
Variational Imitation Learning with Diverse-quality Demonstrations

A. Derivations
This section presents mathematical derivations of the lower-bounds Fpφ,ω,ψq and Gpφ,ω,θq, as well as the objective
function Lpφ,ω,ψ,θq of VILD under the model choices described in the paper.

A.1. Lower-bound F

Recall that fpφ,ωq “ EpdrΣTt“1 logp
ş

A expplφ,ωpst,at,ut, kqqdatqs and lφ,ωpst,at,ut, kq “ rφpst,atq `

log pωput|st,at, kq. We write fpφ,ωq “ Epd
“

ΣTt“1ftpφ,ωq
‰

, where ftpφ,ωq “ log
ş

A exp plφ,ωpst,at,ut, kqq dat.
By using a variational distribution qψpat|st,ut, kq with parameter ψ, we can bound ftpφ,ωq from below by using the
Jensen inequality as follows:

ftpφ,ωq “ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqq

qψpat|st,ut, kq

qψpat|st,ut, kq
dat

˙

ě

ż

A
qψpat|st,ut, kq log

ˆ

exp plφ,ωpst,at,ut, kqq
1

qψpat|st,ut, kq

˙

dat

“ Eqψ rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

“ Ftpφ,ω,ψq. (16)

Then, by using the linearity of expectation, we obtain the lower-bound of fpφ,ωq as follows:

fpφ,ωq ě Epd

«

T
ÿ

t“1

Ftpφ,ω,ψq

ff

“ Fpφ,ω,ψq. (17)

To verify that fpφ,ωq “ maxψ Fpφ,ω,ψq, we maximize Ftpφ,ω,ψq w.r.t. qψ under the constraint that qψ is a valid
probability density, i.e., qψpat|st,ut, kq ą 0 and

ş

A qψpat|st,ut, kqdat “ 1. By setting the derivative of Ftpφ,ω,ψq
w.r.t. qψ to zero, we obtain

q‹ψpat|st,ut, kq “ exp plφ,ωpst,at,ut, kq ´ 1q “
exp plφ,ωpst,at,ut, kqq

ş

A exp plφ,ωpst,at,ut, kqqdat
, (18)

where we use the constraint
ş

A qψpat|st,ut, kqdat “ 1. To verify that Eq. (18) is the maximizer, we substitute q‹ψ into Ft:

Ftpφ,ω,ψ‹q “ Eq‹ψ rlφ,ωpst,at,ut, kq ´ log qψ‹pat|st,ut, kqs

“ log

ˆ
ż

A
exp plφ,ωpst,at,ut, kqqdat

˙

. (19)

Since ftpφ,ωq “ Ftpφ,ω,ψ‹q “ maxψ Ftpφ,ω,ψq, we have that fpφ,ωq “ maxψ Fpφ,ω,ψq.

A.2. Lower-bound G

Next, we derive the lower-bound G of gpφ,ωq “ logZφ,ω . We first derive a trivial lower-bound using a “general” variational
distribution over trajectories and discuss its issue. Then, we derive a lower-bound presented in the paper by using a structured
variational distribution. Recall that the normalization term Zφ,ω of the model pφ,ω is given by

Zφ,ω “
K
ÿ

k“1

ż

¨ ¨ ¨

ż

pSˆAqT

˜

νpkqµps1q

T
ź

t“1

pspst`1|st,utq

ż

A
exp plφ,ωpst,at,ut, kqqdat

¸

ds1:Tdu1:T

“

K
ÿ

k“1

ż

¨ ¨ ¨

ż

pSˆAˆAqT

νpkqµps1q

T
ź

t“1

pspst`1|st,utq exp plφ,ωpst,at,ut, kqqds1:Tda1:Tdu1:T . (20)

Lower-bound via a general variational distribution A lower-bound of g can be obtained by using variational distribution
sqβpτ sau, kq with parameter β. We note that this variational distribution is general, since it allows any dependency between

Variational Imitation Learning with Diverse-quality Demonstrations

the random variables st, ut, at for all t, and k. By using this distribution, we have a lower-bound

gpφ,ωq “ log

˜

K
ÿ

k“1

ż

¨ ¨ ¨

ż

pSˆAˆAqT

νpkqµps1q

T
ź

t“1

pspst`1|st,utq exp plφ,ωpst,at,ut, kqq
sqβpτ sau, kq

sqβpτ sau, kq
ds1:Tda1:Tdu1:T

¸

ě E
sqβ

«

log νpkqµps1q `

T
ÿ

t“1

tlog pspst`1|st,utq ` lφ,ωpst,at,ut, kqu ´ log sqβpτ sau, kq

ff

. (21)

The main issue of using this lower-bound is that it can be computed or approximated only when we have an access to the
transition probability ps. In many practical tasks, the transition probability is unknown and needs to be estimated. However,
estimating the transition probability for large state and action spaces is known to be highly challenging (Sutton & Barto,
1998). For this reason, this lower-bound is not suitable for our method.

Lower-bound via a structured variational distribution To avoid the above issue, we use the structure variational
approach (Hoffman & Blei, 2015), where the key idea is to pre-define conditional dependency to ease computation.
Specifically, we derive a lower-bound using trajectory density sqθpτ sau, kq “ νpkqµps1qΠ

T
t“1pspst`1|st,utqqθpat,ut|st, kq,

where qθpat,ut|st, kq is a variational distribution with parameter θ and τ sau “ ps1:T`1,a1:T ,u1:T q. Notice that sqθpτ sau, kq
define dependencies between random variables according to the transition probability of an MDP. With this variational
distribution, we lower-bound g as follows:

gpφ,ωq “ log

˜

K
ÿ

k“1

ż

¨ ¨ ¨

ż

pSˆAˆAqT

νpkqµps1q

T
ź

t“1

pspst`1|st,utq exp plφ,ωpst,at,ut, kqq
qθpat,ut|st, kq

qθpat,ut|st, kq
ds1:Tda1:Tdu1:T

¸

ě E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat,ut|st, kq

ff

“ Gpφ,ω,θq. (22)

