
Which Tasks Should Be Learned Together in Multi-task Learning?

Trevor Standley 1 Amir Zamir 2 Dawn Chen 3 Leonidas Guibas 1 Jitendra Malik 4 Silvio Savarese 1

http://taskgrouping.stanford.edu/

Abstract

Many computer vision applications require solv-
ing multiple tasks in real-time. A neural net-
work can be trained to solve multiple tasks si-
multaneously using multi-task learning. This
can save computation at inference time as only
a single network needs to be evaluated. Unfor-
tunately, this often leads to inferior overall per-
formance as task objectives can compete, which
consequently poses the question: which tasks
should and should not be learned together in
one network when employing multi-task learn-
ing? We study task cooperation and competition
in several different learning settings and propose a
framework for assigning tasks to a few neural net-
works such that cooperating tasks are computed
by the same neural network, while competing
tasks are computed by different networks. Our
framework offers a time-accuracy trade-off and
can produce better accuracy using less inference
time than not only a single large multi-task neural
network but also many single-task networks.

1. Introduction
Many applications, especially robotics and autonomous ve-
hicles, are chiefly interested in using multi-task learning to
reduce the inference time required to estimate many char-
acteristics of visual input. For example, an autonomous
vehicle may need to detect the location of pedestrians, deter-
mine a per-pixel depth, and predict objects’ trajectories, all
within tens of milliseconds. In multi-task learning, multiple
tasks are solved at the same time, typically with a single neu-
ral network. In addition to reduced inference time, solving a
set of tasks jointly rather than independently can, in theory,
have other benefits such as improved prediction accuracy,
increased data efficiency, and reduced training time.

1Stanford University 2Swiss Federal Institute of Technology
(EPFL) 3Google Inc. 4The University of California, Berkeley.
Correspondence to: Trevor Standley <tstand@cs.stanford.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Encoder

Shared
Representation

Decoder Decoder

Semantic
Segmentation

Depth
Estimation

Encoder

Shared
Representation

DecoderDecoder

Edge
Detection

Keypoint
Detection

Half
Sized

Encoder

Decoder

Surface
Normal

Prediction

A B C
Input Image

Discarded
Decoder

Discarded
Surface Normal

Prediction
Discarded
Decoder

Discarded
Surface Normal

Prediction

Figure 1. Given five example tasks to solve, there are many
ways that they can be split into task groups for multi-task
learning. How do we find the best one? We propose a com-
putational framework that, for instance, suggests the following
grouping to achieve the lowest total loss, using a computational
budget of 2.5 units: train network A to solve Semantic Segmenta-
tion, Depth Estimation, and Surface Normal Prediction; train net-
work B to solve Keypoint Detection, Edge Detection, and Surface
Normal Prediction; train network C with a less computationally
expensive encoder to solve Surface Normal Prediction alone; in-
cluding Surface Normals as an output in the first two networks
were found advantageous for improving the other outputs, while
the best Normals were predicted by the third network. This task
grouping outperforms all other feasible ones, including learning
all five tasks in one large network or using five dedicated smaller
networks.

Unfortunately, the quality of predictions are often observed
to suffer when a network is tasked with making multiple
predictions due to a phenomenon called negative transfer.
In fact, multi-task performance can suffer so much that
smaller independent networks are often superior. This may
be because the tasks must be learned at different rates. Or
because one task may dominate the learning leading to poor
performance on other tasks. Furthermore, task gradients
may interfere and multiple summed losses may make the
optimization landscape more difficult.

On the other hand, when task objectives do not interfere
much with each other, performance on both tasks can be
maintained or even improved when jointly trained. Intu-
itively, this loss or gain of quality seems to depend on the
relationship between the jointly trained tasks. We empiri-
cally study these relationships in depth.

Prior work has studied the relationship between tasks for
transfer learning (Zamir et al., 2018). However, we find that
transfer relationships are not highly predictive of multi-task
relationships. In addition to studying multi-task relation-

http://taskgrouping.stanford.edu/

Which Tasks Should Be Learned Together in Multi-task Learning?

ships, we attempt to determine how to produce good pre-
diction accuracy under a limited inference time budget by
assigning competing tasks to separate networks and cooper-
ating tasks to the same network.

More concretely, this leads to the following problem: Given
a set of tasks,T , and a computational budgetb(e.g., maxi-
mum allowable inference time), what is the optimal way to
assign tasks to networks with combined cost� bsuch that
a combined measure of task performances is maximized?

