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Abstract
In this work, we propose a novel method for gen-
erating 3D point clouds that leverage properties of
hyper networks. Contrary to the existing methods
that learn only the representation of a 3D object,
our approach simultaneously finds a representa-
tion of the object and its 3D surface. The main
idea of our HyperCloud method is to build a hyper
network that returns weights of a particular neural
network (target network) trained to map points
from a uniform unit ball distribution into a 3D
shape. As a consequence, a particular 3D shape
can be generated using point-by-point sampling
from the assumed prior distribution and transform-
ing sampled points with the target network. Since
the hyper network is based on an auto-encoder
architecture trained to reconstruct realistic 3D
shapes, the target network weights can be con-
sidered a parametrization of the surface of a 3D
shape, and not a standard representation of point
cloud usually returned by competitive approaches.
The proposed architecture allows finding mesh-
based representation of 3D objects in a generative
manner while providing point clouds en pair in
quality with the state-of-the-art methods.

1. Introduction
Today many registration devices, such as LIDARs and depth
cameras, are able to capture not only RGB channels, but
also depth estimates. As a result, 3D objects registered by
those devices and geometric data structures representing
them, called point clouds, become increasingly important
in contemporary computer vision applications, including
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Figure 1. Mesh representations generated by our HyperCloud
method. Contrary to the existing methods that return point cloud
representations sparsely distributed in 3D space, our approach al-
lows to create a continuous 3D object representation in the form
of high quality meshes.

autonomous driving (Yang et al., 2018a) or robotic manipu-
lation (Kehoe et al., 2015). To enable processing of point
clouds, researchers typically transform them into regular 3D
voxel grids or collections of images (Su et al., 2015; Wu
et al., 2015). This, however, increases memory footprint
of object representations and leads to significant informa-
tion losses. On the other hand, representing 3D objects
with the parameters of their surfaces is not trivial due to
the complexity of mesh representations and combinatorial
irregularities. Last but not least, point clouds can contain
a variable number of data points corresponding to one ob-
ject and registered at various angles, which requires for the
methods that process them to be permutation and rotation
invariant.

One way of addressing the above challenges related to point
cloud representations is to subsample the point clouds and
enforce permutation invariance within the model architec-
ture, as it was done in DeepSets (Zaheer et al., 2017) or
PointNet (Qi et al., 2017a;b). Although it works perfectly
fine when point clouds are given as an input of the model,
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it is not obvious how to apply this approach for variable
size outputs. Recently introduced family of methods solve
for this problem by relying on generative models that re-
turn probability distribution of the points on the object sur-
face, instead of an exact set of points (Yang et al., 2019;
Stypułkowski et al., 2019). The most successful methods
that follow this path, such as PointFlow (Yang et al., 2019)
and Conditioned Invertible Flow (Stypułkowski et al., 2019),
are based on the flow architecture that allows obtaining a
representation of 3D object surfaces. The main limitation
of the flow-based models is their cumbersome training pro-
cess. Since flow architectures require the determinant of
the Jacobian to be tractable for a given transformation, their
optimization needs to be overly constrained. Moreover,
flow-based methods cannot be trained on probability dis-
tributions without compact support. For instance, it is not
possible to train flow-based model on 3D ball since com-
puting a cost function using log-likelihood returns infinity
as a result and can therefore lead to numerical instability of
the entire training procedure. Moreover, flow-based mod-
els require the dimensionality of input and output data to
be identical. Last but not least, these architectures need a
significant amount of parameter and structure fine-tuning to
work.

