
Provably Efficient Model-based Policy Adaptation

A. Detailed Analysis of Algorithm 1 (Proof of Theorem 4.4)
In this section, we provide detailed proof for Theorem 4.4.

Consider a Markov Chain p : S → ∆(S) over horizon H . Denote dp as the induced state distribution under p and ρp as the
induced state trajectory distribution under p.

Lemma A.1. Consider two Markov Chains pi : S → ∆(S) with i ∈ {1, 2}. If

Es∼dp1 [‖p1(·|s)− p2(·|s)‖] ≤ δ,

then for trajectory distributions, we have:

‖ρp1 − ρp2‖ ≤ O(Hδ).

The above lemma implies that if the Markov chain p2 can predict the Markov chain p1 under the state distribution induced
by p1, then we can guarantee that the state-wise trajectory distributions from p1 and p2 are close as well.

Proof. Denote ρp,s1,...sh as the trajectory distribution induced by p conditioned on the first h many states are equal to
s1, . . . , sh. Denote p(·|s0) as the initial state distribution for s1 with s0 being a faked state. By definition, we have:

‖ρp1 − ρp2‖ =
∑
τ

|ρp1(τ)− ρp2(τ)|

=
∑

s1,...sH

∣∣∣∣∣
H∏
h=1

p1(sh|sh−1)−
H∏
h=1

p2(sh|sh−1)

∣∣∣∣∣
=

∑
s1,...sH

∣∣∣∣∣
H∏
h=1

p1(sh|sh−1)− p1(s1|s0)

H∏
h=2

p2(sh|sh−1) + p1(s1|s0)

H∏
h=2

p2(sh|sh−1)−
H∏
h=1

p2(sh|sh−1)

∣∣∣∣∣
≤
∑
s1

p1(s1|s0)
∑

s2,...,sH

∣∣∣∣∣
H∏
h=2

p1(sh|sh−1)−
H∏
h=2

p2(sh|sh−1)

∣∣∣∣∣+
∑
s1

|p1(s1|s0)− p2(s1|s0)|

(∑
s2,...,sH

H∏
h=2

p2(sh|sh−1)

)
= Es1∼p1 [‖ρp1,s1 − ρp2,s1‖] + ‖p1(·|s0)− p2(·|s0)‖
≤ Es1,s2∼p1 [‖ρp1,s1,s2 − ρp2,s1,s2‖] + ‖p1(·|s0)− p2(·|s0)‖+ Es1∼dπ1;1

[‖p1(·|s1)− p2(·|s1)‖].

Recursively applying the same operation on ‖ρp1,s1 − ρp2,s1‖ to time step H , we have:

‖ρp1 − ρp2‖ ≤
H∑
h=1

Esh∼dp1;h
[‖p1(·|sh)− p2(·|sh)‖] ≤ Hδ,

where we recall dπ =
∑H
h=1 dπ;h/H by definition. Extension to continuous state can be achieved by simply replaying

summation by integration.

The next lemma shows that by leveraging the no-regret property of FTL, we can learn a locally accurate model.

Lemma A.2 (Local Accuracy of the Learned Model). Denote the sequence of models learned in Alg. 1 as {f̂1, . . . , f̂T },
there exists a model f̂ ∈ {f̂1, . . . , f̂T } such that:

Es∼dπ
f̂

[
Ea∼U(A(t))

[
DKL(f (t)(·|s, a), f̂(·|s, a))

]]
≤ O(1/T),

where πf (s) , argmina∈A(t) ‖f(·|s, a)− f (s)(·|s, π(s)(s)) for all s ∈ S for any f .

Provably Efficient Model-based Policy Adaptation

Proof. Denote loss function `e(f) as:

`e(f) , Es∼d
π
(t)
e
,a∼U(A(t))

[
E
s′∼f(t)

s,a
[− log(f(s′|s, a))]

]
.

Since Alg. 1 is equivalent to running FTL on the sequence of strongly convex loss functions {`e(f)}Te=1, we have (Shalev-
Shwartz et al., 2012):

T∑
e=1

`e(f̂e) ≤ min
f∈F

T∑
e=1

`e(f) +O (log T) .

Add
∑T
e=1 Es∼d

π
(t)
e
,a∼U(A(t))[Es′∼f(t)

s,a
log f (t)(s′|s, a)] on both sides of the above inequality and using the definition of

KL divergence, we have:

T∑
e=1

Es∼d
π
(t)
e
,a∼U(A(t))

[
DKL(f (t)(·|s, a), f̂e(·|s, a))

]
≤ min

f∈F

T∑
e=1

Es∼d
π
(t)
e
,a∼U(A(t))

[
DKL(f (t)(·|s, a), f(·|s, a))

]
+O(log(T)) = O(log(T)),

where the last equality comes from the realizability assumption f (t) ∈ F .