To this end, we develop a computational framework for
choosing the best tasks to group together in order to have a
small number of separate neural networks that completely
cover the task set and that maximize task performance under
a given computational budget. We make the intriguing
observation that the inclusion of an additional task in a
network can potentially improve the accuracy of the other
tasks, even though the performance of the added task might
be poor. This can be viewed asguiding the loss of one
task by adding an additional loss, for instance similar to
curriculum learning (Bengio et al., 2009). Achieving this,
of course, depends on picking the proper auxiliary task to be
added – our system can take advantage of this phenomenon,
as schematically shown in Figure 1.

This paper has two main contributions. First, in Section 4,
we provide an empirical study of a number of factors that in-
�uence multi-task learning including network size, dataset
size, and how tasks in�uence one another when learned
together. Then, in Section 5, we outline a framework for
assigning tasks to networks in order to achieve the best total
prediction accuracy with a limited inference-time budget.
We analyze the results and show that selecting the best as-
signment of tasks to groups is critical for good performance.

2. Prior Work

Multi-Task Learning: See (Zhang & Yang, 2017) for a
good overview of multi-task learning. The authors of (Ruder,
2017) identify two clusters of contemporary techniques hard
parameter sharing and soft parameter sharing.

In hard parameter sharing, most or all of the parameters in
the network are shared among all tasks. A known contempo-
rary example of hard parameter sharing in computer vision
is UberNet (Kokkinos, 2017) which tackles 7 computer vi-
sion problems using hard parameter sharing. The author
focuses on reducing the computational cost of training for
hard parameter sharing, but experiences a rapid degrada-
tion in performance as more tasks are added to the network.
Hard parameter sharing is also used in many other works
such as (Thrun, 1996; Caruana, 1997; Nekrasov et al., 2018;
Dvornik et al., 2017; Bilen & Vedaldi, 2016; Pentina &
Lampert, 2017; Doersch & Zisserman, 2017; Zamir et al.,
2016; Long et al., 2017; d. Miranda et al., 2012; Zhou et al.,

2018; Rudd et al., 2016; Leang et al., 2020; Chennupati
et al., 2019; Suteu & Guo, 2019).

Other works, such as (Sener & Koltun, 2018) and (Chen
et al., 2018b), aim to dynamically re-weight each task's
loss during training. The former work �nds weights that
provably lead to a Pareto-optimal solution, while the latter
attempts to �nd weights that balance the in�uence of each
task on network weights. (Kendall et al., 2018) uses uncer-
tainty to weight tasks. (Gong et al., 2019) and (Leang et al.,
2020) compare loss weighting strategies. They both �nd
no clear winner and similar performance among strategies,
including a uniform weighting strategy. Similarly to us, they
�nd that multi-task learning is often inferior to single task
learning with multiple networks.

In soft or partial parameter sharing, either there is a sepa-
rate set of parameters per task, or a signi�cant fraction of
the parameters are unshared. The models are tied together
either by information sharing or by requiring parameters
to be similar. Examples include (Dai et al., 2016; Duong
et al., 2015; Misra et al., 2016; Tessler et al., 2017; Yang &
Hospedales, 2017; Lu et al., 2017).

A canonical example of soft parameter sharing can be seen
in (Duong et al., 2015). The authors are interested in de-
signing a deep dependency parser for languages such as
Irish that do not have much treebank data available. They
leverage the abundant data from other languages and tie the
weights of two networks together by adding an L2 distance
penalty between corresponding weights and show substan-
tial improvement for the target language.

Another example of soft parameter sharing is Cross-stitch
Networks (Misra et al., 2016). Starting with separate net-
works for two tasks, the authors add `cross-stitch units' be-
tween them, which allow each network to peek at the other
network's hidden layers. This approach reduces but does
not eliminate task interference, and the overall performance
is less sensitive to the relative loss weights.

(Liu et al., 2019) adds a per-task attention layer after each
layer, and (Maninis et al., 2019) adds task speci�c residual
paths and adversarial training to match gradients. Both run
the network separately for each task.

Finally, (Bingel & Søgaard, 2017) studies task interaction
for NLP, and (Zamir et al., 2020) makes use of task relation-
ships to improve the predictions for related tasks.

Unlike our method, none of the aforementioned works at-
tempt to discover good groups of tasks to train together.
Also, soft parameter sharing does not reduce inference time,
a major goal of ours.

Hybrid approaches such as PathNet (Fernando et al., 2017),
and AdaShare (Sun et al., 2019) attempt to learn what to
share and what not to. These works do not attempt to dis-

Which Tasks Should Be Learned Together in Multi-task Learning?

cover good pairs of source and target tasks nor to meet
an inference time budget. Most importantly, they cannot
achieve much inference-time speedup from module reuse.

