A. Proof of Lemma 2.5

To simplify the notation, we omit the ' BO ' in the superscript. We begin with a few algebraic identities for p_{k}. It is easy to see from (2.18)-(2.19) that

$$
\begin{equation*}
p_{k}=\frac{k+a_{0}-2}{k+2 a_{0}} p_{k-1} \quad \text { for } k \geq 2 . \tag{A.1}
\end{equation*}
$$

Therefore, $\sum_{j=2}^{k}\left(j+2 a_{0}\right) p_{j}=\sum_{j=2}^{k}\left(j+a_{0}-2\right) p_{j-1}$ which implies that

$$
\begin{equation*}
p_{>k-1}=\frac{k+2 a_{0}}{a_{0}+1} p_{k} \quad \text { for } k \geq 2 \tag{A.2}
\end{equation*}
$$

Further by summing both sides of (A.2), we get $\sum_{k \geq 1} k p_{k}=2$. Observe that

$$
\begin{aligned}
& \ell_{\infty}^{\prime}(a)= \sum_{k \geq 0} \frac{p_{>k+1}}{a+k}-\frac{1}{a+1} \\
&= \sum_{k \geq 0} \frac{\left(k+2+2 a_{0}\right) p_{k+2}}{\left(a_{0}+1\right)(a+k)} \\
& \quad-\frac{1}{a+1} \sum_{k \geq 0} \frac{k+2+2 a_{0}}{k+a_{0}} p_{k+2} \\
&= \frac{a-a_{0}}{\left(a_{0}+1\right)(a+1)} \sum_{k \geq 0} \frac{\left(k+2+2 a_{0}\right)(k-1)}{\left(k+a_{0}\right)(k+a)} p_{k+2} \\
&= \frac{a-a_{0}}{\left(a_{0}+1\right)(a+1)} \sum_{k \geq 0} \frac{k-1}{k+a} p_{k+1} .
\end{aligned}
$$

where the second equality is due to (A.2) and the last one stems from (A.1). In addition,

$$
\sum_{k \geq 0} \frac{k-1}{k+a} p_{k+1} \leq \frac{1}{1+a} \sum_{k \geq 0}(k-1) p_{k+1}=0
$$

where the last equality is due to the fact that $\sum_{k \geq 1} k p_{k}=2$. Therefore, $\ell_{\infty}^{\prime}(\cdot)$ has a unique zero at a_{0}, and $\ell_{\infty}^{\prime}(a)<0$ if $a>a_{0}$ and $\ell_{\infty}^{\prime}(a)>0$ if $a<a_{0}$. These imply that $\ell_{\infty}(\cdot)$ has a unique maximum at a_{0}.

Now we prove (2.21). We have

$$
\begin{align*}
\ell_{n}^{\prime}(a)-\ell_{\infty}^{\prime}(a) & =\sum_{k \geq 0} \frac{Z_{>k+1}^{n} / n-p_{>k+1}}{a+k} \\
& +\left(\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a+1-k^{-1}}-\frac{1}{a+1}\right) \tag{A.3}
\end{align*}
$$

Standard analysis shows that the second term on the r.h.s. of (A.3) goes to 0 as $n \rightarrow \infty$. Note that $(k+2) Z_{>k+1}^{n}=$ $\sum_{j \geq k+2}(k+2) Z_{j}^{n} \leq \sum_{j \geq k+2} j Z_{j}^{n} \leq 2 n$, which implies
$Z_{>k+1}^{n} / n \leq \frac{2}{k+2}$. Consequently,

$$
\begin{align*}
\sup _{a>\varepsilon} \mid \sum_{k \geq 0} & \frac{Z_{>k+1}^{n} / n-p_{>k+1}}{a+k} \left\lvert\, \leq \sum_{k=0}^{K} \frac{\left|Z_{>k+1}^{n} / n-p_{>k+1}\right|}{\varepsilon+k}\right. \\
& +\sum_{k>K} \frac{2}{(2+k)(a+k)}+\sum_{k>K} \frac{p_{>k+1}}{a+k} . \tag{A.4}
\end{align*}
$$

The first term on the r.h.s. of (A.4) converges to 0 a.s. by Theorem 2.4, and the last two terms can be made arbitrarily small for K sufficiently large. Combining the above estimates yields the desired result.