The optimal variational distribution q‹θpat,ut|st, kq can be founded by maximizing Gpφ,ω,θq w.r.t. qθ. Solving this
maximization problem is identical to solving a maximum entropy RL (ME-RL) problem (Ziebart et al., 2010) for an
MDP defined by a tuple M “ pS ˆ N,A ˆ A, psps

1, |s,uqIk“k1 , µps1qνpk1q, lφ,ωps,a,u, kqq. Specifically, this MDP
is defined with a state variable pst, ktq P S ˆ N, an action variable pat,utq P A ˆ A, a transition probability density
pspst`1, |st,utqIkt“kt`1

, an initial state density µps1qνpk1q, and a reward function lφ,ωpst,at,ut, kq. Here, Ia“b is the
indicator function which equals to 1 if a “ b and 0 otherwise. By using the optimality results of ME-RL (Ziebart et al.,
2010; Haarnoja et al., 2018), we have gpφ,ωq “ maxθ Gpφ,ω,θq, where the optimal variational distribution q‹θ is given by

q‹θpat,ut|st, kq “ exppQpst, k,at,utq ´ V pst, kqq. (23)

The functions Q and V are soft-value functions defined as

Qpst, k,at,utq “ lφ,ωpst,at,ut, kq ` Eps rV pst`1, kqs , (24)

V pst, kq “ log

ĳ

AˆA

exp pQpst, k,at,utqqdatdut. (25)

This concludes the derivations of F and G.

A.3. Objective Function L of VILD

Next, we derive the objective function Lpφ,ω,ψ,θq from Fpφ,ω,ψq ´ Gpφ,ω,θq using the density models described in
the paper. Specifically, we substitute pωput|st,at, kq “ N put|at,Cωpkqq and qθpat,ut|st, kq “ qθpat|stqN put|at,Σkq

into F and G

Variational Imitation Learning with Diverse-quality Demonstrations

First, we substitute qθpat,ut|st, kq “ qθpat|stqN put|at,Σkq into G:

Gpφ,ω,θq “ E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ logN put|at,Σkq ´ log qθpat|stq

ff

“ E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq `
1

2
}ut ´ at}

2
Σ´1
k

´ log qθpat|stq

ff

` c1, (26)

where c1 is a constant corresponding to log-normalization terms of N put|at,Σkq. Next, by using the re-parameterization
trick, we rewrite sqθpτ sau, kq as follows:

sqθpτ sau, kq “ νpkqµps1q

T
ź

t“1

pspst`1|st,utqN put|at,Σkqqθpat|stq

“ νpkqµps1q

T
ź

t“1

pspst`1|st,at `Σ
1{2
k εtqN pεt|0, Iqqθpat|stq, (27)

where we use ut “ at `Σ
1{2
k εt with εt „ N pεt|0, Iq. The expectation of ΣTt“1}ut ´ at}

2
Σ´1
k

over sqθ can be written as

E
sqθ

«

T
ÿ

t“1

}ut ´ at}
2
Σ´1
k

ff

“ E
sqθ

«

T
ÿ

t“1

}at `Σ
1{2
k εt ´ at}

2
Σ´1
k

ff

“ E
sqθ

«

T
ÿ

t“1

}Σ
1{2
k εt}

2
Σ´1
k

ff

“ Tda, (28)

which is a constant. Therefore, G can be expressed as

Gpφ,ω,θq “ E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

` c1 ` Tda. (29)

By ignoring the constant, the objective Fpφ,ω,ψq ´ Gpφ,ω,θq can be expressed as

Epd

«

T
ÿ

t“1

Eqψ rlφ,ωpst,at,ut, kq ´ log qψpat|st,ut, kqs

ff

´ E
sqθ

«

T
ÿ

t“1

lφ,ωpst,at,ut, kq ´ log qθpat|stq

ff

. (30)

Next, we substitute pωput|st,at, kq “ N put,at,Cωpkqq into Eq. (30). With this model, the first term of Eq. (30) is

Epd

«

T
ÿ

t“1

Eqψ rrφpst,atq ` log pωput|st,at, kq ´ log qψpat|st,ut, kqs

ff

“ Epd

«

T
ÿ

t“1

Eqψ

„

rφpst,atq ´
1

2
}ut ´ at}

2
C´1

ω pkq
´

1

2
log |Cωpkq| ´ log qψpat|st,ut, kq

ff

` c2, (31)

where c2 “ ´Tda
2 log 2π. Next, the second term of Eq. (30) is

E
sqθ

«

T
ÿ

t“1

rφpst,atq ` log pωput|st,at, kq ´ log qθpat|stq

ff

“ E
sqθ

«

T
ÿ

t“1

rφpst,atq ´
1

2
}ut ´ at}

2
C´1

ω pkq
´

1

2
log |Cωpkq| ´ log qθpat|stq

ff

` c3

“ E
rqθ

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
1

2
E
sqθ

«

T
ÿ

t“1

}Σ
1{2
k εt}

2
C´1
ω pkq

` log |Cωpkq|

ff

` c3

“ E
rqθ

«

T
ÿ

t“1

rφpst,atq ´ log qθpat|stq

ff

´
T

2
Eν

“

TrpC´1
ω pkqΣkq ` log |Cωpkq|

‰

` c3 (32)

Variational Imitation Learning with Diverse-quality Demonstrations

where rqθpτ saq “ µps1qΠ
T
t“1rpspst`1|st,atqqθpat|stq, rpspst`1|st,atq “

ş

A ΣKk“1pspst`1|st,utqN put|at,Σkqνpkqdut,
and c3 “ ´Tda

2 log 2π. Note that in the last two lines, we use sqθ in Eq. (27) to write

E
sqθ

«

T
ÿ

t“1

}ut ´ at}
2
C´1
ω pkq

ff

“ E
sqθ

«

T
ÿ

t“1

}at `Σ
1{2
k εt ´ at}

2
C´1
ω pkq

ff

“ E
sqθ

«

T
ÿ

t“1

}Σ
1{2
k εt}

2
C´1
ω pkq

ff

, (33)

and then use the quadratic form identity EN pεt|0,Iq

”

}Σ
1{2
k εt}

2
C´1
ω pkq

ı

“ TrpC´1
ω pkqΣkq.