Transfer Learning: Transfer learning (Pratt, 1993;
Helleputte & Dupont, 2009; Silver & Bennett, 2008; Finn
et al., 2016; Mihalkova et al., 2007; Niculescu-Mizil &
Caruana, 2007; Luo et al., 2017; Razavian et al., 2014;
Pan & Yang, 2010; Mallya & Lazebnik, 2018; Fernando
et al., 2017; Rusu et al., 2016) is similar to multi-task learn-
ing in that solutions are learned for multiple tasks. Unlike
multi-task learning, however, transfer learning methods of-
ten assume that a model for a source task is given and then
adapt that model to a target task. Transfer learning methods
generally neither seek any bene�t for source tasks nor a
reduction in inference time as their main objective.

Neural Architecture Search (NAS): Many recent works
search the space of network architectures to �nd ones that
perform well (Zoph et al., 2018; Zoph & Le, 2017; Liu
et al., 2018; Pham et al., 2018; Xie et al., 2019; Elsken et al.,
2019; Zhou et al., 2019; Baker et al., 2017; Real et al., 2019).
This is related to our work as we search the space of task
groupings. Just as with NAS, the computationally found
groupings often perform better than human-engineered ones.

Task Relationships:Our work is related toTaskonomy(Za-
mir et al., 2018) which studied the relationships between
visual tasks fortransfer learningand introduced a dataset
with over 4 million images and corresponding labels for
26 tasks. A number of recent works further analyzed task
relationships (Pal & Balasubramanian, 2019; Dwivedi &
Roig., 2019; Achille et al., 2019; Wang et al., 2019) for
transfer learning. While they extract relationships between
these tasks fortransfer learning, we are interested in the
multi-task learningsetting. Interestingly, we �nd notable
differences betweentransfer task af�nityand multi-task
af�nity . Their method also differs in that they are inter-
ested in labeled-data ef�ciency and not inference-time ef�-
ciency. Finally, the transfer quanti�cation approach taken
by Taskonomy (readout functions) is only capable of �nding
relationships between the high-level bottleneck representa-
tions developed for each task, whereas structural similarities
between tasks at all levels are potentially relevant for multi-
task learning.

3. Experimental Setup

Dataset: We perform our study using the Taskonomy
dataset (Zamir et al., 2018), which is currently the largest
multi-task dataset for computer vision with diverse tasks.
The data was obtained from 3D scans of about 600 buildings.
The dataset has about 4 million examples, which we divided
into about 3.9 million training instances (200k for Setting 3),
about 50k validation instances, and about 50k test instances.

There was no overlap in the buildings that appeared in the
training and test sets.

Task Sets:We have selected two sets of �ve tasks each from
this dataset.Task Set 1includesSemantic Segmentation,
Depth Estimation, Surface Normal Prediction, SURF Key-
point Detection, andCanny Edge Detection. One semantic
task, two 3D tasks, and two 2D tasks are included. These
tasks were chosen to be representative of major task cate-
gories, but also to have enough overlap in order to test the
hypothesis that similar tasks will train well together.Task
Set 2includesAuto Encoder, Surface Normal Prediction
again,Occlusion Edges, Reshading, andPrincipal Curva-
ture. For a detailed de�nition of each of these tasks, see the
Supplemental Materials for the Taskonomy paper. Cross-
entropy loss was used for Semantic Segmentation, while an
L1 loss was used for all other tasks.

Architectures: In all experiments, we used a standard
encoder-decoder architecture with a modi�ed Xception
(Chollet, 2017)) encoder. Our choice of architecture is not
critical and was chosen for its reasonably low inference time.
All max-pooling layers were replaced by2 � 2 convolution
layers with a stride of 2, similar to (Chen et al., 2018a).
This network has 16.5 million parameters and requires 6.4
billion multiply-adds per image. The input image size for
all networks is256� 256.

In order to study the effect of network size on task rela-
tionships, we also de�ne a smallerXception17 network.
For Xception17, the Xception network encoder was sim-
pli�ed to have 17 layers and the middle �ow layers were
reduced to having 512 rather than 728 channels, resulting in
about 4 million parameters. This corresponds to 2.28 billion
multiply-adds.

Our decoders were designed to be lightweight, with four
transposed convolutional layers (Noh et al., 2015) and four
convolutional layers.

Settings: We run our experiments under four settings.