Using the fact that the minimum among a sequence is less than the average of the sequence, we arrive:

min
f̂∈{f̂e}Te=1

Es∼dπ
f̂
,a∼U(A(t))

[
DKL(f (t)(·|s, a), f̂(·|s, a))

]
≤ Õ(1/T).

The above lemma indicates that as T →∞, we will learn a model f̂ which is close to the target true model f (t) under the
state distribution induced by πf̂ . But it does not state the difference between the behavior generated by πf̂ at the target
domain and the behavior generated by π(s) at the source domain. The next lemma uses the definition πf̂ to show that when
executing πf̂ in the target domainM(t), πf̂ can actually generates behavior that is similar to the behavior generated by π(s)

in the source domainM(s).

Lemma A.3 (The Behavior of πf̂). Denote dπf̂ as the state distribution induced by πf̂ induced atM(t) (target domain).

Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖ ≤ O(|A(t)|/

√
T) + Es∼dπ

f̂

[
εs,π(s)(s)

]
,

where we recall the definition of ε in Assumption 4.1.

Proof. Consider the Markov chain that is defined with respect to f (t) and πf̂ , i.e., f (t)(s′|s, πf̂ (s)). Denote the state distri-

Provably Efficient Model-based Policy Adaptation

bution induced by f (t)(s′|s, πf̂ (s)) at the target domain as dπf̂ . Let us bound Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖.

Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖

≤ Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f̂(·|s, πf̂ (s))‖+ Es∼dπ

f̂
‖f̂(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖

≤
√
Es∼dπ

f̂
DKL(f (t)(·|s, πf̂ (s)), f̂(·|s, πf̂ (s))) + Es∼dπ

f̂
‖f̂(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖

≤ O(|A(t)|/
√
T) + Es∼dπ

f̂
‖f̂(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖

≤ O(|A(t)|/
√
T) + Es∼dπ

f̂
‖f̂(·|s, πf(t)(s))− f (s)(·|s, π(s)(s))‖

≤ O(|A(t)|/
√
T) + Es∼dπ

f̂
‖f̂(·|s, πf(t)(s))− f (t)(·|s, πf(t)(s))‖

+ Es∼dπ
f̂
‖f (t)(·|s, πf(t)(s))− f (s)(·|s, π(s)(s))‖

≤ O(|A(t)|/
√
T) +

√
Es∼dπ

f̂
DKL(f (t)(·|s, πf(t)(s)), f̂(·|s, πf(t)(s))) + Es∼dπ

f̂

[
εs,π(s)(s)

]
= O(|A(t)|/

√
T) + Es∼dπ

f̂

[
εs,π(s)(s)

]
,

where the first inequality uses triangle inequality, the second inequality uses Pinsker’s inequality, the third inequality uses the
local accuracy of the learned model f̂ (Lemma A.2), the fourth inequality uses the definition that πf̂ , and the fifth inequality
uses triangle inequality again, and the sixth inequality uses Pinsker’s inequality again with the definition of adaptive ability
together with the definition of πf(t)(s) , argmina∼A(t) ‖f (t)(·|s, a)− f (s)(·|s, π(s)(s))‖.

Proof of Theorem 4.4. Use Lemma A.1 and Lemma A.3 and consider f (s)(·|s, π(s)(s)) as a Markov chain, we have that:

‖ρtπf̂ − ρ
s
πs‖ ≤ O(H|A(t)|/

√
T) +Hε,

where we denote ε := Es∼dπ
f̂

[
εs,π(s)(s)

]
This concludes the proof of Theorem 4.4.

A.1. Extension to Continuous Action Space (Proof of Corollary 4.6)

For simplicity, we consider A(t) = [0, 1].2 We consider Lipschitz continuous transition dynamics with and only with respect
to actions, i.e.,

‖f(·|s, a)− f(·|s, a′)‖ ≤ L|a− a′|, (4)

where L is a Lipschitz constant. We emphasize here that we only assume Lipschitz continuity with respect to action in
M(t). Hence this is a much weaker assumption than the common Lipschitz continuity assumption used in RL community,
which requires Lipschitz continuity in both action and state spaces. We also assume that our function class F only contains
function approximators that are Lipschitz continuous with respect to action a (e.g., feedforward fully connected ReLu
network is Lipschitz continuous).