Finally, by using Eq. (31) and Eq. (32), the objective Fpφ,ω,ψq ´ Gpφ,ω,θq is equivalent to an objective

Lpφ,ω,ψ,θq “ Epd

«

T
ÿ

t“1

Eqψ

„

rφpst,atq ´
1

2
}ut ´ at}

2
C´1
ω pkq

`Htpqψq

ff

´ E
rqθ

«

T
ÿ

t“1

rφpst,atq

ff

´Hprqθq `
T

2
Eν

“

TrpC´1
ω pkqΣkq

‰

, (34)

where Htpqψq “ ´Eqψ rlog qψpat|st,ut, kqs denotes the entropy and Hprqθq “ ´E
rqθ

“

ΣTt“1 log qθpat|stq
‰

denotes the
causal entropy. This concludes the derivation of VILD. Many RL and IL methods incorporate a discount factor 0 ă γ ď 1
to control the optimism of learned policy, and an entropy coefficient α ě 0 to control the effect of entropy terms.
VILD can include α and γ by rescaling the model pφ,ω. Specifically, we use lpα,γqφ,ω pst,at,ut, kq “

γt´1

α rφpst,atq `
1
α log pωput|st,at, kq in the derivation. This rescaling leads to an objective

Lpα,γqpφ,ω,ψ,θq “ Epd

«

T
ÿ

t“1

Eqψ

„

γt´1rφpst,atq ´
1

2
}ut ´ at}

2
C´1
ω pkq

` αHtpqψq

ff

´ E
rqθ

«

T
ÿ

t“1

γt´1rφpst,atq

ff

´ αHprqθq `
T

2
Eν

“

TrpC´1
ω pkqΣkq

‰

. (35)

VILD uses a discount factor and entropy coefficient in experiments, but omitted them in the main paper for compactness.

A.4. Laplace Distribution for Noise-density Model

As mentioned, other distributions beside the Gaussian distribution may be used for the parameterized model pω . For instance,
let us consider a multivariate-independent Laplace distribution: pωput|st,at, kq “ Πda

d“1 exp
´

´}ut´at
ck

}1

¯

{c
pdq
k , where

ω “ tcku
K
k“1 and a division of vector by vector denotes element-wise division. The Laplace distribution for pω incorporates

a prior assumption that the noise-density pn tends to Laplace, where the scale parameter cpdqk gives an estimated expertise of
the k-th demonstrator in each dimension of action. By using this Laplace distribution, we obtain an objective

Epd

«

T
ÿ

t“1

Eqψ

„

rφpst,atq ´
∥∥∥ut ´ at

ck

∥∥∥
1

`Htpqψq

ff

´ E
rqθ

«

T
ÿ

t“1

rφpst,atq

ff

´Hprqθq `
T
?

2
?
π

Eν
”

TrpC´1
ω pkqΣ

1{2
k q

ı

.

A.5. Log-sigmoid Reward Function

In the experiments with LunarLander and RobosuiteReacher tasks, we use a log-sigmoid reward function for VILD.
Specifically, we parameterize the reward function as rφps,aq “ logDφps,aq where Dφps,aq “

exppdφps,aqq
exppdφps,aqq`1 is a sigmoid

function with neural network dφ : S ˆAÑ R. In addition, we apply a substitution ´ logDφps,aq Ñ logp1´Dφps,aqq,
which is a common practice in generative adversarial networks (Fedus et al., 2018). By using the log-sigmoid reward
function and the substitution in Eq. (35), we obtain an objective

Lpα,γqlog-sigmoidpφ,ω,ψ,θq “ Epd

«

T
ÿ

t“1

Eqψ

„

γt´1 logDφps,aq ´
1

2
}ut ´ at}

2
C´1
ω pkq

` αHtpqψq

ff

` E
rqθ

«

T
ÿ

t“1

γt´1logp1´Dφps,aqq

ff

´ αHprqθq `
T

2
Eν

“

TrpC´1
ω pkqΣkq

‰

. (36)

Variational Imitation Learning with Diverse-quality Demonstrations

For LunarLander, we use log-sigmoid reward to address the issue of reward biases and make comparison against GAIL and
InfoGAIL fair (see Section D.2). For RobosuiteReacher, we use log-sigmoid reward because it improves the performance.

B. Brief review of comparison methods
This section reviews IL methods compared against VILD in our experiments. Firstly, we review RL-based methods. These
methods learn a policy by RL and require additional transition samples from MDPs. Then, we review supervised learning
(SL)-based methods. These methods learn a policy by SL and do not require additional transition samples from MDPs.

B.1. RL-based methods

ME-IRL. Maximum entropy IRL (ME-IRL) (Ziebart et al., 2010) is an IL method that uses the maximum entropy
principle (Jaynes, 1957) for causal interaction. We consider an alternative derivation which is applicable to non-linear
reward function (Finn et al., 2016). ME-IRL learns reward by minimizing a KL divergence from a data distribution p‹pτ saq

to a model pφpτ saq “
1
Zφ
µps1qΠ

T
t“1pspst`1|st,atq exppγt´1rφpst,atq{αq, where Zφ is the normalization term, α ą 0

is an entropy coefficient, and 0 ă γ ď 0 is the discount factor. Minimizing this KL divergence is equivalent to solving
maxφ Ep‹

“

ΣTt“1γ
t´1rφpst,atq{α

‰

´ logZφ. To compute Zφ, we can use importance sampling (Finn et al., 2016) or the
variational approach. The latter leads to

max
φ

min
θ

Ep‹
”

řT
t“1γ

t´1rφpst,atq
ı

´ Epθ
”

řT
t“1γ

t´1rφpst,atq ´ α log πθpat|stq
ı

, (37)

where pθpτ saq “ µps1qΠ
T
t“1pspst`1|st,atqπθpat|stq. The policy πθ can be learned by (maximum entropy) RL with reward

rφ and an entropy regularization with coefficient α. This policy estimates the optimal policy and is the solution of IL.

