for the generators and consider the
hinge loss in (Miyato et al., 2018). Each dataset contains 5,000 samples from the distribution, over which we train both
models for 500 epochs with RMSProp (learning rate 0.2). The procedure for tabular experiments is identical except that we
consider networks with 300 neurons in each hidden layer with a latent code dimension of 10. Dataset code is contained in
https://github.com/kevin-w-li/deep-kexpfam.

E. Samples
We show uncurated samples from BigGAN trained with WGAN and KL-WGAN loss in Figures 6a and 6b.

(a) CelebA 64x64 samples trained with WGAN. (b) CelebA 64x64 Samples trained with KL-WGAN.



(a) CIFAR samples trained with WGAN.

(b) CIFAR samples trained with KL-WGAN.