In this paper, we propose to address the above shortcom-
ings of the flow models by introducing a novel architecture
that builds on the approach of (Zamorski et al., 2018) and
extends it with a hyper network (Ha et al., 2016; Klocek
et al., 2019) that outputs weights of a generative model, the
so-called target network. The target network can then be
used to create an arbitrary number of points (depending on
its architecture returned by a hyper network), instead of
fixed-size sets. Fig. 2 shows the overview of our method in
comparison to the baseline approaches. Contrary to the flow-
based models, our method dubbed HyperCloud1 is much
simpler conceptually and more general as it can be used to
adapt any PointNet model to generate continuous output
representation. Furthermore, it is much easier to train than
the competing algorithms, as it requires a smaller number
of hyperparameters and does not put any constraints on the
input probability distribution and its Jacobian. Finally, as
presented in Fig. 3, our method returns a continuous mesh
representation of 3D objects at virtually no cost in the qual-
ity of reconstructions. To the best of our knowledge, this
is the first time a hyper network is used in the context of
3D point cloud generation, and we believe it opens a new
research path into understanding and processing this type of
data.

The contributions of this work can be summarized as fol-
lows: firstly, we introduce a novel yet general method that

1We make our implementation available at https://
github.com/gmum/3d-point-clouds-HyperCloud

Figure 2. Top: The baseline approach for generating 3D point
clouds returns a fixed number of points (Zamorski et al., 2018).
Bottom: Our HyperCloud method leverages a hypernetwork archi-
tecture that takes a 3D point cloud as an input while returning the
parameters of the target network. Since the parameters of the target
network are generated by hypernetwork, the output dataset can be
variable in size. As a result, we obtain a continuous parametriza-
tion of the object’s surface and a more powerful representation of
its mesh.

Figure 3. Scheme of producing mesh representations with Hyper-
Cloud. When using 3D ball distribution, our method can generate
3D point clouds filled with data points, while when given 3D
sphere distribution it transforms samples from the sphere to sur-
faces of 3D objects - a feature highly desirable in the context of
3D mesh rendering.

builds varied-size representations of point clouds that can be
output by any model. Secondly, we achieve this by mapping
the probability distributions to 3D models with generative
target networks trained by a hypernetwork introduced in
this work. Lastly, our approach offers a continuous mesh

https://github.com/gmum/3d-point-clouds-HyperCloud
https://github.com/gmum/3d-point-clouds-HyperCloud
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representation of 3D objects that can be used to render their
surfaces directly, as shown in Fig. 1.

The remainder of this paper is structured as follows. Sec. 2
discusses related works. In Sec. 3 we introduce our Hyper-
Cloud approach and describe it in details. Sec. 4 presents the
results of evaluations and we conclude this work in Sec. 5.

2. Related Work
Introducing deep learning in the context of 3D point cloud
representations allowed to improve performance in vari-
ous discriminative tasks including classification (Qi et al.,
2017a;b; Yang et al., 2018b; Zaheer et al., 2017) and segmen-
tation (Qi et al., 2017a; Shoef et al., 2019). Despite those
successes, generating 3D point clouds with deep learning
models remains a challenging task.

Due to the irregular format of point cloud representation,
most researchers transform such data to regular 3D voxel
grids or collections of images. In (Wu et al., 2015), the
authors propose the voxelized representation of an input
point cloud. Other approaches use multi-view 2D images
(Su et al., 2015) or occupancy grid calculation (Ji et al.,
2012; Maturana & Scherer, 2015). Modeling volumetric
objects in a general-adversarial manner is also considered
in (Wu et al., 2016) for the 3D-GAN model.

Another approach to generative models for point cloud con-
verts a point distribution to a N × 3 matrix by sampling a
pre-defined number ofN points from the distribution so that
existing generative models are applicable. Such a solution
can be applied in the VAE framework (Gadelha et al., 2018)
as well as in adversarial auto-encoders (AAEs) (Zamorski
et al., 2018).

In the above methods, auto-encoders and GANs are trained
with loss functions that optimize directly the distance be-
tween two point sets, e.g. using Chamfer distance (CD) or
earth mover’s distance (EMD). In (Sun et al., 2018), authors
apply auto-regressive models (Van den Oord et al., 2016)
with a discrete point distribution to generate one point at a
time, also using a fixed number of points per shape.