AIRL. Adversarial IRL (AIRL) (Fu et al., 2018) is also based on ME-IRL, but it learns a reward function by solving

max
φ

Ep‹
”

řT
t“1γ

t´1 logRφps,aq
ı

` Epθ
”

řT
t“1γ

t´1 logp1´Rφps,aqq
ı

, (38)

where Rφps,aq “
expprφps,aqq

expprφps,aqq`πθpa|sqα
. Policy πθ is learned by RL with reward rφ and an entropy regularization with

coefficient α. The authors showed that gradients w.r.t. φ of Eq. (38) is equivalent to gradients w.r.t. φ of ME-IRL in Eq. (37).
The authors also proposed to disentangle reward function which leads to a better performance in transfer learning settings.
We do not evaluate AIRL with disentangle reward in experiments.

GAIL. Generative Adversarial IL (GAIL) (Ho & Ermon, 2016) performs occupancy measure matching via generative
adversarial networks to learn the optimal policy from expert demonstrations. Specifically, GAIL finds a parameterized
policy πθ such that its occupancy measure ρθps,aq is similar to the occupancy measure ρ‹ps,aq of π‹. To measure the
similarity, GAIL uses the Jensen-Shannon divergence, which is estimated and minimized by

min
θ

max
φ

Eρ‹ rlogDφps,aqs ` Eρθ rlogp1´Dφps,aqq ` α log πθpat|stqs , (39)

whereDφps,aq “
exppdφps,aqq

exppdφps,aqq`1 is a sigmoid function. The minimization is done using RL with reward´ logp1´Dφps,aqq

and an entropy regularization with coefficient α. Note that GAIL does not aim to learn the reward function, unlike ME-IRL
and AIRL. However, ´ logp1´Dφq or logDφ can be used as a reward function for RL (Kostrikov et al., 2019).

VAIL. Variational adversarial IL (VAIL) (Peng et al., 2019) improves upon GAIL by using variational information bottleneck
(VIB) (Alemi et al., 2017). VIB aims to compress information flow by minimizing a variational bound of mutual information.
This compression filters irrelevant signals, which leads to less over-fitting. To achieve this, VAIL learns φ by solving

min
φ,U

max
βě0

Eρ‹ rEU r´ logDφpzqss ` Eρθ rEU r´ logp1´Dφpzqqss ` βEpρ‹`ρθq{2 rKLpUpz|s,aq|ppzqq ´ Ics , (40)

where Upz|s,aq is an encoder, z is an encode vector, ppzq is a prior distribution of z, Ic is the target value of mutual
information, and β ą 0 is a Lagrange multiplier. With this discriminator, πθ is learned by RL with a reward function
´ logp1´DφpEUpz|s,aq rzsqq.

Because irrelevant signals in low-quality demonstrations are filtered out by the encoder, it might be expected that VAIL
is robust against diverse-quality demonstrations, However, this is not always the case, and VAIL does not improve much

Variational Imitation Learning with Diverse-quality Demonstrations

upon GAIL in our experiments. This is perhaps because VAIL compress information from both demonstrators and agent’s
trajectories. Meanwhile in our setting, irrelevant signals are generated only by demonstrators. Therefore, the information
bottleneck may also filter out relevant signals in agent’s trajectories, which lead to no improvement in performances.

InfoGAIL. Information-maximizing GAIL (InfoGAIL) (Li et al., 2017) is an extension of GAIL for learning a multi-modal
policy. InfoGAIL uses a context variable z to learn a context-dependent policy πθpa|s, zq, where each context represents
each modality of a multi-modal policy. InfoGAIL prevents learning a uni-modal policy by maximizing a mutual information
between contexts and state-action pairs. This is achieved by maximizing a variational lower-bound of mutual information:

min
θ,Q

max
φ

Eρ‹ rlogDφps,aqs ` Eρθ rlogp1´Dφps,aqq ` α log πθpa|s, zqs ´ λLpπθ, Qq, (41)

where Lpπθ, Qq “ Ec,πθ rlogQpz|s,aq ´ log cpzqs is a variational lower-bound of mutual information, Qpz|s,aq is an
encoder neural network, and cpzq is a prior context distribution. In our experiment, the number of context z is set to
be the number of demonstrators K. Note that InfoGAIL can be extended to use the Wasserstein-distance instead of the
Jensen-Shannon divergence (Li et al., 2017). We use the Wasserstein-distance variant for InfoGAIL in the Humanoid task,
since the Jensen-Shannon-divergence variant does not perform well in this task.

InfoGAIL is suitable for diverse demonstrations collected by experts with different optimal policies. Specifically, diverse
demonstrations are diverse in behavior but have equally high quality. With such demonstrations, each modality (i.e., each
context) of the multi-modal policy corresponds to one of the optimal policy. In this scenario, choosing good contexts is not
crucial, since all contexts yield equally good policies. However, InfoGAIL is not suitable for diverse-quality demonstrations,
because some modalities estimate policy of amateurs. Due to this, choosing good contexts is crucial for InfoGAIL with
diverse-quality demonstrations. When knowing the quality of demonstrators or the level of demonstrators’ expertise, we
may assign each context to each demonstrator and choose contexts that correspond to high-expertise demonstrator by, e.g.,
hand-craft the prior cpzq so that a probability of contexts is proportional to the level of expertise.