Network Training Set Size Task Set Purpose
Setting 1 Xception17 3.9 million Task Set 1 Network Size
Setting 2 Xception 3.9 million Task Set 1 Control
Setting 3 Xception 200 thousand Task Set 1 Dataset Size
Setting 4 Xception 3.9 million Task Set 2 Task Set

We test the effect of network size on multi-task learning
with Setting 1. It uses a smaller and less deep network
than the other settings.Setting 2 is the control. It uses a
large network, the full dataset, and Task Set 1. We test the
effect of dataset size on multi-task learning withSetting
3. Here we limit ourselves to only 200 thousand training
instances. Finally, we test other task relationships with
Setting 4, which uses Task Set 2.

Training Details: All training was done using PyTorch
(Paszke et al., 2017) with Apex for fp16 acceleration (Mi-

Which Tasks Should Be Learned Together in Multi-task Learning?

cikevicius et al., 2017).

The training loss we used was the unweighted mean of the
losses for the included tasks. Networks were trained with an
initial learning rate of 0.1, which was reduced by half every
time the training loss stopped decreasing. Networks were
trained until their validation loss stopped improving. The
network with the highest validation loss (checked after each
epoch of 20% of our data) was saved. No hyper-parameter
search was conducted.

Comparison: We de�ne a computational network cost unit,
the Standard Network Time (SNT). In Setting 1, an SNT is
the number of multiply-adds in Xception17. In the other set-
tings, an SNT is the number of multiply-adds in the normal
Xception network. In order to produce our smaller/larger
models to compare within each setting, we shrunk/grew the
number of channels in every layer of the encoder such that
it had the appropriate number of multiply-adds.

Trained Networks: In each setting, we train a 1-SNT net-
work for each of the2n � 1 feasible subsets of our setting's
5 tasks. Thus, we train 5 single-task networks, 10 two-
task networks, 10 three-task networks, 5 four-task networks,
and a single �ve-task network. Another �ve single-task
networks were trained, each having a half-size (1=2-SNT)
encoder and a standard decoder. Finally, we trained a num-
ber of fractional-SNT single-task networks as comparisons
and baselines.

4. Study of Task Relationships

We study a number of factors that in�uence a multi-task net-
work's performance. We look at the relationships between
tasks in each setting, and compare them to the relationships
from our other settings.

Setting 1: The smaller network, Xception17.

First, we analyze how the number of tasks included in a
multi-task network affects performance. Table 1 shows the
performance of multi-task learning relative to independent
training.

1 task 2 tasks 3 tasks 4 tasks 5 tasks

1-SNT each 0.00% -7.56% -7.23% -10.69% -19.00%
1-SNT total 0.00% -1.15% 4.23% 4.86% 0.34%

Table 1.Performance of multi-task learning relative to inde-
pendent (i.e. single-task) training.For example, when a 4-task
network is compared with four 1-SNT single-task networks, the
4-task network sees a 10.69% worse total loss on average. When
the same network is compared to four1=4-SNT networks, the total
loss is 4.86% better on average.

In Setting 1, multi-task networks do not compare favorably
to multiple single-task networks that are each allowed the
same computational budget as the single multi-task network.

Relative Performance On
SemSeg Depth Normals Keypoints Edges Average

Tr
ai

ne
d

W
ith SemSeg – -5.41% -11.29% -4.32% -34.64% -13.92%

Depth 4.17% – -3.55% 3.49% 3.76% 1.97%
Normals 8.50% 2.48% – 1.37% 12.33% 6.17%
Keypoints 4.82% 1.38% -0.02% – -5.26% 0.23%
Edges 3.07% -0.92% -4.42% 1.37% – -0.23%
Average 5.14% -0.62% -4.82% 0.48% -5.95% -1.15%

Table 2.Pairwise multi-task relationships in Setting 1. The ta-
ble lists the performance of every task when trained as a pair with
every other task. For instance, when SemSeg (Semantic Segmenta-
tion) is trained with Depth, SemSeg performs 4.17% better than
when SemSeg is trained alone on a1=2-SNT network.

However, when the single-task networks are shrunk so that
they have the same total budget as the multi-task network,
multi-task networks with 3, 4, or 5 tasks outperform the
single-task networks on average. Nevertheless, two-task
networks still do not compare favorably. Table 2 gives a
more detailed view of these ten two-task networks, show-
ing the performance on each task when it is trained with
each other task relative to when it is trained alone using a
1=2-SNT network. We see that the Normals task helps the
performance of every other task with which it is trained.

Depth Normals Keypoints Edges

SemSeg -0.62% -1.39% 0.25% -15.78%
Depth -0.54% 2.43% 1.42%
Normals 0.67% 3.95%
Keypoints -1.95%

Table 3.The multi-task learning af�nity between pairs of tasks
for Setting 1. These values show the average change in the perfor-
mance of two tasks when trained as a pair, relative to when they
are trained separately.