All the above methods learn to produce a fixed number of
points for each shape, but they do not parametrize a surface
of the shapes. Treating a point cloud as a fixed-dimensional
matrix has several drawbacks. First, the model is restricted
to generate a fixed number of points. Getting more points
for a particular shape requires separate up-sampling models
such as (Yifan et al., 2019; Yu et al., 2018).

In (Yang et al., 2019), authors propose a principled proba-
bilistic framework to generate 3D point clouds by modeling
them as a distribution of distributions. PointFlow uses two-
level of distributions where the first level is the distribution
of shapes, and the second level is the distribution of points

given a shape. PointFlow uses continuous normalizing flow
(Chen et al., 2018; Grathwohl et al., 2018) for both of these
tasks.

Instead of directly parametrizing the distribution of points
in a shape, PointFlow models this distribution as an invert-
ible parameterized transformation of 3D points from a prior
distribution (e.g., a 3D Gaussian). Intuitively, under this
model, generating points for a given shape involves sam-
pling points from a generic Gaussian prior and then moving
them according to this parameterized transformation to their
new location in the target shape. Such solution has many
advantages over the classical approaches, which only pro-
duce a cloud of points, nevertheless is is limited in multiple
ways. The most important limitation is the fact that they
use log-likelihood as a cost function, and, in consequence,
cannot be trained on probability distributions with compact
support. This significantly reduces the utility of flow-based
models as, for instance, using a 3D ball distribution as a
prior returns infinite values and therefore leads to numerical
instability of training. In this work, we show that once this
constraint is dropped thanks to using a fully-connected neu-
ral network we can directly model 3D point cloud surfaces
and hence create their continuous mesh representations.

3. HyperCloud: Hypernetwork for
Generating 3D Point Clouds

In this section, we present our HyperCloud model for gener-
ating 3D point clouds. HyperCloud encompasses previously
introduced approaches: the auto-encoder based generative
model proposed in (Zamorski et al., 2018) and the hypernet-
work proposed in (Ha et al., 2016). Before we present our
solution, we will briefly describe these two approaches.

Adversarial Auto-encoders for 3D Point Clouds Let us
start with the auto-encoder architecture for 3D point cloud.
Let X = {Xi}i=1,...,n = {(xi, yi, zi)}i=1,...,n be a given
dataset containing point clouds. The basic aim of auto-
encoder is to transport the data through a typically, but not
necessarily, lower dimensional latent space Z ⊆ RD while
minimizing the reconstruction error. Thus, we search for an
encoder E : X → Z and decoder D : Z → X functions,
which minimizes the reconstruction error between Xi and
its reconstructions D(EXi).

For point cloud representation, the crucial step is to define
proper reconstruction loss that can be used in the autoen-
coding framework. In the literature, two common distance
measures are successively applied for reconstruction pur-
poses: Earth Mover’s (Wasserstein) Distance (Rubner et al.,
2000) and Chamfer pseudo-distance (Tran, 2013).

Earth Mover’s Distance (EMD) is a metric between two
distributions based on the minimal cost that must be paid to
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transform one distribution into the other. For two equally
sized subsets X1 ⊂ R3 and X2 ⊂ R3 their EMD is defined
as:

EMD(X1, X2) = min
φ:X1→X2

∑
x∈X1

c(x, φ(x))

where φ is a bijection and c(x, φ(x)) is the cost function
and can be defined as:

c(x, φ(x)) = 1
2‖x− φ(x)‖

2
2.

Chamfer pseudo-distance (CD): measures the squared dis-
tance between each point in one set to its nearest neighbor
in the other set:

CD(X1, X2) =
∑
x∈X1

min
y∈X2

‖x− y‖22+
∑
x∈X2

min
y∈X1

‖x− y‖22.

Auto-encoder based generative model is a classical auto-
encoder model with a modified cost function, which forces
the model to be generative, i.e., ensures that the data trans-
ported to the latent space comes from the prior distribution
(typically Gaussian) (Kingma & Welling, 2013; Tolstikhin
et al., 2017; Tabor et al., 2018). Thus, to construct a gen-
erative auto-encoder model, we add to its cost function a
measure of the distance of a given sample from prior distri-
bution.