B. Proof of Lemma 2.6

It follows easily from the definition that ($\sum_{k=1}^{n} f_{k}\left(a_{0}\right) ; n \geq 1$) is a martingale. To prove the convergence (2.24), it suffices to use Theorem 3.2 in (Hall \& Heyde, 1980) with the following conditions:

- $n^{-1 / 2} \max _{k}\left|f_{k}\left(a_{0}\right)\right| \rightarrow 0$ in probability.
- $\mathbb{E}\left(n^{-1} \max _{k} f_{k}^{2}\left(a_{0}\right)\right)$ is bounded in n.
- $n^{-1} \sum_{k=1}^{n} f_{k}^{2}\left(a_{0}\right) \rightarrow \sigma^{2}$ in probability.

The first two conditions are straightforward since $\left|f_{k}(a)\right| \leq$ $2 / a$. Now we check the last condition. Write

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n} f_{k}^{2}\left(a_{0}\right)= & \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(a_{0}+d_{k}\left(v^{(k)}\right)-1\right)^{2}}+\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(a_{0}+1-k^{-1}\right)^{2}} \\
& -\frac{2}{n} \sum_{k=1}^{n} \frac{1}{\left(a_{0}+d_{k}\left(v^{(k)}\right)-1\right)\left(a_{0}+1-k^{-1}\right)} \\
:= & S_{1}+S_{2}-2 S_{3}
\end{aligned}
$$

Note that

$$
S_{1}=\sum_{k \geq 0} \frac{Z_{>k+1}^{n} / n}{\left(a_{0}+k\right)^{2}} \longrightarrow \sum_{k \geq 0} \frac{p_{>k+1}}{\left(a_{0}+k\right)^{2}} \quad \text { a.s. }
$$

which follows from Theorem 2.4. By standard analysis, $S_{2} \longrightarrow \frac{1}{\left(a_{0}+1\right)^{2}}$. We decompose S_{3} into two terms:

$$
\begin{gathered}
S_{3}=\frac{1}{n} \sum_{k=1}^{n} \frac{1}{a_{0}+} \begin{array}{c}
d_{k}\left(v^{(k)}\right)-1 \\
\quad \\
\left.+\frac{1}{\left(a_{0}+1\right) n} \sum_{k=1}^{n} \frac{1}{a_{0}+1-k^{-1}}-\frac{1}{a_{0}+1}\right) \\
a_{0}+d_{k}\left(v^{(k)}\right)-1
\end{array},
\end{gathered}
$$

where the first term on the r.h.s. is bounded by $\frac{1}{a n} \sum_{k=1}^{n}\left(\frac{1}{a_{0}+1-k^{-1}}-\frac{1}{a_{0}+1}\right) \longrightarrow 0$, and the second term converges almost surely to $\frac{1}{a_{0}+1} \sum_{k \geq 0} \frac{p_{>k+1}}{a_{0}+k}$. Combining all the above estimates yields the desired result.

C. Proof of Lemma 2.7

Write

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n} f_{k}^{\prime}\left(a^{\star}\right) & =\frac{1}{n} \sum_{k=1}^{n} f_{k}^{\prime}\left(a_{0}\right)+\frac{1}{n} \sum_{k=1}^{n}\left(f_{k}^{\prime}\left(a^{\star}\right)-f_{k}^{\prime}\left(a_{0}\right)\right) \\
& :=T_{1}+T_{2} .
\end{aligned}
$$

Observe that $f_{k}^{\prime}(a)=-f_{k}^{2}(a)-2 f_{k}(a) \frac{1}{a+1-k^{-1}}$. We get

$$
\begin{equation*}
T_{1}=-\frac{1}{n} \sum_{k=1}^{n} f_{k}^{2}\left(a_{0}\right)-\frac{2}{n} \sum_{k=1}^{n} f_{k}\left(a_{0}\right) \frac{1}{a_{0}+1-k^{-1}} \tag{C.1}
\end{equation*}
$$

The first term on the r.h.s. of (C.1) converges to $-\sigma^{2}$ as proved in Proposition 2.6. Recall the definition of S_{2}, S_{3}. It is easy to see that

$$
\begin{aligned}
\frac{1}{n} \sum_{k=1}^{n} f_{k}\left(a_{0}\right) \frac{1}{a_{0}}+ & 1-k^{-1}
\end{aligned}=S_{3}-S_{2} .
$$

Therefore, $T_{1} \longrightarrow-\beta$ in probability. By standard analysis, $\left|T_{2}\right| \leq C\left|a^{\star}-a_{0}\right|$ for some $C>0$. Note that $a^{\star} \in$ $\left(a_{0}, \widehat{a}_{n}^{B O}\right)$. By Theorem 2.1, $\left|a^{\star}-a_{0}\right| \longrightarrow 0$ which implies $T_{2} \longrightarrow 0$. The above estimates lead to the desired result.