Depth Normals Keypoints Edges

SemSeg 1.740% 1.828% 0.723% 0.700%
Depth 1.915% 0.406% 0.468%
Normals 0.089% 0.118%
Keypoints 0.232%

Table 4.The transferlearning af�nities between pairs of tasks ac-
cording to the authors of Taskonomy (Zamir et al., 2018). Forward
and backward transfer af�nities are averaged.

In order to determine the between-task af�nity for multi-task
learning, we took the average of our �rst-order relationships
matrix (Table 2) and its transpose. The result is shown
in Table 3. The pair with the highest af�nity by this met-
ric are Surface Normal Prediction and 2D Edge Detection.
Quite surprisingly, our two 3D tasks, Depth Estimation and
Surface Normal Prediction, do not score highly on this sim-
ilarity metric. This contrasts with the �ndings for transfer
learning in Taskonomy (Table 4), for which they have the
highest af�nity. In fact, there seems to be no correlation
between multi-task and transfer learning af�nities (tables 3
and 4) in this setting (Pearson'sr is � 0:12, p = 0 :74) .

Which Tasks Should Be Learned Together in Multi-task Learning?

Setting 2: The control setting.

We test the effect of network capacity on multi-task af�nity,
by retraining all of our networks using a higher-capacity
encoder. We used the full Xception network (Chollet, 2017)
this time, which uses 6.4 billion multiply-adds. The result-
ing data allows us to generate a new version of Table 2 for
Setting 2 as Table 5.

Relative Performance On
SemSeg Depth Normals Keypoints EdgesAverage

Tr
ai

ne
d

W
ith SemSeg – 3.00% -2.79% -5.20% 27.80% 5.70%

Depth 1.72% – 1.18% -3.52% 25.73% 6.28%
Normals 10.81% 7.12% – 88.98% 71.59% 44.62%
Keypoints 3.12% -0.41% -10.12% – 61.07% 13.42%
Edges 0.03% -1.40% -4.78% -3.05% – -2.30%

3.92% 2.08% -4.13% 19.30% 46.54% 13.54%

Table 5.Pairwise multi-task relationships in Setting 2.

We can see by comparing Table 5 with Table 2 that tasks
are much more likely to bene�t from being trained together
when using the larger network. However, there are still
tasks that both suffer when trained together. Furthermore,
the values in Table 5 do not seem to correlate with the
values in Table 2 (Pearson'sr = 0 :08). The af�nities also
do not seem to correlate with Taskonomy's transfer af�nities
(Pearson'sr = � 0:14). These results stress the necessity
of using a automatic framework each particular setup to
determine which tasks to train together.

Setting 3: Using only 5% of the available training data.

We study the effect of training set size by using only 199,498
training instances (420 from each training building). This
amount of data is more similar to other multi-task datasets
in the literature. One common assumption is that multi-task
learning is likely to be better in low-data scenarios, as MTL
effectively allows you to pool supervision. However, we
see this assumption violated in Table 6, as most tasks suffer
when trained with another task in this setting, especially
when compared to Setting 2. Furthermore, were it not for
the huge gains in theEdgestask in a couple of cases, MTL
would be deleterious on average.

Relative Performance On
SemSeg Depth Normals Keypoints EdgesAverage

Tr
ai

ne
d

W
ith SemSeg – 1.91% -6.00% -9.91% -21.93% -8.98%

Depth -12.63% – 2.95% 1.44% -9.70% -4.48%
Normals 8.32% 15.38% – -1.35% 52.08% 18.61%
Keypoints -5.84% -7.21% -2.26% – 55.63% 10.08%
Edges -5.62% 6.02% -4.16% -5.02% – -2.20%

-3.95% 4.03% -2.37% -3.71% 19.02% 2.6%

Table 6.Pairwise multi-task relationships in Setting 3.

Although we did not �nd correlations between the task re-
lationships for the low-capacity model and those for the
high-capacity model, the low-data relationships show a pos-
itive correlation with both. The small-data relationships
correlate with the low-capacity relationships (Pearson'sr =
+0 :375; p = 0 :10) as well as the high-capacity relationships

(Pearson'sr = +0 :558; p = 0 :01). However, these af�ni-
ties still do not correlate highly with Taskonomy's transfer-
learning af�nities (Pearson'sr = � 0:235; p = 0 :51).

Setting 4: Using Task Set 2.

Aside from the Auto Encoder task, the other four tasks in
Task Set 2 nearly all have a moderate positive in�uence on
one another. These four tasks are all very similar 3D tasks,
so it seems that similar tasks can work well with one another
in some situations. Unfortunately, the Auto Encoder task
hurts the performance of the other tasks on average. Once
again, we �nd no correlation with Taskonomy's transfer
af�nity (Pearson'sr = � 0:153; p = 0 :674).