Variational Auto-encoderss (VAE) are generative models
that are capable of learning approximated data distribution
by applying variational inference (Kingma & Welling, 2013).
To ensure that the data transported to latent space Z are
distributed according to standard normal density, we add the
distance from standard multivariate normal density:

cost(X ; E ,D)=Err(X ;D(EX ))+λDKL(EX , N(0, I)),

where DKL is the Kullback–Leibler divergence (Kullback
& Leibler, 1951).

The main limitation of VAE models is that the regulariza-
tion term requires particular prior distribution to make KL
divergence tractable. In order to deal with that limitation,
the authors of (Makhzani et al., 2015) introduce Adversarial
Auto-encoder (AAE) that utilize adversarial training to force
a particular distribution on Z space. The model assumes
that an additional neural network - discriminator, which is
responsible for distinguishing between fake and true sam-
ples, where the true samples are sampled from an assumed
prior distribution and fake samples are generated via an
encoding network.

In (Zamorski et al., 2018), authors propose an approach to
Adversarial Auto-encoders dedicated to the 3D point clouds.
Because the input of the model is a set of points, they use as

encoder E PointNet model (Qi et al., 2017a) that is invariant
to permutations. We receive the same distribution for all
possible orderings of points from X . Since discriminator is
not permutation invariant mapping D (as it is a simple MLP
model), authors utilize an additional function that provides
one-to-one mapping for the points stored in X .

The probability distribution assumed on latent space can
be more complex than N(0, I) and not given in an ex-
plicit form. Some autoencoders try to learn some more
sophisticated distributions directly from data. Such solu-
tions may utilize techniques like VampPrior (Tomczak &
Welling, 2017) or incorporate continuous (Yang et al., 2019)
or discrete (Berg et al., 2018) normalizing flows.

Due to large techniques of enforcing probability distribution
on the latent space, the cost function of the model can be
formulated in the more general form:

cost(X ; E ,D) = Err(X ;D(EX )) +Reg(EX , P ), (1)

where Err is Earth Mover’s (Wasserstein) Distance or
Chamfer pseudo-distance and Reg is a function that forces
latent space to be from some known or trainable distribution
P . For known distributions like Gaussian, Kullback–Leibler
divergence or adversarial training can be used for regular-
ization.

In our work, we propose to enrich the presented regularized
autoencoder by replacing the decoder with the hypernet-
work. The goal of the hypernetwork is to transform the
latent representation of the point cloud to the weights of
the so-called target network. The goal of the target net-
work is to transform the samples from assumed prior to
the points that represent 3D shapes without assuming the
arbitrary number of points. Roughly speaking, in our case,
hypernetwork produces a parametrization of the respective
generative model.

Hyper-network Hyper-networks, introduced in (Ha et al.,
2016), are defined as neural models that generate weights
for a separate target network solving a specific task. The
authors aim to reduce the number of trainable parameters
by designing a hyper-network with a smaller number of
parameters than the target network. Making an analogy
between hyper-networks and generative models, the authors
of (Sheikh et al., 2017), use this mechanism to generate
a diverse set of target networks approximating the same
function.

Hyper-networks can also be used for functional representa-
tions of images (Klocek et al., 2019). In such concept by
a functional (or deep) representation of an image, authors
understand a function (neural network) I : R2 → R3 which
given a point (with arbitrary coordinates) (x, y) in the plane
returns the point in [0, 1]3 representing the RGB values of
the color of the image at (x, y).
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Figure 4. Interpolations between two 3D point clouds and its mesh representations.