B.2. SL-based methods

BC. Behavior Cloning (BC) (Pomerleau, 1988) treats IL as supervised learning and ignores dependency between data
distributions and policy. For continuous actions, BC performs regression to learn a policy πθpstq from expert demonstrations:

min
θ

Ep‹
”

řT
t“1}at ´ πθpstq}

2
2

ı

. (42)

Notice that, data distribution during training is p‹pτ saq “ µps1qΠ
T
t“1pspst`1|st,atqπ

‹pat|stq, while data distribution
during testing (where actions are executed in MDPs) is pθpτ saq “ µps1qΠ

T
t“1pspst`1|st,atqπθpat|stq. Indeed, there is a

discrepancy between training and testing data distribution except when πθ “ π‹. Due to this discrepancy, the policy may
not generalize well during testing and make prediction errors. These prediction errors lead to further discrepancy which
causes more errors in future time steps; This is the compounding error (Ross & Bagnell, 2010).

BC-D. BC with Diverse-quality demonstrations (BC-D) is an extension of BC for handling diverse-quality demonstrations.
BC-D is based on the simple model pθ,ω described in Section 3.1. We consider it mainly for evaluation purpose. Briefly,
BC-D learns a policy along with a noise-density by minimizing the KL divergence from the data distribution to the model:
minθ,ω KLppd||pθ,ωq. Minimizing this KL is equivalent to solving

max
θ,ω

Epd rlog pθ,ωpτ su, kqs “ max
θ,ω

Epd
”

řT
t“1 log

ş

A πθpat|stqpωput|st,at, kqdat

ı

` c, (43)

where c is a constant. To handle the integral, we use a variational approach with variational distribution qψpat|st,ut, kq. By
using pωput|st,at, kq “ N put|at,Cωpkqq and πθpa|sq “ N pat|πθpstq, Iq, the optimization is

max
θ,ω,ψ

Epd
”

řT
t“1Eqψ

”

´ 1
2}at ´ πθpstq}

2
2 ´

1
2}ut ´ at}

2
C´1
ω pkq

´ log qψpat|st,ut, kq
ıı

. (44)

Note that BC-D reduces to BC when we assume qψpat|st,ut, kq “ δat“ut and pωput|at, st, kq “ δut“at , i..e, demonstrators
are experts. Also note that BC-D is an extension to IL of a method for classification with noisy labels (Raykar et al., 2010).

Co-teaching. Co-teaching (Han et al., 2018) is a recent method for classification with noisy labels. This method aims to
tackle the issue of memorization in neural networks (Arpit et al., 2017), where neural networks tend to firstly remember data

Variational Imitation Learning with Diverse-quality Demonstrations

with simple pattern (e.g., clean label data) before overfit to data with difficult pattern (e.g., noisy label data). To tackle this
issue, this method trains two neural networks such that mini-batch samples with small loss are exchanged between networks.
We combine this method with BC to perform IL. Specifically, let πθ1psq and πθ2psq be two neural networks representing
policies,∇θLpθ,Bq “ ∇θΣps,aqPB}a´ πθpsq}22 be gradients of a least-square loss estimated by mini-batch B, and η ą 0
be a step-size. The parameters θ1 and θ2 are updated by iterates:

θ1 Ð θ1 ´ η∇θ1Lpθ1,Bθ2q, θ2 Ð θ2 ´ η∇θ2Lpθ2,Bθ1q, (45)

where Bθ2 “ argminB1 Lpθ2,B1q and Bθ1 “ argminB1 Lpθ1,B1q. In other words, the mini-batch Bθ2 for updating θ1 is
obtained such that Bθ2 incurs small loss when using prediction from πθ2 , ad similarly for the mini-batch Bθ1 . For evaluating
the performance, we use the policy network πθ1 .

C. Implementation Details
In this section, we describe implementation details of VILD.

C.1. Neural network architecture and hyper-parameters

We implement VILD using PyTorch. For rφ, qψ, and qθ, we use neural networks with 2 hidden-layers of 100 tanh units,
except for Humanoid, LunarLander, and RobosuiteReacher tasks where we use neural networks with 2 hidden-layers of 100
relu units. Network weights are initialized such that the magnitude of output is small. For the hyper-parameter Σk of VILD,
we use Σk “ 10´16I for all k. Parametereization of function approximators are as follows.

• We use pωput|st,at, kq “ N put|at,Cωpkqq, where Cωpkq “ diagpckq, ω “ tckuKk“1, and ck P Rda` . The covariance
is initilized as ck “ e´1.

• We use qψpat|st,ut, kq “ N pat|µψps,u, kq,diagpσ2
ψps,u, kqqq, where µψ and (logarithm of) σψ are neural net-

works. Because k is a discrete variable, we represent qψpat|st,ut, kq by neural networks that have K output heads.

• For qθpat|stq, we use Gaussian with diagonal covariance where the mean is a neural network. The parameterization of
covariance depends on RL methods; For TRPO and PPO, the policy’s covariance is independent of states. For SAC, the
policy’s covariance is a neural network. These choices are used in public implementations of these RL methods.

For all methods, we regularize reward rφ (or discriminator) by the gradient penalty (Gulrajani et al., 2017), except on the
LunarLander task. We use this regularization since it was shown to improve performance of generative adversarial learning
methods. For VILD without log-sigmoid reward function, AIRL, and ME-IRL, we apply a sigmoid function to the output
of a reward network to bound reward values. We found that without the upper- and lower-bounds, reward values of the
agent can be highly negative in the early stage of learning which makes RL methods prematurely converge to poor policies.
An explanation of this phenomenon is that, in MDPs with large state and action spaces, distribution of demonstrations
and distribution of agent’s trajectories are not overlapped in the early stage of learning. In such a scenario, it is trivial to
learn a reward function which tends to positive-infinity values for demonstrations and negative-infinity values for agent’s
trajectories. Bounding rewards help prevent this scenario. In addition, for VILD, it is beneficial to bound rewards to control
a scale between the reward and squared error when optimizing ψ.