D. Proof of Lemma 2.9

As discussed in Section 2.3, the consistency of $\widehat{\boldsymbol{\pi}}$ follows from standard exponential family theory. It suffices to prove that $\hat{\gamma} \rightarrow \gamma^{0}$ almost surely.
Let us go back to the limit log-likelihood (2.30). Observe that $\ell_{\infty}^{B P A}$ is homogeneous of order 1, i.e. $\ell_{\infty}^{B P A}(a \boldsymbol{\gamma})=$ $\ell_{\infty}^{B P A}(\gamma)$ for each $a>0$. By taking the partial derivatives of (2.30) and equating to 0 , we get

$$
\begin{align*}
& \frac{\partial}{\partial \gamma_{i j}} \ell_{\infty}^{B P A}(\boldsymbol{\gamma}) \\
& =\left\{\begin{array}{cl}
\frac{\theta_{i j}^{0}}{\gamma_{i j}}-\frac{\pi_{i}^{0} p_{j}^{0}}{\sum_{k=1}^{K} \gamma_{i k} p_{k}^{0}}-\frac{\pi_{j}^{0} p_{i}^{0}}{\sum_{k=1}^{K} \gamma_{j k} p_{k}^{0}} & \text { for } \quad i \neq j, \\
\frac{\theta_{i i}^{0}-\frac{\pi_{i}^{0} p_{i}^{0}}{\gamma_{i i}} \sum_{k=1}^{K} \gamma_{i k} p_{k}^{0}}{} & \text { for } i=j .
\end{array}\right. \tag{D.1}
\end{align*}
$$

By (2.27), we have $\nabla \ell_{\infty}^{B P A}\left(\gamma_{0}\right)=\mathbf{0}$, i.e. $\boldsymbol{\gamma}_{0}$ is a stationary point of $\ell_{\infty}^{B P A}$. Now it suffices to prove Lemma 2.9 to conclude.
Note that $\ell_{\infty}^{B P A}(\gamma) \rightarrow-\infty$ as $\gamma \in \partial \mathcal{D}$. It suffices to prove that $\nabla \ell_{\infty}^{B P A}(\boldsymbol{\gamma})=\mathbf{0}$ has a unique solution. First $\partial \ell_{\infty}^{B P A} / \partial \gamma_{i i}=0$ gives

$$
\begin{equation*}
\sum_{k=1}^{K} \gamma_{i k} p_{k}^{0}=\frac{\pi_{i}^{0} p_{i}^{0}}{\theta_{i i}^{0}} \gamma_{i i} \tag{D.2}
\end{equation*}
$$

By injecting (D.2) into the equation $\partial \ell_{\infty}^{B P A} / \partial \gamma_{i j}=0$, we get

$$
\begin{equation*}
\frac{\theta_{i j}^{0}}{\gamma_{i j}}=\frac{\theta_{i i}^{0} p_{j}^{0}}{p_{i}^{0}} \frac{1}{\gamma_{i i}}+\frac{\theta_{j j}^{0} p_{i}^{0}}{p_{j}^{0}} \frac{1}{\gamma_{j j}} \tag{D.3}
\end{equation*}
$$

Consequently, the values of $\left(\gamma_{i j} ; i \neq j\right)$ is uniquely determined by those of $\left(\gamma_{i i} ; 1 \leq i \leq K\right)$. By injecting (D.3) into (D.2), we get a system of equations on $\left(\gamma_{i i} ; 1 \leq i \leq K\right)$:

$$
\begin{equation*}
\sum_{k=1}^{K} \theta_{i k}^{0}\left(\frac{\theta_{i i}^{0} p_{j}^{0}}{p_{i}^{0}} \frac{1}{\gamma_{i i}}+\frac{\theta_{k k}^{0} p_{i}^{0}}{p_{k}^{0}} \frac{1}{\gamma_{k k}}\right)^{-1} p_{k}^{0}=\frac{\pi_{i}^{0} p_{i}^{0}}{\theta_{i i}^{0}} \gamma_{i i} \tag{D.4}
\end{equation*}
$$