Figure 5. 3D point clouds and their mesh representations produced by HyperCloud.
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HyperCloud Inspired by the above methods, we propose
our HyperCloud model that uses hyper-network to output
weights of generative network to create 3D point clouds, in-
stead of generating them directly with the decoder, as done
in (Zamorski et al., 2018). More specifically, we present
parameterization of the surface of 3D objects as a function
S : R3 → R3, which given a point from the prior distribu-
tion (x, y, z) returns the point on the surface of the objects.
Roughly speaking, instead of producing a 3D point cloud,
we would like to produce many neural networks (a differ-
ent neural network for each object) that model surfaces of
objects.

In practice, we have one neural network architecture that
uses different weights for each 3D object. More precisely,
we model function Tθ : R3 → R3 (neural network with
weights θ), which takes an element from the prior distri-
bution P and transfers it on an element on the surface of
the object. In our work, we use the transformation between
uniform distribution on the 3D ball and the object. This
choice of distribution allows one to create a continuous
mesh representation. The key idea behind this is that the dis-
tribution does not have compact support. Roughly speaking,
Gaussian distribution does not have a smooth border.

In consequence, we can produce as many points as we need
(we can sample an arbitrary number of points from the
uniform distribution of the unit ball and transfer them by
target network). Thanks to the target network, we can train
our model on point clouds containing a different number of
points.

Furthermore, we can produce a continuous mesh representa-
tion of the object. All elements from the ball are transformed
into a 3D object. In consequence, the unit sphere is trans-
formed into the surface of the object. Now we can produce
meshes without a secondary mesh rendering procedure. It
is obtained by simply feeding our neural network by the
vertices of a sphere mesh, see Fig 3. As a result, we obtain
a high-quality meshes of 3D objects. The sharpness of the
borders is a direct consequence of compact support probabil-
ity distribution of the input prior. Since flow-based models
cannot handle this family of priors and require infinite sup-
port distributions, the representations generated with those
models are lower quality.

The target network is not trained directly. We use a hyper-
network Hφ : R3 ⊃ X → θ, which for an point-cloud
X ⊂ R3 returns weights θ to the corresponding target net-
work Tθ. Thus, a point cloud X is represented by a function

T ((x, y, x); θ) = T ((x, y, x);Hφ(X)).

To use the above model, we need to train the weights φ
of the hypernetwork. For this purpose, we minimize the
distance between point clouds like Chamfer distance (CD)

or earth mover’s distance (EMD) over the training set of
points clouds. More precisely, we take an input point cloud
X ⊂ R3 and pass it to Hφ. The hypernetwork returns
weights θ to target network Tθ. Next, the input point cloud
X is compared with the output from the target network
Tθ (we sample the correct number of points from the prior
distribution and transfer them by target network). As a hy-
pernetwork, we use a permutation invariant encoder that
is based on PointNet architecture (Qi et al., 2017a) and
modified decoder to produce weight instead of row points.
The architecture of Tθ consists of: an encoder (E) which is
a PointNet-like network that transports the data to lower-
dimensional latent space Z ∈ RD and a decoder (D) (fully-
connected network), which transfers latent space to the vec-
tor of weights for the target network. In our framework
hypernetwork Tθ(X) represents our autoencoder structure
D(EX). Assuming Tθ(X) = D(EX), we train our model
by minimizing the cost function given by equation (1).

Observe, that we only train a single neural model (hyper-
network), which allows us to produce a great variety of
functions at test time. In consequence, we might expect
that target networks for similar point cloud will be similar
(see Sec. 4 for details). We are able to produce smooth
interpolation by using hypernetwork.

Figure 6. Thanks to using hypernetwork architecture, we can work
with one object (distribution of points on a single 3D point cloud).
One possible application is interpolation in the target network
instead. By taking two samples on the uniform ball and its interpo-
lation we can construct interpolation between points on the surface
of the object.

4. Experiments
In this section, we describe the experimental results of the
proposed generative models in various tasks, including 3D
points mesh generation and interpolation. In the first subsec-
tion, we show that our model inherited reconstruction and
generative capabilities from models based on generating a
fixed number of points. Then we show that we are able to
produce continuous mesh representation.