C.2. Optimization procedure

We optimize parameters φ, ω, and ψ by Adam with step-size 3ˆ 10´4, β1 “ 0.9, β2 “ 0.999 and mini-batch size 256. To
optimize the policy parameter θ, we use trust region policy optimization (TRPO) (Schulman et al., 2015a) with batch size
1000 for all tasks, except on the Humanoid task where we use soft actor-critic (SAC) (Haarnoja et al., 2018) with mini-batch
size 256 and on the LunarLander task where we use proximal policy optimization (PPO) (Schulman et al., 2017) with batch
size 1000. These methods are actor-critic methods that also learn a value function. We use the identical network architecture
for these value functions. We use generalized advantage estimation (Schulman et al., 2015b) to learn the state-value function
for TRPO and PPO, and use soft version of temporal-difference to learn the state-action-value function for SAC (Haarnoja
et al., 2018). Note that TRPO and PPO are an on-policy RL method that uses only trajectories collected by the current
policy, while SAC is an off-policy RL method that use trajectories collected by previous policies. On-policy methods are
generally more stable than off-policy methods, while off-policy methods are generally more data-efficient (Gu et al., 2017).

Variational Imitation Learning with Diverse-quality Demonstrations

When SAC is used, we also use trajectories collected by previous policies to approximate the expectation over the trajectory
density q̃θpτ saq. To control exploration-exploitation trade-off, we use an entropy coefficient α “ 0.0001 in TRPO and
PPO. In SAC, the value of α is optimized so that the policy has a certain value of entropy, as described by Haarnoja et al.
(2018). A discount factor γ “ 0.99 is also included. We use the same implementation and hyper-parameters for all methods.
These implementation and hyper-parameters are chosen based on benchmark results of existing methods with expert
demonstrations; GAIL, AIRL, ME-IRL, and VAIL work equally well with expert demonstrations with 10000 state-action
pairs. We use the same implementation and hyper-parameters for the experiments with diverse-quality demonstrations.

We pre-train the Gaussian mean of qψ, by performing least-squares regression for 1000 gradient steps with target value
ut. This pre-training is done to obtain reasonable initial predictions. For VILD without IS, the reward parameter is
updated by an estimate of ∇φLpφ,ω,ψ,θq. The regularizer Lpωq “ TEνrlog |C´1

ω pkq|s{2 penalizes large value of
Cωpkq. When using on-policy RL methods (TRPO and PPO), we use different numbers of update for each parameter
vector. Specifically, for each iteration of policy gradients, we update rφ with 5 gradient updates (this is applied to all
methods). Then, for each iteration of reward update, we update qψ and pω with 10 gradient updates. The number of gradient
updates for qψ and pω is decayed over time to reduce computation time. A source-code of VILD is publicly available at
www.github.com/voot-t/vild_code.

C.3. Expectation Approximation

To approximate expectations over trajectory density, we may uniformly sample mini-batch of trajectories pτ su, kqi from the
dataset and compute cumulative quantities along trajectory. However, this is computationally expensive for tasks with long
time horizon T . To improve computation time, we use an occupancy-measure-based expectation approximation where we
uniformly sample mini-batch of state-action pairs ps,u, kqi from the dataset and compute immediate quantities at time step t.
This expectation approximation is unbiased, based on the fact that for a policy πpa|sq and a function cps,aq, an expectation
over trajectory density pπpτ saq and an expectation over corresponding occupancy-measure ρπps,aq are equivalent (Puterman,
1994). Specifically, let ρπps,aq “ Epπ rΣTt“1γ

t´1δpst ´ s,at ´ aqs be the (state-action) occupancy measure of π, the
following equality holds: Epπ rΣTt“1γ

t´1cpst,atqs “
ť

SˆA ρπps,aqcps,aqdsda “ Eρπ rcps,aqs. Stochastic gradients
w.r.t. c (or its parameters) can be estimated by using state-action pairs sampled uniformly from a dataset. We use trajectory-
density notations in mathematical derivation because they give better clarity than occupancy-measure notations.

D. Experimental Settings and Additional Results
This section presents more details of experimental settings and additional results.

D.1. Settings and Additional Results in Continuous-control Benchmarks with Artificial Demonstrations

Settings. In Section 4.1, we evaluate VILD on four Mujoco benchmark tasks from OpenAI gym (Brockman et al., 2016):
HalfCheetah-v2 (S Ď R17,A Ď R6), Ant-v2 (S Ď R111,A Ď R8), Walker2d-v2 (S Ď R17,A Ď R6), and Humanoid-
v2 (S Ď R376,A Ď R17). For each task, we use the ground-truth reward to pre-train π‹ with RL, and we generate
demonstrations according to the graphical model in Figure 1(b). We generate two datasets for each task: one generated using
a noise-density pnput|st,at, kq “ N put|at,σ2

kq (time-action independent) and another generated using a noise-density
pnput|st,at, kq “ N put|at,σ2

kpat, tqq (time-action dependent). We use K “ 10 demonstrators to generate a dataset with
approximately 10000 state-action pairs. To evaluate learning performance, in each trail, we generate 10 test trajectories
using the learned policy and compute cumulative ground-truth rewards. For time-action independent noise-densities, we use
σ2
k “ σ2

kI where σk P t0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0u. Table 1 shows the performance of demonstrators
with this noise-density. The optimal policy and initial policy (π0) are included for comparison.

0 200 400 600 800 1000
Time t

4

2

0

2

4

Va
lu

e
of

 b
k(t

)

k = 1.00
k = 0.40
k = 0.01

Figure 10. Value of bkptq.