Proof of Corollary 4.6. For analysis purpose, let us discretize the action space into bins with size δ ∈ (0, 1). Denote the
discrete action set Ā(t) = {0.5δ, 1.5δ, 2.5δ, . . . , 1− 0.5δ} (here we assume 1/δ = N+). Here |Ā(t)| = 1/δ.

Now consider the following quantity:

Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖,

for any â. Without loss of generality, we assume â ∈ [0, δ]. Via Pinsker’s inequality and Lemma A.2, we have:

Es∼dπ
f̂
Ea∼U([0,1])‖f (t)(·|s, a)− f̂(·|s, a)‖ ≤ O(1/

√
T),

2We can always normalize action to [0, 1].

Provably Efficient Model-based Policy Adaptation

which implies that:

Es∼dπ
f̂
Ea∼U([0,δ])‖f (t)(·|s, a)− f̂(·|s, a)‖ ≤ O(1/(δ

√
T)).

We proceed as follows:

Es∼dπ
f̂
Ea∼U([0,δ])‖f (t)(·|s, a)− f̂(·|s, a)‖

= Es∼dπ
f̂
Ea∼U([0,δ])‖f (t)(·|s, â+ a− â)− f̂(·|s, â+ a− â)‖

≥ Es∼dπ
f̂
Ea∼U([0,δ])

(
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2L|a− â|

)
= Es∼dπ

f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2LEa∼U([0,δ])|a− â|

≥ Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2LEa∼U([0,δ])δ

= Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2Lδ,

where the first inequality uses the fact that â ∈ [0, δ] and the Lipschitz conditions on both f (t) and f̂ ∈ F , the second
inequality uses the fact that |a− â| ≤ δ for any a ∈ [0, δ] as â ∈ [0, δ].

Hence, we have:

Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ ≤ 2Lδ +O(1/(δ

√
T)) = O(T−1/4),∀â ∈ A(t),

where in the last step we set δ = Θ(T−1/4).

Now, we can simply repeat the process we have for proving Lemma A.3, we will have:

Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖ ≤ O(T−1/4) + ε.

Combine with Lemma A.1, we prove the corollary for continuous action setting.

For general n-dim action space, our bound will scale in the order O(
√
nT−1/(2n+2)) + ε. The proof of the n-dim result is

similar to the proof of the 1-d case and is included below for completeness:

Proof for n-dim Action Space. For n-dimensional action space, we have:

Es∼dπ
f̂
Ea∼U([0,δ]n)‖f (t)(·|s, a)− f̂(·|s, a)‖ ≤ O(1/(δn

√
T)).

Using the Lipschitz property:

Es∼dπ
f̂
Ea∼U([0,δ]n)‖f (t)(·|s, a)− f̂(·|s, a)‖

= Es∼dπ
f̂
Ea∼U([0,δ]n)‖f (t)(·|s, â+ a− â)− f̂(·|s, â+ a− â)‖

≥ Es∼dπ
f̂
Ea∼U([0,δ]n)

(
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2L‖a− â‖

)
= Es∼dπ

f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2LEa∼U([0,δ]n)‖a− â‖

≥ Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2LEa∼U([0,δ]n)

√
nδ

= Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ − 2L

√
nδ,

Combining with above leads to

Es∼dπ
f̂
‖f (t)(·|s, â)− f̂(·|s, â)‖ ≤ 2

√
nLδ +O(1/(δn

√
T)) = O(

√
nT−1/(2n+2))

where in the last step we set δ = Θ((Tn)
−1

2(n+1)). Finally we have:

Es∼dπ
f̂
‖f (t)(·|s, πf̂ (s))− f (s)(·|s, π(s)(s))‖ ≤ O(

√
nT−1/(2n+2)) + ε.

Provably Efficient Model-based Policy Adaptation

B. Detailed description of our experiments
B.1. Environment descriptions.

For each of the four environments (HalfCheetah, Ant, Reacher) we tested on, we include a detailed numerical description of
the environments in table 2.

B.2. Descriptions of the perturbations

B.2.1. CHANGING GRAVITY.

We change the gravity in the whole Mujoco locomotion task by a max range from 50% to 200% of the normal gravity. The
normal gravity is set to 0 on x and y axis and −9.81 on z axis.

B.2.2. CHANGING MASS.

We change the mass of the agent in the Mujoco locomotion task by a max range from 50% to 200% of its original mass.
Note that most agents are composed of links with independent masses, so besides changing the agent’s mass as a whole, we
also design experiments that change the mass of each individual links of the agent respectively.