Relative Performance On
AutoEnc Normals Occ Edges Reshading CurvatureAverage

Tr
ai

ne
d

W
ith AutoEnc – -3.23% -2.66% 0.10% -1.39% -1.79%

Normals 19.31% – 3.16% 4.60% 1.95% 7.25%
Occ Edges 35.83% -0.25% – 1.15% 0.84% 9.39%
Reshading -24.46% 3.71% 3.16% – 1.88% -3.93%
Princ Curv 10.69% 2.61% 2.46% 3.15% – 4.73%

10.34% 0.71% 1.53% 2.25% 0.82% 3.13%

Table 7.Pairwise multi-task relationships in Setting 4.

Key Takeaways: Ideally, the relationships between tasks
would be independent of the learning setup. We �nd that this
is not the case, therefore using a computational approach
like ours for �nding task af�nities and groupings seems nec-
essary. We saw that both network capacity and the amount
of training data in�uence multi-task task af�nity. We also
found that more similar tasks don't necessarily train better
together. We also �nd no correlation between multi-task
task af�nity and transfer learning task af�nity in any setting.

Finally, the Normals task seems to improve the performance
of the tasks it is trained with. In 15 out of 16 models that
were trained with Normals, the other task improved. Fur-
thermore, this improvement was better than the effect of
co-training with any different task 13 out of 15 times. This
may be because Normals have uniform values across sur-
faces and preserve 3D edges. However, the Normals task
itself tends to perform worse when trained with another task.

We see that choosing which tasks to learn together is critical
for achieving good performance. Now, we turn to the study
of how to �nd the best tasks to train together.

5. Task Grouping Framework

Overview: Our goal is to �nd a set of networks, each of
which is trained on a subset of the tasks, that results in the
best overall loss within a given computational budget. We
do this by considering the space of all possible task subsets,
training a network for each subset, and then using each
network's performance to choose the best networks that
�t within the budget. Because fully training a network for
each subset may be prohibitively expensive, we outline two

Which Tasks Should Be Learned Together in Multi-task Learning?

strategies for predicting training outcomes as well (Sec. 5.3).

Formal Problem De�nition: We want to minimize the
overall loss on a set of tasksT = f t1; t2; :::; tk g given a
limited inference time budget,b, which is the total amount
of time we have to complete all tasks. Each neural network
that solves some subset ofT and that could potentially be a
part of the �nal solution is denoted byn. It has an associated
inference time cost,cn , and a loss for each task,L (n; t i)
(which is1 for each task the network does not attempt to
solve). A solutionS is a set of networks that together solve
all tasks. The computational cost of a solution iscost(S) =P

n 2 S cn . The loss of a solution on a task,L (S; t i), is the
lowest loss on that task among the solution's networks1,
L (S; t i) = min n 2 S L (n; t i). The overall performance for
a solution isL (S) =

P
t i 2T L (S; t i).

We want to �nd the solution with the lowest over-
all loss and a cost that is under our budget,Sb =
argminS :cost(S) � b L (S).

5.1. Which Candidate Networks to Consider?

For a given task setT , we wish to determine not just how
well eachpair of tasks performs when trained together, but
also how well eachcombinationof tasks performs together
so that we can capture higher-order task relationships. To
that end, our candidate set of networks contains all2jT j � 1
possible groupings:

� jT j
1

�
networks with one task,

� jT j
2

�

networks with two tasks,
� jT j

3

�
networks with three tasks,

etc. For the �ve tasks we use in our experiments, this is 31
networks, of which �ve are single-task networks.

The size of the networks is another design choice, and to
somewhat explore its effects we also include 5 single task
networks each with half of the computational cost of a stan-
dard network. This brings our total up to 36 networks.

In principle, one could include additional candidate net-
works of arbitrarily varying computational cost, and let the
framework below decide which are worth using. It may even
be advantageous to throw in networks trained with different
architectures, task weights or training strategies. We do not
explore this.

5.2. Network Selection

Consider the situation in which we have an initial can-
didate setC 0 = f n1; n2; :::; nm g of fully-trained net-
works that each solve some subset of our task setT . Our
goal is to choose a subset ofC 0 that solve all the tasks
with total inference time under budgetb and the lowest
overall loss. More formally, we want to �nd a solution

1In principle, it may be possible to create an even better-
performing ensemble when multiple networks solve the same task,
though we do not explore this.

Sb = argmin S � C 0 :cost(S) � b L (S).