For time-action independent noise-densities, we use σ2
kpat, tq “ diagpbkptq ˆ }at}1{daq,

where bkptq P Rda is a sample from a noise process whose noise variance increases over
time (Figure 10); This is a reversed Ornstein–Uhlenbeck (OU) process with parameters
θ “ 0.15 and σ “ σk, where σk P t0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0u. Note
that OU process (Uhlenbeck & Ornstein, 1930) generates time-correlated noises where the
noise variance decays toward zero. We reverse OU processes along the time axis, so that the
noise variance increases over time. We use this noise-density to simulate noises in human
motor control, where the magnitude of noise depends on actions and increases over time (van
Beers et al., 2004). Table 2 shows the performance of demonstrators with this noise-density.

www.github.com/voot-t/vild_code

Variational Imitation Learning with Diverse-quality Demonstrations

Table 1. Cumulative rewards obtained by demonstrators with
time-action independent noise-densities.

k Cheetah Ant Walker Humanoid
1 4311 3985 4434 4315
2 3978 3861 3486 5140
3 4019 3514 4651 5189
4 1853 536 4362 3628
5 1090 227 467 5220
6 567 -73 523 2593
7 267 -208 332 1744
8 -45 -979 283 735
9 -399 -328 255 538
10 -177 -203 249 361
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093

Table 2. Cumulative rewards obtained by demonstrators with
time-action dependent noise-densities.

k Cheetah Ant Walker Humanoid
1 4362 3758 4695 5130
2 4015 3623 4528 5099
3 3741 3368 2362 5195
4 1301 873 644 1675
5 -203 231 302 610
6 -230 -51 29 249
7 -249 -37 24 221
8 -416 -567 14 191
9 -389 -751 7 178
10 -424 -269 4 169
(π0) -0.58 995 131 222
(π‹) 4624 4349 4963 5093

Table 3. The mean and standard error of cumulative rewards in benchmark tasks in the last 100 iterations (higher is better). Bold indicates
best and comparable methods according to t-test with significance level 1%. (I) denotes time-action independent noise-density and (D)
denotes time-action dependent noise-density. VILD (w/o) denotes VILD without IS. InfoGAIL (b) denotes InfoGAIL with best contexts.

Task VILD (IS) VILD (w/o) GAIL AIRL ME-IRL VAIL InfoGAIL InfoGAIL (b)
Cheetah (I) 4559 (43) 1848 (429) 551 (23) 341 (177) 1192 (245) 363 (112) 1244 (210) 1463 (244)
Cheetah (D) 4394 (136) 1159 (594) 318 (134) -304 (51) 177 (132) 287 (223) 2664 (779) 3064 (818)
Ant (I) 3719 (65) 1426 (81) 209 (30) 1417 (184) 731 (93) 315 (87) 675 (36) 870 (14)
Ant (D) 3396 (64) 1072 (134) 97 (161) 1357 (59) 775 (135) -129 (86) 1076 (140) 1437 (121)
Walker2d (I) 3470 (300) 2132 (64) 1410 (115) 1534 (99) 1795 (172) 1194 (180) 1668 (82) 2341 (152)
Walker2d (D) 3115 (130) 1244 (132) 834 (84) 578 (47) 752 (112) 867 (93) 1041 (36) 1967 (54)
Humanoid (I) 3781 (557) 4840 (56) 284 (24) 4274 (93) 3038 (731) 252 (18) 4047 (653) 4507 (600)
Humanoid (D) 4600 (97) 3610 (448) 203 (31) 4212 (121) 4132 (651) 193 (32) 3962 (635) 4388 (504)

Additional results. Table 3 shows the final performance of RL-based methods. The performance is computed over the
last 100 update iterations. We use t-test with significance level 1% to perform statistical test. VILD with IS statistically
outperforms existing methods in these benchmarks overall, except on the Humanoid task where all methods except GAIL
and VAIL achieve statistically comparable performance.

Figure 11 shows the quality-estimation of VILD. The plotted values are t}ck}1{dau
K
k“1 computed from the diagonal

covariance Cωpkq “ diagpckq. Based on relative values of the estimates, the results show that VILD learns an accurate
ranking of the variance. The values of these parameters are also quite accurate compared to the ground truth, except for
demonstrators with low-levels of expertise. A possible reason for this phenomena is that low-quality demonstrations are
highly dissimilar, which makes learning the expertise more challenging. We can also see that the difference between
expertise parameters of VILD with IS and VILD without IS is small and negligible. Note that for time-action dependent
noise-density, the quality-estimation cannot be evaluated against the ground-truth. Nonetheless, the relative value of the
estimated covariance suggests that VILD learns an accurate ranking of expertise.

Figure 12 shows performance of SL-based methods with time-action dependent noise-density. As seen, their performance
tends to degrade as training progress, similarly to their performance with time-action independent noise-density.

Figure 13 shows performance of InfoGAIL with different values of context. These plots are computed as follows; For
each trial, we rank the performance of InfoGAIL with different contexts. Then, we report the mean and standard error
of these ranked performance. We do this because contexts yield no meaning across different trials. As seen from the
results, the performance of InfoGAIL is quite similar for all values of contexts despite the ranking. This is perhaps because
of large state-action spaces of benchmark tasks. As discussed in the paper, we evaluate InfoGAIL in the Pendulum task
(S Ď R3,A Ď R) using an identical setting. The results (Figure 4) show that choosing a good context is indeed crucial for a
good performance of InfoGAIL.

Variational Imitation Learning with Diverse-quality Demonstrations

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e
HalfCheetah (Covariance)

VILD (IS)
VILD (w/o IS)
Ground-truth

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e

Ant (Covariance)
VILD (IS)
VILD (w/o IS)
Ground-truth

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e

Walker2d (Covariance)
VILD (IS)
VILD (w/o IS)
Ground-truth

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.2

0.4

0.6

0.8

1.0

Co
va

ria
nc

e

Humanoid (Covariance)
VILD (IS)
VILD (w/o IS)
Ground-truth

(a) Quality-estimation with time-action independent noise-density. The ground-truth σ2
k is plotted for comparison.

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.5

1.0

1.5

2.0

2.5

Co
va

ria
nc

e

HalfCheetah (Covariance)
VILD (IS)
VILD (w/o IS)

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0

0.1

0.2

0.3

0.4
Co

va
ria

nc
e

Ant (Covariance)
VILD (IS)
VILD (w/o IS)

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Co
va

ria
nc

e

Walker2d (Covariance)
VILD (IS)
VILD (w/o IS)

1 2 3 4 5 6 7 8 9 10
Demonstrator number k

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Co
va

ria
nc

e

Humanoid (Covariance)
VILD (IS)
VILD (w/o IS)

(b) Quality-estimation with time-action dependent noise-density. The ground-truth is not plotted because it depends on time and action.