B.2.3. CHANGING PLANE ORIENTATION.

In the Reacher task, we tilt the platform of the Reacher so that it forms an angle of 45 degree of the original plane.

B.2.4. CHANGING ARM LENGTH.

In the Reacher task, we change the first link of the Reacher arm (which is composed of two parts) into one tenth of its
original length.

B.2.5. CHANGING FRICTION.

We change the frictional coefficient in the environment on an uniform scale. We found if friction is the only change
in the target domain, then the adaptation task is relatively simple, so we incorporate it as one of the changes in the
Multi-dimensional perturbation task.

B.2.6. MOTOR NOISE.

This task tries to mimic the motor malfunction or inaccuracy in the real world. After the agent outputs an action, we add on
a noise from a normal distribution with mean 0 and a fixed standard deviation from 0.2 to 1.

B.2.7. MULTIPLE DOFS OF CHANGES.

In the 3DOF task, we set the gravity to 0.8, mass to 1.2 and friction coefficient to 0.9. In the 15DOF task, we uniformly
sample a coefficient from 0.9 to 1.1 for each of the following configuration: gravity, friction coefficient and the mass of each
joint of the agent. We record these changes and apply for all comparing methods.

Figure 6. Visual illustration of modified Reacher environment. left: 45 degrees of tilted plane. right: Reacher with 10% length of its first
arm.

Provably Efficient Model-based Policy Adaptation

Environment
name

Full state
space size

Model agnostic
state size3

Action space
size

Reward
function

HalfCheetah 18 1 6 forward reward - 0.1 × control cost

Ant 29 2 8
forward reward - 0.5 × control cost -

0.0005 × contact cost + survive reward
Reacher 16 4 2 forward distance - control cost

Table 2. Description of the OpenAI gym environments. Note that to enforce safety of the agent in the target environment, we make a
modification on HalfCheetah environment such that the episode will be terminated when the cheetah falls off.

B.3. Hyperparameters

source PADA-DM PADA-DM with target Christiano et al.,
2016

Zhu et al.,
2018

PPO

timesteps 2e6 8e4
(5e4,8e4,12e4,15e4)

8e4
(5e4,8e4,1.2e5,1.5e5)

2e5 (1e5,2e5,4e5) 2e6 2e6

learning rate (with
linear decay)

7e-4 5e-3 5e-3 5e-3 7e-4 7e-4

soft update rate every 3000 timesteps
(3000,5000,10000)

explore rate ε 0.01 (0.01,0.02) 0.01 (0.01,0.02)
reward tradeoff λ 0.5

Table 3. Final hyperparameters we use for our methods and baselines in the experiments. The values in the brackets are the value we
considered.

C. Implementation details
C.1. Pretraining of the source dynamics model

In section 5.1, one assumption we make is that we have a pretrained model f̂ (s) that well approximates the source dynamics
f (s). In practice, we pretrain the model f̂ (s) with the (s, a, s′) triplets generated during the training of π(s). The model f̂ (s) is
a two-layer neural network with hidden size 128 and ReLU nonlinearity, trained with MSE loss since we assume deterministic
transitions. Using these existing samples has two major advantages: first is that we don’t need further interaction with the
source environment and second is that the trained model f̂ (s) especially well approximates the transitions around the actions
taken by π(s), which is important to our algorithm.

Remark that if we already have the ground truth source dynamics f (s), which is a mild assumption while using a simulator,
we can also directly use f (s) to replace f̂ (s). During our experiments, we observe that whether using f (s) or f̂ (s) won’t
affect the performance of our method.

C.2. Cross Entropy Method

Here we provide a pseudocode of the Cross Entropy Method that we used in our method, as in Alg. 3. In our implementation,
we use T = 10 iterations, N = 200 actions sampled per iteration, K = 40 elites (elite ratio 0.4) and σ0 = 0.5. We use
the output of target policy as the initial mean, and when we don’t have the target policy, we use π(s)(s) as the initial mean.
To avoid invalid actions, for each action ai we sample, we clip the action if certain dimension is out of the bound of A(t)

(usually [-1,1] on each dimension).

3This means the number of states that won’t be passed as inputs to models or policies, e.g., the current coordinate or location of the
agent.

Provably Efficient Model-based Policy Adaptation

Algorithm 3 Cross Entropy Method

Require: Initial mean µ0, initial standard deviation σ0, action space A(t), current model δθ, current state s, number of
iterations T, sample size N, elite size K.