Metrics Following the methodology for evaluating gener-
ative fidelity and diversification among samples provided in
(Achlioptas et al., 2017) and (Yang et al., 2019), we utilize
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2*Cathegory 2*Methods 2*JSD MMD COV 1-NNA
CD EMD CD EMD CD EMD

7*Airplane r-GAN 7.44 0.261 5.47 42.72 18.02 93.58 99.51
l-GAN (CD) 4.62 0.239 4.27 43.21 21.23 86.30 97.28
l-GAN (EMD) 3.61 0.269 3.29 47.90 50.62 87.65 85.68
PC-GAN 4.63 0.287 3.57 36.46 40.94 94.35 92.32
PointFlow 4.92 0.217 3.24 46.91 48.40 75.68 75.06
HyperCloud (ours) 4.84 0.266 3.28 39.75 43.70 93.80 88.95
Training set 6.61 0.226 3.08 42.72 49.14 70.62 67.53

7*Chair r-GAN 11.5 2.57 12.8 33.99 9.97 71.75 99.47
l-GAN (CD) 4.59 2.46 8.91 41.39 25.68 64.43 85.27
l-GAN (EMD) 2.27 2.61 7.85 40.79 41.69 64.73 65.56
PC-GAN 3.90 2.75 8.20 36.50 38.98 76.03 78.37
PointFlow 1.74 2.42 7.87 46.83 46.98 60.88 59.89
HyperCloud (ours) 2.73 2.56 7.84 41.54 46.67 68.20 68.80
Training set 1.50 1.92 7.38 57.25 55.44 59.67 58.46

7*Car r-GAN 12.8 1.27 8.74 15.06 9.38 97.87 99.86
l-GAN (CD) 4.43 1.55 6.25 38.64 18.47 63.07 88.07
l-GAN (EMD) 2.21 1.48 5.43 39.20 39.77 69.74 68.32
PC-GAN 5.85 1.12 5.83 23.56 30.29 92.19 90.87
PointFlow 0.87 0.91 5.22 44.03 46.59 60.65 62.36
HyperCloud (ours) 3.09 1.07 5.38 40.05 40.05 84.65 77.27
Train set 0.86 1.03 5.33 48.30 51.42 57.39 53.27

Table 1. Generation results. MMD-CD scores are multiplied by 103; MMD-EMD scores and JSDs are multiplied by 102.

the following criteria for evaluation: Jensen-Shannon Diver-
gence, Coverage, Minimum Matching Distance 1-nearest
Neighbor Accuracy.

Jensen-Shannon Divergence (JSD): a measure of the dis-
tance between two empirical distributions P and Q, defined
as:

JSD(P‖Q)= KL(P‖M)+KL(Q‖M)
2 , where M= P+Q

2 .

Coverage (COV): a measure of generative capabilities in
terms of richness of generated samples from the model. For
two point cloud sets X1, X2 ⊂ R coverage is defined as
a fraction of points in X2 that are in the given metric the
nearest neighbor to some points in X1.

Minimum Matching Distance (MMD): Since COV only
takes the closest point clouds into account and does not
depend on the distance between the matchings additional
metric was introduced. For point cloud sets X1, X2 MMD
is a measure of similarity between point clouds in X1 to
those in X2.

1-Nearest Neighbor Accuracy (1-NNA) is a testing proce-
dure characteristic for evaluating GANs. We consider two
sets: set Sg composed of generated point clouds and set of
test (reference) point clouds, Sr. We pick some generated
point cloud X from Sg and find the corresponding nearest
neighbor in S−X = Sr

⋃
Sg −{X}, the set that aggregates

both training and sampled shapes excluding the considered
point cloud X . The 1-NNA is the leave-one-out accuracy of

the 1-NN classifier:

1−NNA =

∑
X∈Sg

1[NX∈Sg ]+
∑

Y ∈Sr
1[NY ∈Sr]

|Sg|+|Sr| .