It can be shown that solving this problem is NP-hard in
general (reduction fromSET-COVER). However, many tech-
niques exist that can optimally solvemostreasonably-sized
instances of problems like these in acceptable amounts of
time. All of these techniques produce the same solutions.
We chose to use a branch-and-bound-like algorithm for �nd-
ing our optimal solutions (pseudo code for the algorithm is
in the supplemental material, and our implementation is on
GitHub), but in principle the exact same solutions could be
achieved by other optimization methods, such as encoding
the problem as a binary integer program (BIP) and solving
it in a way similar to Taskonomy (Zamir et al., 2018).

Most contemporary MTL works use fewer than 4 unique
task types, however, using synthetic inputs, we found that
our branch-and-bound like approach requires less time than
network training for all2jT j � 1 + jT j candidates for fewer
than ten tasks.

5.3. Approximations for Reducing Training Time

This section describes two techniques for reducing the train-
ing time required to obtain a collection of networks as input
to the network selection algorithm. Our goal is to produce
task groupings with results similar to the ones produced
by the complete search, but with less training time burden.
Both techniques involve predicting the performance of a
network without actually training it to convergence. The
�rst technique involves training each of the networks for a
short amount of time, and the second involves inferring how
networks trained on more than two tasks will perform based
on how networks trained on two tasks perform.

5.3.1. EARLY STOPPINGPRIOR TO CONVERGENCE

We found a moderately high correlation (Pearson'sr =
0:49) between the validation loss of our 36 candidate neu-
ral networks in Setting 1 after a pass through just 20% of
our data and the �nal validation loss of the fully trained
networks. This implies that the task relationship trends
stabilize early. We �nd that we can get decent results by run-
ning network selection on the lightly trained networks, and
then simply training the chosen networks to convergence.
This is a common technique in hyperparameter optimization,
(Domhan et al., 2015; Li et al., 2017).

For our setup, this technique reduces the training time bur-
den by about20xover fully training all candiate networks.
Obviously, this technique does come with a prediction ac-
curacy penalty. Because the correlation between early net-
work performance and �nal network performance is not
perfect, the decisions made by network selection are no
longer guaranteed to be optimal once networks are trained
to convergence. We call this approximation the Early Stop-

Which Tasks Should Be Learned Together in Multi-task Learning?

ping Approximation (ESA) and present the results of using
this technique in Section 6.

5.3.2.PREDICT HIGHER-ORDER FROM LOWER-ORDER

Do the performances of a network trained with tasksA
andB , another trained with tasksA andC, and a third
trained with tasksB andC tell us anything about the per-
formance of a network trained on tasksA, B , andC? As it
turns out, the answer is yes. Although this ignores complex
task interactions and nonlinearities, a simple average of the
�rst-order networks' accuracies was a good indicator of the
accuracy of a higher-order network. For example, if you
have networks, a&b with losses 0.1&0.2, b&c with 0.3&0.4,
and a&c with 0.5&0.6, the per-task loss estimate for a net-
work with a&b&c would bea = (0 :1 + 0:6)=2 = 0:35,
b = (0 :2 + 0:3)=2 = 0:25andc = (0 :4 + 0:6)=2 = 0:5.

Using this strategy, we can predict the performance of all
networks with three or more tasks using the performance
of all of the fully trained two task networks. First, simply
train all networks with two or fewer tasks to convergence.
Then predict the performance of higher-order networks, run
network selection on both the trained and the predicted
networks, then train the higher order networks from scratch.

With our setup, this strategy saves only about 45% of the
training time, compared with 95% for the early stopping
approximation, and it still comes with a prediction quality
penalty. However, this technique requires only a quadratic
number of networks to be trained rather than an exponential
number, and would therefore theoretically win out when the
number of tasks is large.

We call this strategy the Higher Order Approximation
(HOA), and present its results in Section 6.

6. Task Grouping Evaluation

We applied our framework and approximations in all four
settings. We computed solutions for inference time budgets
from 1 SNT to 5 SNT at increments of1=2 SNT. The perfor-
mance scores used for network selection were calculated on
the validation set. Each solution chosen was evaluated on
the test set. Note that the total loss numbers reported cannot
be properly compared between settings because of small
differences in label normalization and loss de�nitions.

Baselines: We compared our results with conventional
methods, such as �ve single-task networks and a single
network with all tasks trained jointly.