1: Σ0 ← I|A(t)|(σ
2
0)

2: for t = 1, . . . T do
3: Sample {ai}Ni=1 ∼ N (µt−1,Σt−1)
4: {ai}Ni=1 ← clip(ai,min(A(t)),max(A(t)))
5: Sort {ai} with descending ‖δθ(s, ai)‖22 and pick the first K actions {aj}Kj=1

6: µt ← 1
KΣKj=1aj

7: Σt ← 1
KΣKj=1(aj − µt)(aj − µt)T

8: end for
9: Output: µT

D. Supplemental experiments
D.1. Accuracy of Deviation Model

We evaluate the performance of the deviation model by comparing its output with the actual deviation (i.e., ∆π(s)

) in the
target and source environment states. We compare the performance between linear and nonlinear deviation models. We
include linear models as they are convenient if we want to use optimal control algorithms. The nonlinear model is the
same model we use for our PADA-DM algorithm, which has two 128-neuron layers with ReLU (Nair & Hinton, 2010)
nonlinearity. Both of the deviation models are tested on the same initial state distribution after training on 80k samples. In
7(left), we plot the output of the deviation model against the ground truth deviation. We test on 50 trajectories and each data
point refers to the average L2 state distance along one trajectory. In 7(right), we plot the ground truth deviation, and the
outputs of the linear and nonlinear deviation models over time, on 10 test trajectories.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
DM output

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

re
al

 d
yn

am
ic

s
di

ve
rg

en
ce

linear DM
nonlinear DM

Figure 7. Comparing the performances of the linear and nonlinear deviation models. left: This plot depicts the correlation between the
predicted deviation and the actual deviation. The nonlinear deviation model is more accurate since its slope is closer to 1. right: This plot
shows the predicted and actual deviation over the course of 10 trajectories. Here again, the nonlinear model (orange) curve lies very close
to the actual deviation curve (green).

D.2. Long-term learning curves

In this section we show a more comprehensive long-term learning curve in Fig. 8. Each task here corresponds to the task in
Fig. 2. Note that here again the x-axis is in natural logarithm scale.

Provably Efficient Model-based Policy Adaptation

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

1000

0

1000

2000

3000

4000

5000

R
ew

ar
ds

HalfCheetah 150% mass

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

0

1000

2000

3000

4000

R
ew

ar
ds

HalfCheetah 50% Gravity

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

1000

500

0

500

1000

1500

2000

2500

R
ew

ar
ds

HalfCheetah 0.4 std Motor Noise

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

300

250

200

150

100

50

0

R
ew

ar
ds

Reacher-v2 10% first arm length

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

2000

1000

0

1000

2000

3000

R
ew

ar
ds

Ant 200% Gravity

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

1500

1000

500

0

500

1000

R
ew

ar
ds

Ant 0.6 std Action Noise

7 8 9 10 11 12 13 14
Number of Timesteps (in log)

250

200

150

100

50

0

R
ew

ar
ds

Reacher-v2 45 degree plane

Figure 8. We plot the learning curves across 5 random seeds of our adaptation method (using PADA-DM and PADA-DM with target), and
the baseline methods on a number of tasks including perturbation of the mass, gravity, motor noise for the locomotion environments
(HalfCheetah and Ant), and the plane angle and arm lengths for the navigation environment (Reacher). The title of each plot corresponds
to the perturbation in the target domain, e.g., HalfCheetah Mass 150% means in mass of the agent in the target domain is 150% of that in
the source domain. The shaded area denotes 1 standard deviation range from the mean.

D.3. Comparing using true reward

To further verify the efficiency of our choice of reward (the deviations between two environments), we conduct an additional
experiments where we use the ground truth reward for CEM. We fix all the hyperparameters and train an additional model
to learn to ground truth reward. To ensure the fairness of the comparison, when we use the ground truth reward, we keep
doing 1 step look-ahead during CEM. The results verify that the deviation serves as a better reward for conducting policy
adaptation, where the ground truth reward leads to a local minimum that results in suboptimal performance.

0 1 2 3 4 5 6 7 8
Number of Timesteps 1e4

0

1000

2000

3000

4000

R
ew

ar
ds

HalfCheetah 150% Mass
PADA-DM
PADA-DM w/ target
true reward

Figure 9. Comparing learning ground truth reward, learning deviations quickly adapts the policy in the target domain, where using ground
truth reward may not necessarily leads to optimal performance in the target domain.