For each sample, the 1-NN classifier classifies it as coming
from Sr or Sg according to the label of its nearest sample.
The perfect situation occurs when the classifier is unable to
distinguish between real and generated point clouds, which
means that the value of the criterion is close to 50%.

We examine the generative capabilities of the provided Hy-
perCloud model in comparison to the existing reference
approaches. In this experiment, we follow the methodology
provided in (Yang et al., 2019). For this particular experi-
ment, we utilize the hypernetwork architecture trained with
EMD reconstruction loss together with the continuous flow
on latent representation instead of simple KLD regulariza-
tion. We compare the results with the existing solutions:
raw-GAN (Achlioptas et al., 2017), latent-GAN (Achliop-
tas et al., 2017), PC-GAN (Li et al., 2018) and PointFlow
(Yang et al., 2019). We train each model using point clouds
from one of the three categories in the ShapeNet dataset:
airplane, chair, and car. We follow the exact evaluation
pipeline provided in (Yang et al., 2019).

The results are presented in Table 1. The HyperCloud ob-
tains comparable results to the other models that utilize
EMD reconstruction loss with the advantage of sampling an
arbitrary number of points. The model was outperformed
by PointFlow that does not utilize EMD as reconstruction
loss and is not directly capable of generating 3D meshes.
Moreover, target network in Hypercloud is originally im-
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3DGAN FoldingNet l-GAN (EMD) l-GAN (CD) l-GAN-2 (EMD) l-GAN-2 (CD) PointFlow HyperCloud
MN40 (%) 83.3 88.4 84.0 84.5 87.0 86.7 86.8 84.7

Table 2. Unsupervised feature learning. Models are first trained on ShapeNet to learn shape representations, which are then evaluated on
ModelNet40 (MN40) by comparing the accuracy of off-the-shelf SVMs trained using the learned representations. l-GAN-2 was trained
and evalauted using PointFlow experimental settings.

2*Sphere R 2*JSD MMD COV
CD EMD CD EMD

Airplane
PointFlow
R=2.795 22.26 0.49 6.65 44.69 20.74
R=3.136 26.46 0.60 6.89 39.50 19.01
R=3.368 29.65 0.68 6.84 40.49 16.79

HyperCloud (ours)
R=1 9.51 0.45 5.29 30.60 28.88

Chair
PointFlow
R=2.795 19.28 4.28 13.38 36.85 20.84
R=3.136 22.52 4.89 14.47 32.47 17.22
R=3.368 24.68 5.36 14.97 31.41 17.06

HyperCloud (ours)
R=1 4.32 2.81 9.32 40.33 40.63

Car
PointFlow
R=2.795 16.59 1.6 8.00 20.17 17.04
R=3.136 20.21 1.75 7.80 21.59 17.32
R=3.368 24.10 1.96 8.35 18.75 17.04

HyperCloud (ours)
R=1 5.20 1.11 6.54 37.21 28.40

Table 3. The values of quality measures of 3D representations ob-
tained by sampling from sphere of a given radius R for airplane,
chair and car shapes. It can be seen that HyperCloud preserves the
good quality of sampled point clouds, while PointFlow has diffi-
culties in obtaining good quality representations from the sphere.

plemented as a simple multilayer perceptron (MLP), con-
trary to PointFlow which uses more complex continuous
flow. We expect, that by substituting MLP with continu-
ous flow model we can achieve the results comparable with
PointFlow. Finally, the inference speed of our approach is
reduced from 0.27s per one ShapeNet sample for PointFlow
to 0.08s (3.4x improvement) for our HyperCloud.

Generation of 3D meshes The main advantage of our
method comparing to reference solutions is the ability to
generate both 3D point clouds and meshes without any post-
processing stage. In Fig. 5, we present point cloud as well as
mesh representation generated by the same model. Thanks
to using a uniform distribution on the 3D ball, we can easily
construct mesh. All elements from the ball are transformed
into a 3D object. In consequence, the unit sphere is trans-
formed into surface of the object. As it was mentioned, we
can produce meshes without a secondary meshing proce-

dure. It is obtained by propagating the triangulation of the
3D sphere through the target network, see Fig 3.