For Setting 1, we also compared with two multi-task meth-
ods in the literature. The �rst one is (Sener & Koltun, 2018).
We found that their algorithm under-weighted the Semantic
Segmentation task too aggressively, leading to poor per-
formance on the task and poor performance overall com-

pared to a simple sum of task losses. We speculate that
this is because the loss for Semantic Segmentation behaves
differently from the other losses. Next we compared to
GradNorm (Chen et al., 2018b). GradNorm's results were
also slightly worse than classical MTL with uniform task
weights, though that may be because we evaluated with
uniform task weights, while GranNorm optimized for task
weights that it computed. In any event, these techniques
are orthogonal to ours and can be used in conjunction for
situations in which they lead to better solutions than simply
summing losses.

Each baseline was evaluated with multiple encoder sizes
(more or fewer channels per layer) so that the results could
be compared at many inference time budgets.

Finally, we compared our results to two control baselines
illustrative of the importance of making good choices about
which tasks to train together, `Random' and `Pessimal.'
`Random' is a solution consisting of valid random task
groupings that solve our �ve tasks. The reported values
are the average of one million random trials. `Pessimal' is
a solution in which we choose the networks that lead to
the worst overall performance, though the solution's perfor-
mance on each task is still the best among the networks that
solve that task.

Setting 1: Figure 3 shows the task groups that were chosen
for each technique, and Figure 2 shows the performance
of these groups along with those of our baselines. We can
see that each of our methods outperforms the traditional
baselines for every computational budget.

Figure 2.Performance/inference time trade-off for various
methods in Setting 1.We do not report error bars because the test
set is large enough that standard errors are too small to be shown.

When the computational budget is only 1 SNT, all of our
methods must select the same model—a traditional multi-
task network with a 1 SNT encoder and �ve decoders. This
strategy outperforms GradNorm (Sener & Koltun, 2018),
as well as independent networks. However, solutions that
utilize multiple networks outperform this traditional strategy
for every budget> 1.5—better performance can always be
achieved by grouping tasks according to their compatibility.

Which Tasks Should Be Learned Together in Multi-task Learning?

Figure 3.The task groups picked by each of our techniques for
integer budgets between 1 and 5.Networks are shown as� (full-
size) or� (half-size). Networks are connected to the tasks for which
they compute predictions.s: Semantic Segmentation, d: Depth
Estimation, n: Surface Normal Prediction, k: Keypoint Detection,
e: Edge Detection. Dotted edges represent unused decoders. For
example, the green highlighted solution consists of two half-size
networks and a full-size network. The full-size network solves
Depth Estimation, Surface Normal Prediction, and Keypoint De-
tection. One half-size network solves Semantic Segmentation and
the other solves Edge Detection. The total loss for all �ve tasks
is 0.455. The groupings for fractional budgets are shown in the
supplemental material.

When the computational budget is effectively unlimited (5
SNT), our optimal method picks �ve networks, each of
which is used to make predictions for a separate task. How-
ever, three of the networks are trained with three tasks each,
while only two are trained with one task each. This shows
that the networks learned through multi-task learning were
found to be best for three of our tasks (s, d, and e), whereas
two of our tasks (n and k) are best solved individually.

We also see that our optimal technique using 2.5 SNT and
our Higher Order Approximation using 3.5 SNT can both
outperform individual networks using 5 SNT total.

Figure 4.Performance/inference time trade-off in Setting 2.

Setting 2: When we apply our network selection framework

on the performance data from this high-capacity network
(Figure 4) we again see that our method outperforms both
training an individual network for each task, as well as train-
ing all tasks together. This is true even though pairs of tasks
tend to cooperate better in this setting. In fact, the perfor-
mance of our groupings is superior by an even wider margin
here. It should be noted that although ESA outperforms the
baselines, there is a signi�cant gap between ESA and the
optimal solution. Perhaps stopping after training on more
of the data would improve ESA's results.

Figure 5.Performance/inference time trade-off in Setting 3.

Setting 3: We can see in Figure 5 that our selection frame-
work on the networks trained with only 200k examples is
again superior to the baselines. For ESA in this setting, we
ran through the entire 200k examples four times, rather than
through only 20% once. This represents the same amount
of training as in the other settings.

Figure 6.Performance/inference time trade-off in Setting 4.

Setting 4: In this setting, the performances of the various
networks we trained were quite similar. This shows up in
Figure 6 as a very small difference between the 1-SNT all-
in-one, and the 5-SNT optimal solution. Since the tasks in
this setting tend to cooperate well, it's not surprising that
the independent training baseline is not very competitive. In
fact, we see that the all-in-one network trained with 4 SNT
actually outperforms the Early Stopping Approximation.
Yet even in this highly cooperative scenario, our optimal
solution outperforms every baseline, as does the HOA.

Qualitative Results: Figure 7 allows qualitative compar-
ison between our methods and the baselines. We can see
clear visual issues with each of the baselines that are not