For $K=2$, it is easy to solve the equations together with the constraints $\gamma_{11}=1$. For $K \geq 3$, the explicit solution is not available but we prove that the equations have a unique solution. To illustrate, we consider the generic case $K=3$. All other cases can be proceeded in a similar way.
Let $\quad x_{1} \quad:=\quad \frac{\theta_{11}^{0} p_{2}^{0}}{p_{1}^{0}} \gamma_{22}\left(\frac{\theta_{11}^{0} p_{2}^{0}}{p_{1}^{0}} \gamma_{22}+\frac{\theta_{22}^{0} p_{1}^{0}}{p_{2}^{0}} \gamma_{11}\right)^{-1}$, $x_{2} \quad:=\quad \frac{\theta_{11}^{0} p_{3}^{0}}{p_{1}^{0}} \gamma_{33}\left(\frac{\theta_{11}^{0} p_{3}^{0}}{p_{1}^{0}} \gamma_{33}+\frac{\theta_{33}^{0} p_{1}^{0}}{p_{3}^{0}} \gamma_{11}\right)^{-1}, \quad$ and $x_{3}:=\frac{\theta_{33}^{0} p_{2}^{0}}{p_{3}^{0}} \gamma_{22}\left(\frac{\theta_{33}^{0} p_{2}^{0}}{p_{3}^{0}} \gamma_{22}+\frac{\theta_{22}^{0} p_{3}^{0}}{p_{2}^{0}} \gamma_{33}\right)^{-1}$. The equations (D.4) give

$$
\left\{\begin{array}{l}
\theta_{12}^{0} x_{1}+\theta_{13}^{0} x_{2}=\pi_{1}^{0}-\theta_{11}^{0}, \tag{D.5}\\
\theta_{21}^{0}\left(1-x_{1}\right)+\theta_{23}^{0}\left(1-x_{3}\right)=\pi_{2}^{0}-\theta_{22}^{0}, \\
\theta_{31}^{0}\left(1-x_{2}\right)+\theta_{32}^{0} x_{3}=\pi_{3}^{0}-\theta_{33}^{0} .
\end{array}\right.
$$

It suffices to prove that the equations (D.5) have a unique solution. Observe that the system (D.5) has a solution $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ by taking $\gamma_{i i}=\gamma_{i i}^{0}$. Algebraic manipulation shows that the set of solutions to (D.5) has dimension 1, with form

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)+\lambda\left(1,-\theta_{12}^{0} / \theta_{13}^{0},-\theta_{21}^{0} / \theta_{23}^{0}\right) .
$$

Consequently,

$$
\begin{gathered}
\frac{\gamma_{11}}{\gamma_{22}}=\frac{\theta_{11}^{0}\left(p_{2}^{0}\right)^{2}}{\theta_{22}^{0}\left(p_{1}^{0}\right)^{2}} \frac{1-x_{0}-\lambda}{x_{0}+\lambda}, \quad \frac{\gamma_{11}}{\gamma_{13}}=\frac{\theta_{11}^{0}\left(p_{3}^{0}\right)^{2}}{\theta_{33}^{0}\left(p_{1}^{0}\right)^{2}} \frac{1-y_{0}+\lambda \theta_{12}^{0} \theta_{13}^{0}}{y_{0}-\lambda \theta_{12}^{0} \theta_{13}^{0}} \\
\frac{\gamma_{33}}{\gamma_{22}}=\frac{\theta_{33}^{0}\left(p_{2}^{0}\right)^{2}}{\theta_{22}^{0}\left(p_{3}^{0}\right)^{2}} \frac{1-z_{0}+\lambda \theta_{21}^{0} / \theta_{23}^{0}}{z_{0}-\lambda \theta_{21}^{0} / \theta_{23}^{0}},
\end{gathered}
$$

which implies that

$$
\begin{equation*}
\frac{1-x_{0}-\lambda}{x_{0}+\lambda}=\frac{\left(1-y_{0}+\lambda \theta_{12}^{0} \theta_{13}^{0}\right)\left(1-z_{0}+\lambda \theta_{21}^{0} / \theta_{23}^{0}\right)}{\left(y_{0}-\lambda \theta_{12}^{0} \theta_{13}^{0}\right)\left(z_{0}-\lambda \theta_{21}^{0} / \theta_{23}^{0}\right)} \tag{D.6}
\end{equation*}
$$

Note that the l.h.s. of (D.6) is decreasing in λ while the r.h.s. is increasing in λ. Thus, $\lambda=0$ is the only solution which proves the uniqueness.