D.4. Additional Experiments for Meta-Learning MAML

In this section we conduct an additional experiment to Section 6.3. In section 6.3, we use 80k samples of adaptation for our
method and MAML to conduct a fair comparison. However, using so many samples for adaptation contradicts MAML’s
claim of few-shot adaptation and we also observe that MAMLs test performance does not improve too much as we change
the sample size in adaptation phase. Thus here we report the additional experiments to support this claim: we adopt the same
experiment setting in Section 6.3, and this time we use 20k samples for MAML during adaptation. The test performance

Provably Efficient Model-based Policy Adaptation

is recorded in Fig. 10(a) and Fig. 11(a). Comparing with the original performance (Fig. 10(b) and Fig. 11(b)), the test
performance of MAML does not change that much as the number of adaptation samples decreases and our approach still
outperforms MAML consistently.

In addition, we record the mean and the standard deviation of the test performance of each method to deliver a more direct
comparison in Table 4 and Table 5. As we can see, our approach outperforms other baselines most of the time. When the
perturbation is small (e.g., the 120% columns in both tables), DR also delivers very strong performances. However when
perturbation is large (e.g., 200% columns in both tables), DR fails to adapt completely, which indicates that DR has troubles
to adapt to out-of-distribution new environments.

50% 80% 120% 150% 200%
Gravity

0

2000

4000

6000

R
ew

ar
ds

algorithm
MAML
DR
source policy
PADA-DM
PADA-DM w/ DR

(a) (b)

Figure 10. Ablation experiments using domain randomization and meta-learning. (a) MAML with 20k adaptation samples. (b) MAML
with 80k adaptation samples. The boxplots show the median of the data while more statistics such as mean and standard deviation are
shown in the following tables.

50% 80% 120% 150% 200%
Mass

2000

0

2000

4000

6000

R
ew

ar
ds

algorithm
MAML
DR
source policy
PADA-DM
PADA-DM w/ DR

(a) (b)

Figure 11. Ablation experiments using domain randomization and meta-learning. (a) MAML with 20k adaptation samples. (b) MAML
with 80k adaptation samples.

Provably Efficient Model-based Policy Adaptation

Gravity Perturbation
50% 80% 120% 150% 200%

Source policy
1549.74

(1090.73)
4444.86
(637.77)

4592.18
(201.30)

2543.55
(916.16)

-156.51
(25.93)

Domain Randomization
2282.74

(1563.70)
4838.87

(1134.98)
5236.46

(1179.85)
2896.03
(554.00)

-43.97
(423.47)

PADA-DM
2694.78

(1166.88)
4739.32
(279.06)

4889.02
164.38)

2998.32
(266.75)

1531.23
(400.96)

PADA-DM w/ DR
3230.29

(1280.54)
5036.59
(657.98)

4934.04
(720.34)

3200.73
(521.50)

1431.53
(496.11)

MAML (20k)
854.24

(692.50)
1810.51
(663.72)

1895.86
(650.76)

1575.06
(653.09)

831.07
(717.78)

MAML (80k)
876.37

(711.98)
1778.67
(669.86)

1894.28
(644.55)

1568.60
(646.79)

823.13
(721.15)

Table 4. Mean and standard deviation (in the brackets) of the episodic rewards of each method in the target environment with perturbed
gravity across 100 trajectories of 5 random seeds (500 trajectories in total).

Mass Perturbation
50% 80% 120% 150% 200%

Source policy
921.13

(1192.43)
3343.05

(2317.32)
4166.10
(494.94)

2045.26
(665.30)

-149.92
(27.28)

Domain Randomization
1665.05

(1357.31)
3823.45

(1944.70)
3932.86

(1791.18)
2635.72

(1105.15)
944.50

(1134.32)

PADA-DM
3271.52
(752.62)

4914.67
(379.73)

4584.95
375.51)

3557.25
(183.46)

1398.88
(500.09)

PADA-DM w/ DR
2673.87

(1009.75)
5348.98
(556.19)

4854.30
(591.50)

3276.70
(874.54)

1616.75
(490.53)

MAML (20k)
854.24

(692.50)
1810.51
(663.72)

1895.86
(650.76)

1575.06
(653.09)

831.07
(717.78)

MAML (80k)
876.37

(711.98)
1778.67
(669.86)

1894.28
(644.55)

1568.60
(646.79)

823.13
(721.15)

Table 5. Mean and standard deviation (in the brackets) of the episodic rewards of each method in the target environment with perturbed
mass across 100 trajectories of 5 random seeds (500 trajectories in total).