In the case of Gaussian prior, we can use a similar procedure,
but it is nontrivial to select the optimal sphere radius, which
will be used by the generation of mesh (contrary to Hyper-
Cloud, in PointFlow there is no default for radius R). If the
chosen radius is too small, the constructed mesh lies inside
the point cloud, and consequently, we lose small outlying
elements of the object, e.g., chair legs. On the other hand, if
the chosen sphere radius is large, some small elements of
the 3D object will be merged, e.g., four legs of a chair will
be joined into one.

For evaluation of the quality of mesh grid representation, we
propose the following experiment. Instead of sampling the
points from the assumed prior distribution, we sample them
from a given surface (sphere of the assumed radius). Next,
we calculate the standard quality measures of generated
point clouds considered in the previous experiment. Since
all models except PointFlow listed in Tab. 1 work only on
a fixed number of points we compare our results only with
PointFlow.

As it was mention above, we can use the PointFlow model
to produce mesh representation in a similar way by feeding
the target network by triangulation on a sphere. In our ex-
periment, consistently with the standard used for hypothesis
testing, we use 95%, 98% and 99% confidence spheres for
3D Gaussian distribution, see Tab. 3. As we can see, the
default Gaussian prior is not suitable for producing a contin-
uous representation of the boundary. Moreover, the seem-
ingly natural exchange (with accordance with our approach)
of the normal distribution onto the uniform distribution on
the ball will not work since flow methods use log-likelihood
as a cost function, and consequently, it is impossible to use
prior density with compact support.

Unsupervised representation learning In this experi-
ment we evaluate the quality of latent space representation
of our model. We follow the experimental settings from
previous works (Achlioptas et al., 2017; Yang et al., 2019)
and train our model using full ShapeNet dataset. Next, we
evalaute the quality of latent representation by training a
linear SVM classifier on top of it using ModelNet40 dataset.
We provide the results of empirical evaluation of our model
in Table 2. HyperCloud achieved the accuracy that is com-
parable to the results achieved by original version of l-GAN
but was worse than results achieved by PointFlow and l-
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GAN trained with a new settings. However, in our experi-
ments we did not use preprocessed ModelNet dataset in the
same pipeline as in PointFlow, but in the way recommended
in (Achlioptas et al., 2017).

Interpolation In our model, we can construct two types
of interpolation. Since we have two different prior distri-
butions: Gaussian in hyper network architecture (latent of
auto-encoder) and uniform distribution on the unit sphere
in the target network, see Fig. 2. First of all, we can take
two 3d objects and obtain a smooth transition between them,
see Fig. 4. For each point cloud, we can generate mesh
representation. Therefore we can also produce interpolation
between meshes.

Thanks to using hypernetwork architecture, we can work
with one object (distribution of points on a single 3D point
cloud). One possible application is interpolation in the
target network instead of the classical approach in the latent
space of auto-encoder, see Fig. 6. By taking two samples
on the uniform ball and its interpolation, we can construct
interpolation between points on the surface of the object.

5. Conclusions
In this work, we presented a novel approach to represent
point clouds of 3D objects with parameters of target net-
works trained by a hypernetwork as generative models.
More specifically, we are able to build variable size rep-
resentations of point clouds not only when they are inputted
into the model, but also when they are returned as an out-
put. Contrary to the existing methods, our approach is not
constrained by the assumptions enforced on the objective
functions in the case of the flow-based architectures, such
as tractability of Jacobian determinants. Finally, our Hy-
perCloud method offers a general framework that allows
to adapt any PointNet model to build a continuous repre-
sentation of the output vector. In this work we focused
specifically on mesh representations of 3D objects, present-
ing that our approach give empirically better results on the
task of realistic mesh generation. Nevertheless, thanks to the
generality of our proposed architecture that encompasses
many existing ones, it can be used in a multitude of real-life
applications and it can open new areas of research related
to generative models.
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