Figure 11. Quality-estimation of VILD in benchmarks. The plotted value is }ck}1{da computed from covariance Cωpkq “ diagpckq.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps 1e6

0
1
2
3
4
5

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 HalfCheetah

BC
BC-D

Co-teaching

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps 1e6

1

2

3

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Ant

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps 1e6

0

1

2

3

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Humanoid

Figure 12. Comparison on continuous-control benchmarks against supervised-learning-based methods. BC-D and Co-teaching take
diverse-quality into account, while BC does not. Demonstrations are generated by time-action dependent noise-density.

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3HalfCheetah (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Ant (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Walker2d (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0
1
2
3
4
5

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Humanoid (InfoGAIL)

(a) Demonstrations are generated by time-action independent noise-density.

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3HalfCheetah (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Ant (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Walker2d (InfoGAIL)

0 1 2 3 4 5
Transition samples 1e6

0

1

2

3

4

5

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 Humanoid (InfoGAIL)

(b) Demonstrations are generated by time-action dependent noise-density.

Figure 13. Performance or InfoGAIL on continuous-control benchmarks with different values of contexts. The context-dependent policy
tends to have similar performance regardless of contexts.

Variational Imitation Learning with Diverse-quality Demonstrations

D.2. Settings in LunarLander task with Artificial Demonstrations

For the LunarLander task (S Ď R8,A Ď R2), we generate demonstrations using a proportional-derivative (PD) con-
troller; This controller is accompanied with the task (Brockman et al., 2016) and can generate high-quality demonstra-
tions by using good parameters (i.e., good PD gains). To generate diverse-quality demonstrations, we subtract these
parameters by noise vectors drawn from half-Gaussian distributions with time-dependent variance. Specifically, these
noise vectors are absolute values of noises drawn from OU processes with parameters θ “ 0.15 and σ “ σk, where
σk P t0.01, 0.05, 0.1, 0.25, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0u. We use K “ 10 demonstrators where each demonstrator generate
approximately 2000 state-action pairs. To evaluate learning performance, in each trail, we generate 10 test trajectories
using the learned policy and compute cumulative ground-truth rewards. We emphasize that the Gaussian model of VILD is
incorrect in this experiment, since demonstrations are generated by perturbing parameters of the optimal policy.

As mentioned, we use the log-sigmoid reward function for VILD in this task. In addition, for all evaluated methods (namely
VILD, GAIL, and InfoGAIL), we use strictly negative rewards logDφpst,atq P p´8, 0q instead of strictly positive rewards
´ logp1´Dφpst,atqq P p0,8q. We do this is address the issue of bias in reward parameterization (Kostrikov et al., 2019).
Namely, strictly negative rewards bias the agent to generate trajectories with short horizon which is beneficial for task with
stopping conditions. On the other hand, strictly positive rewards bias the agent to generate trajectories with long horizon
which is beneficial for task with survival bonuses. The LunarLander task has a stopping condition, and thus strictly negative
rewards tend to yield better performances for all methods. We note that recent works have proposed approaches to address
the issue of reward biases (Kostrikov et al., 2019). However, addressing this issue is not in the scope of this paper. To
remove confounding factors such as reward biases, we use same reward parameterization (i.e., log-sigmoid with a strictly
negative rewards) for all methods in the LunarLander task.

D.3. Settings in Reacher Task with Real-world Demonstrations

For the RobosuiteReacher task, we use a crowdsourced demonstration dataset (Mandlekar et al., 2018) publicly available from
http://roboturk.stanford.edu/dataset.html. These demonstrations are collected for object-manipulation
tasks such as assembly tasks in the Robosuite environment (Fan et al., 2018). We consider a reaching task, where the goal is
to control the robot’s end-effector to reach a target object; This is a sub-task for solving object-manipulation tasks (which
have reaching, picking, and placing subtasks). We leave a study of IL with diverse-quality demonstrations under many
sub-tasks for future work.

To obtain a reaching-task dataset, we clip demonstrations from the SawyerNutAssemblyRound dataset when the robot’s
end-effector contacts the target object. We choose N “ 10 demonstrations that have approximately 500 time steps to obtain
a dataset with approximately 5000 state-action pairs. Because we do not know the number of demonstrators that collected
these 10 demonstrations, we use the strategy described in Section 2.3 where we set K “ N and k “ n. We use true states
of the robot and do not use visual observations. We disable the gripper control command of the robot since reaching does
not require controlling the gripper. The state space of this task is S Ď R44, and the action space of this task is A Ď R7.
The policy parameters of all methods are pre-trained by performing least-squares regression for 1000 gradient steps. The
ground-truth reward function is inverse proportional to the distance between object and end-effector. To evaluate learning
performance, in each trail, we generate 100 test trajectories using the learned policy and compute cumulative ground-truth
rewards. We use a large number of test trajectories because the initial states of this task highly vary.

D.4. Experiment with High-quality Demonstrations

0 1 2 3 4 5
Transition samples 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Cu
m

ul
at

iv
e

re
wa

rd
s

1e3 AntBullet
VILD (IS)
GAIL
ME-IRL

Figure 14. Performance of VILD when demon-
strations are high-quality. VILD is comparable
to ME-IRL as expected.

Here, we evaluate VILD when demonstrations are all high-quality in the
Ant task with PyBullet physics simulator (Coumans & Bai, 2016–2019). We
collect 10000 state-action pairs using a pre-trained policy π‹ and set K “ 1
for VILD. We evaluate VILD, ME-IRL, and GAIL in this scenario. We use
TRPO and neural networks with 2 hidden-layers of 100 tanh units.

The experimental result in Figure 14 shows that VILD performs comparable
to ME-IRL. This result supports our conjecture that VILD is comparable to
ME-IRL when all demonstrations are high-quality.

http://roboturk.stanford.edu/dataset.html

